跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/20 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施奐宇
研究生(外文):Huan-Yu Shi
論文名稱:以金核銀殼奈米微結構陣列結合三極化電極進行電化學表面增強拉曼光譜並應用於咖啡因檢測
論文名稱(外文):Electrochemical Surface-Enhanced Raman Spectroscopy Using Au@Ag core-shell Nanostructure Arrays Combined with Tripolar Electrodes for Caffeine Detection
指導教授:黃朱瑜
指導教授(外文):Chu-Yu Huang
口試委員:許佳賢吳嘉哲
口試日期:2022-01-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:66
中文關鍵詞:電化學拉曼散射濺鍍咖啡因
外文關鍵詞:ElectrochemistryRaman scatteringsputteringcaffeine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究了金與銀不同濺鍍時間下R6G在蛾眼結構pc基板上的表面增強拉曼散射(SERS),R6G的SERS相對強度隨著金屬顆粒直徑的不同而顯著變化,在金屬顆粒直徑過大或過小時,SERS光譜的增強不明顯。以最佳拉曼增強效果的時間參數為蛾眼結構pc基板濺鍍,作為拉曼檢測使用的檢測基板,同時作為三極化電極中的工作電極,對R6G與咖啡因進行EC-SERS的檢測,對其進行負電位與正電位的掃描,在負電位時R6G與咖啡因有顯著的增強效果,其後加入含氯離子的電解質,施加負電位檢測咖啡因,結果顯示提高了拉曼增強效果,最後用鍍金再鍍銀的蛾眼結構pc基板,檢測咖啡因的EC-SERS,由其拉曼訊號強度定量校正曲線,比起只使用電化學的方式檢測咖啡因,結合電化學與拉曼訊號測量的EC-SERS方式能檢測到更低濃度的咖啡因。
In this paper, the surface-enhanced Raman scattering (SERS) of R6G on moth-eye pc substrates under different sputtering times of gold and silver was investigated. The relative SERS intensities of R6G vary significantly with different metal particle diameters. When the metal particle diameter is too large or too small, the enhancement of SERS spectrum is not obvious. Taking the time parameter of the best Raman enhancement effect as the moth-eye structure pc substrate sputtering, as the detection substrate for Raman detection, and as the working electrode in the tripolar electrode. The EC-SERS detection of R6G and caffeine was performed, and the negative and positive potentials were scanned. At the negative potential, R6G and caffeine had a significant enhancement effect. After that, an electrolyte containing chloride ions was added, and a negative potential was applied to detect caffeine. The results showed that the Raman enhancement effect was improved. Finally, the moth-eye structure pc substrate plated with gold and then silver was used to detect the EC-SERS of caffeine, and the calibration curve of the Raman signal intensity was quantitatively determined. The EC-SERS method that combines electrochemical and Raman signal measurements can detect lower concentrations of caffeine than only electrochemical detection.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1前言 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 拉曼光譜 2
2.2 表面增強拉曼散射(surface-enhanced Raman scattering,SERS) 3
2.3 電化學法 3
2.3.1 計時安培法 3
2.3.2 循環伏安法 4
2.3.3 電化學表面增強拉曼(Electrochemical Surface-enhanced Raman spectroscopy,EC-SERS) 5
2.4 金核銀殼複合奈米粒子 7
2.5 拉曼檢測參照物-R6G 8
2.6 拉曼檢測目標-咖啡因 8
第三章 實驗流程和設備 10
3.1 實驗設備與藥品 10
3.2 實驗流程 14
3.2.1 熱壓蛾眼結構pc基板製作 14
3.2.2 不同時間參數Au@Ag 測量R6G的SERS 16
3.2.3 imageJ粒徑分析 17
3.2.4 工作電極與三極化基板封裝 22
3.2.5 R6G與咖啡因電化學拉曼訊號量測 24
第四章 實驗結果與討論 26
4.1 Au與Au@Ag的R6G拉曼訊號相互比較 26
4.2 Ag與 Au@Ag的R6G拉曼訊號相互比較 27
4.3各樣本SEM與imageJ 計算粒徑 28
4.4切面SEM 38
4.5 Au@Ag不同鍍銀時間參數 39
4.6 Au@Ag正負電位掃描R6G與咖啡因 43
4.7 Au與Au@Ag與加入NaCl對R6G EC-SERS影響 44
4.8 Au@Ag+NaCl檢測咖啡因的EC-SERS 48
4.9 VIDA咖啡因綠原酸檢測晶片對照 55
第五章 結論及未來展望 62
參考文獻 64
[1]A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," Journal of Physics: Condensed Matter, vol. 4, no. 5, p. 1143, 1992.
[2]A. Chatterjee, L. Whelan, and E. Merschrod, "Charge transfer effect of bimetallic nanostructures: Tuning SERS," in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, vol. 250: AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA.
[3]G. C. Schatz, "Theoretical studies of surface enhanced Raman scattering," Accounts of Chemical Research, vol. 17, no. 10, pp. 370-376, 1984.
[4]J. Mock, S. Norton, S.-Y. Chen, A. Lazarides, and D. Smith, "Electromagnetic enhancement effect caused by aggregation on SERS-active gold nanoparticles," Plasmonics, vol. 6, no. 1, pp. 113-124, 2011.
[5]D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, "Electrochemical surface-enhanced Raman spectroscopy of nanostructures," Chemical Society Reviews, vol. 37, no. 5, pp. 1025-1041, 2008.
[6]B. N. Khlebtsov, Z. Liu, J. Ye, and N. G. Khlebtsov, "Au@ Ag core/shell cuboids and dumbbells: Optical properties and SERS response," Journal of Quantitative Spectroscopy Radiative Transfer, vol. 167, pp. 64-75, 2015.
[7]S. Pande et al., "Synthesis of normal and inverted gold− silver core− shell architectures in β-cyclodextrin and their applications in SERS," The Journal of Physical Chemistry C, vol. 111, no. 29, pp. 10806-10813, 2007.
[8]F.-H. Ko, M. R. Tai, F.-K. Liu, and Y.-C. Chang, "Au–Ag core–shell nanoparticles with controllable shell thicknesses for the detection of adenosine by surface enhanced Raman scattering," Sensors Actuators B: Chemical, vol. 211, pp. 283-289, 2015.
[9]M. Velička, E. Zacharovas, S. Adomavičiūtė, and V. Šablinskas, "Detection of caffeine intake by means of EC-SERS spectroscopy of human saliva," Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, vol. 246, p. 118956, 2021.
[10]M. Zareef et al., "Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms," Analytical Methods, vol. 10, no. 25, pp. 3023-3031, 2018.
[11]K. Kneipp, M. Moskovits, and H. Kneipp, "Surface-enhanced Raman scattering," Physics Today, vol. 60, no. 11, p. 40, 2007.
[12]X. Wang et al., "Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips," Applied Physics Letters, vol. 91, no. 10, p. 101105, 2007.
[13]X. Wang et al., "Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips," Applied Physics Letters, vol. 91, no. 10, p. 101105, 2007.
[14]C. Wang, X. Wu, D. Di, P. Dong, R. Xiao, and S. Wang, "Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering," Nanoscale, vol. 8, no. 8, pp. 4672-4680, 2016.
[15]C.-Y. Huang and M.-S. Tsai, "Tunable Silver Nanoparticle Arrays by Hot Embossing and Sputter Deposition for Surface-Enhanced Raman Scattering," Applied Sciences, vol. 9, no. 8, p. 1636, 2019.
[16]S. K. Islam, Y. P. Cheng, R. L. Birke, M. V. Cañamares, C. Muehlethaler, and J. R. Lombardi, "An analysis of tetrahydrocannabinol (THC) and its analogs using surface enhanced Raman Scattering (SERS)," Chemical Physics, vol. 536, p. 110812, 2020.
[17]S. Pang, T. Yang, and L. He, "Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides," TrAC Trends in Analytical Chemistry, vol. 85, pp. 73-82, 2016.
[18]A. Kaleem, M. Azmat, A. Sharma, G. Shen, and X. Ding, "Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced Raman scattering," Food chemistry, vol. 277, pp. 624-631, 2019.
[19]L. Morelli et al., "Surface enhanced Raman scattering for quantification of p-coumaric acid produced by Escherichia coli," Analytical chemistry, vol. 89, no. 7, pp. 3981-3987, 2017.
[20]N. Li, J. Ye, and Y. Ma, "Stimuli-responsive SERS nanoprobes for multiplexing detection," Sensors Actuators B: Chemical, vol. 281, pp. 977-982, 2019.
[21]D.-Y. Wu, J.-F. Li, B. Ren, and Z.-Q. Tian, "Electrochemical surface-enhanced Raman spectroscopy of nanostructures," Chemical Society Reviews, vol. 37, no. 5, pp. 1025-1041, 2008.
[22]W. Liao, K. Liu, Y. Chen, J. Hu, and Y. Gan, "Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing," Journal of Alloys Compounds, vol. 868, p. 159136, 2021.
[23]M. Vinod and K. Gopchandran, "Bimetallic Au–Ag nanochains as SERS substrates," Current Applied Physics, vol. 15, no. 8, pp. 857-863, 2015.
[24]W. Cheng et al., "Au/Ag composite-based SERS nanoprobe of Cr3+," Analytical Bioanalytical Chemistry, vol. 413, no. 11, pp. 2951-2960, 2021.
[25]S. Bi, R. Zhao, Y. Yuan, X. Li, and D. Shao, "Highly sensitive SERS determination of amprolium HCl based on Au@ Ag core–shell alloy nanoparticles," Microchemical Journal, vol. 167, p. 106343, 2021.
[26]Z. Chen et al., "Facile synthesis of Au@ Ag core–shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice," vol. 370, p. 131276, 2022.
[27]P. Wen, F. Yang, C. Ge, S. Li, Y. Xu, and L. J. N. Chen, "Self-assembled nano-Ag/Au@ Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection," vol. 32, no. 39, p. 395502, 2021.
[28]D. C. Mitchell, C. A. Knight, J. Hockenberry, R. Teplansky, and T. J. Hartman, "Beverage caffeine intakes in the US," Food Chemical Toxicology, vol. 63, pp. 136-142, 2014.
[29]Y.-T. Li, Y.-Y. Yang, Y.-X. Sun, Y. Cao, Y.-S. Huang, and S. Han, "Electrochemical fabrication of reduced MoS 2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline," Microchimica Acta, vol. 187, no. 4, pp. 1-11, 2020.
[30]B. N. Khlebtsov, Z. Liu, J. Ye, and N. G. Khlebtsov, "Au@ Ag core/shell cuboids and dumbbells: Optical properties and SERS response," Journal of Quantitative Spectroscopy Radiative Transfer, vol. 167, pp. 64-75, 2015.
[31]M. Zareef et al., "Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration," Microchemical Journal, vol. 159, p. 105431, 2020.
[32]M. Si, R. Wu, and P. Zhang, "The enhanced mechanism of Cl-to SERS in silver colloid," Guang pu xue yu Guang pu fen xi= Guang pu, vol. 21, no. 3, pp. 343-346, 2001.
[33]M. Velička, E. Zacharovas, S. Adomavičiūtė, and V. Šablinskas, "Detection of caffeine intake by means of EC-SERS spectroscopy of human saliva," Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, vol. 246, p. 118956, 2021.
[34]M. Zareef et al., "Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration," Microchemical Journal, vol. 159, p. 105431, 2020.
電子全文 電子全文(網際網路公開日期:20250208)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top