跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪瑄吟
研究生(外文):Aunchaya Suttanew
論文名稱:熱處理對紅龍果採後病害及品質之影響
論文名稱(外文):Effect of Heat Treatment on Postharvest Disease and Quality in Red Pitaya (Hylocereus polyrhizus)
指導教授:林慧玲林慧玲引用關係
指導教授(外文):Huey-Ling Lin
口試委員:王自存Jenjira Chumpookam謝慶昌
口試委員(外文):Tsu-Tsuen WangJenjira ChumpookamChing-Chang Shiesh
口試日期:2021-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:83
中文關鍵詞:紅龍果Hylocereus polyrhizus蒸熱處理熱水處理氯化鈣Aspergillus flavusGilbertella persicaria
外文關鍵詞:red pitayaHylocereus polyrhizusvapor heat treatmenthot water treatmentcalcium chlorideAspergillus flavusGilbertella persicaria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究測試蒸熱處理、單獨熱水處理、及熱水合併氯化鈣或硫酸銅處理對紅龍果(Hylocereus polyrhizus)果實品質及病害的影響。
‘大紅’紅龍果在兩種溫度下進行蒸熱處理(Vapor heat treatment,VHT),以50及55℃,分別處理60、120、及180分鐘,處理後果實置於室溫下貯藏7日。結果顯示,55°C蒸熱處理60分鐘能有效降低紅龍果果實病害嚴重程度,且不會對果實品質及果皮顏色有負面影響。若VHT接觸時間大於120分鐘,則會引起紅龍果果實因熱害之組織損傷,而誘發病原易感性。
熱水處理及結合硫酸銅處理 (Hot water treatment,HWT; Copper sulfate,CuSo4),將果實單獨進行55℃熱水處理5、10和15分鐘,以及結合100ppm硫酸銅處理.,處理後存放在室溫下7日。HWT 5分鐘可顯著降低病害發生率及病害嚴重程度,其次為HW+CuSO4處理5及10分鐘。HWT 5分鐘減少果實失重及維持硬度。貯藏期間之果實品質,熱水處理及未處理之果實在可溶性固形物、可滴定酸、及維他命C含量無顯著差異。
將紅龍果浸泡在含有氯化鈣濃度為0%、0.5%、1.0%、1.5%及2.0%之55℃熱水5分鐘,調查合併熱水處理及氯化鈣處理(HW+CaCl2)對紅龍果果實採後病害及果實品質之影響。結果顯示,當氯化鈣濃度大於1.5%會顯著降低採後病害的嚴重程度,且不影響果實品質。而氯化鈣濃度在2%時,果皮有最高的鈣含量,且貯藏期間果實有較高的過氧化氫酶及抗壞血酸過氧化物酶活性。
在病原菌培養瓶內試驗中,單獨55℃熱水處理或合併氯化鈣處理,皆可抑制紅龍果果腐病及濕腐病之Aspergillus flavus及Gilbertella persicaria的孢子之萌發。熱水合併氯化鈣處理較單獨熱水處理有更好之抑制效果。
綜合上述結果,以55℃熱處理包括蒸熱處理、熱水處理、或熱水合併氯化鈣處理皆可有效降低貯藏病害之發生,並維持採收後紅龍果果實之貯藏品質。
The objective of this study was to investigate the effect of vapor heat treatment and hot water treatment alone or in combination with copper sulfate or calcium chloride on postharvest diseases and the fruit quality of red pitaya (Hylocereus polyrhizus).
Red pitaya cv. ‘Da Hong’ was treated with vapor heat treatment (VHT) at two temperatures, including 50 and 55 ℃ for 60, 120, and 180 min, respectively. Then, the pitaya fruits were stored at ambient temperature for 7 days. The present study found that vapor heat treatment at 55 °C for 60 min effectively reduced disease severity without negatively affecting pitaya quality and peel color. Furthermore, the results also indicated that a long exposure time over 120 min for VHT could induce pathogen susceptibility by causing tissue damage on the pitaya fruit.
For hot water treatment alone (HWT) and combined with copper sulfate (CuSO4), red pitaya was dipped in hot water at 55 ℃ for 5, 10, and 15 min alone or in combined with CuSO4 (100 ppm). Afterward, the pitaya fruits were kept at room temperature for 7 days. Treatment with HWT for 5 min significantly reduced disease incidence and severity followed by HW+CuSO4 for 5 and 10 mins, HWT for 5 min while it decreased weight loss and maintained firmness in fruits. The fruit quality parameters including TSS, TA, vitamin C, and peel color were not significantly different between treated and non-treated fruits during storage.
The effect of hot water plus calcium chloride treatment (HW+CaCl2) on postharvest diseases and fruit quality was investigated by immersing pitaya fruit in hot water at 55 ℃ containing CaCl2 at 0, 0.5, 1.0, 1.5, and 2.0% for 5 min. The results found that HW+CaCl2 at concentrations over 1.5% significantly reduced the severity of the postharvest disease without affecting fruit quality. Furthermore, HW+CaCl2 at 2% had the highest calcium content in the peel. In addition, HW+CaCl2 at 2% resulted in higher catalase and ascorbate peroxidase activities in pitaya fruit during storage.
In vitro experiment with HWT at 55 ℃ alone and in combination with CaCl2 inhibited spore germination of Aspergillus flavus and Gilbertella persicaria which caused fruit rot and wet rot disease in pitaya, respectively. Furthermore, the combined treatment provided better antifungal activity than the use of hot water alone.
These results demonstrated that heat treatment at 55 ℃, including vapor heat treatment, hot water treatment, and hot water combination with calcium chloride treatment could reduce disease development and thus maintain pitaya fruit quality during postharvest storage.
中文摘要 i
Abstract ii
Contents iv
List of Tables vii
List of Figures ix
Chapter 1: Introduction 1
Chapter 2: Literature reviews 3
2.1 Pitaya (Hylocereus spp.) 3
2.1.1 Cultivar origin and botanical characteristics 3
2.1.2 Pitaya production in Taiwan 5
2.1.3 Chemical composition and biochemistry 5
2.1.4 Postharvest handling 7
2.1.5 Postharvest diseases 8
2.2 Heat treatment 9
2.2.1 Vapor heat treatment (VHT) 9
2.2.2 Hot water treatment (HWT) 10
2.2.3 Hot water treatment combination with calcium chloride (HW+CaCl2) 10
2.2.3.1 Calcium application 10
2.2.3.2 Combined treatment 11
Chapter 3: Materials and methods 13
3.1 Experiment Location 13
3.2 Materials 13
3.2.1 Fruit preparation 13
3.2.2 Vapor heat machine 13
3.2.3 Hot water bath 13
3.3 Experiment methods 14
3.3.1 Experiment 1: Vapor heat treatment (VHT) 14
3.3.1.1 Determination of disease development 14
3.3.1.2 Determination of fruit physiochemical quality and peel color 15
3.3.2 Experiment 2: Hot water treatment (HWT) alone and combined with copper sulfate (CuSO4) 17
3.3.2.1 Determination of disease development 17
3.3.2.2 Determination of fruit physiochemical quality and peel color 17
3.3.3 Experiment 3: Hot water treatment combination with calcium chloride
(HW+CaCl2) 18
3.3.3.1 Determination of disease development 18
3.3.3.2 Determination of fruit physiochemical quality and peel color 18
3.3.3.3 Determination of calcium content 18
3.3.3.4 Determination of defense-related enzymes activity 19
3.3.4 Experiment 4: In vitro antifungal activity of hot water treatment and
calcium chloride against Aspergillus flavus and Gilbertella persicaria 20
3.3.4.1 Difference temperature and exposure time of hot water treatment 20
3.3.4.2 Different concentration of calcium chloride with hot water treatment 21
3.4 Statistical analysis 23
Chapter 4: Results 24
4.1 Experiment 1: Vapor heat treatment (VHT) 24
4.1.1 Effect of vapor heat treatment on disease development 24
4.1.2 Effect of vapor heat treatment on fruit quality and peel color 25
4.2 Experiment 2: Hot water treatment (HWT) alone and combined with copper sulfate (CuSO4) 38
4.2.1 Effect of hot water treatment alone and combined with copper sulfate
(CuSO4) on disease development 38
4.2.2 Effect of hot water treatment alone on fruit quality and peel color 38
4.3 Experiment 3: Hot water treatment combination with calcium chloride
(HW+CaCl2) 46
4.3.1 Effect of hot water treatment combination with calcium chloride on disease development 46
4.3.2 Effect of hot water treatment combination with calcium chloride on fruit
quality and peel color 46
4.3.3 Effect of hot water treatment combination with calcium chloride on calcium content in flesh and peel 47
4.3.4 Effect of hot water treatment combination with calcium chloride on defense-related enzymes activities
4.3.4.1 Catalase (CAT) activity 48
4.3.4.2 Ascorbate peroxidase (APX) activity 48
4.4 Experiment 4: In vitro antifungal activity of hot water treatment and calcium chloride against Aspergillus flavus and Gilbertella persicaria. 56
4.4.1 Difference temperature and exposure time of hot water treatment 56
4.4.2 Hot water treatment combination with calcium chloride 57
Chapter 5: Discussion 66
5.1 Effect of vapor heat treatment on disease development, fruit quality,
and peel color 66
5.2 Effect of hot water treatment alone and combined with copper sulfate (CuSO4) on disease development, fruit quality, and peel color 68
5.3 Effect of hot water treatment combination with calcium chloride on disease development, fruit quality, and peel color 70
5.4 In vitro antifungal activity of hot water treatment and calcium chloride against Aspergillus flavus and Gilbertella persicaria 73
Chapter 6: Conclusion 74
References 75
Abrahamian, P., J. M. Klein-Gordon, J. B. Jones, G. E. Vallad. 2021. Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Appl. Microbiol. Biotechnol. 105: 6143-6158
Aguayo, E., V. H. Escalona, and F. Artes. 2008. Effect of hot water treatment and various calcium salts on quality of fresh cut ‘Amarillo’ melon. Postharvest Biol. Technol. 47: 397-406.
Aharoni, N., D. Kenigsbuch, D. Chaloowicz, M. Faura-Mlinski, Z. Aharon, D. Maurer, A. Ovadia, and A. Lers. 2010. Reducing chilling injury and decay in stored sweet basil. Isr. J. Plant Sci. 58: 167-181.
Aktar, W., D. Sengupta, and A. Chowdhury. 2009. Impact of pesticides use in Agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2(1):1-12.
Ali, A., N. Zahida, S. Manickamb, Y. Siddiquic, P. G. Aldersond, and M. Maqbool. 2013. Effectiveness of submicron chitosan dispersions in controlling anthracnose and maintaining quality of dragon fruit. Postharvest Biol. Technol. 86: 147-153.
Alvindia, D. G. 2012. Revisiting hot water treatment in controlling crown rot of banana cv. Ungulan. Crop Prot. 33: 59-64.
Anjum. M. A., and H. Ali. 2004.Effect of various calcium salts on ripening of mango fruits. J. Res. Sci. 15(1): 45-52.
Awang, Y. B., M. A. A. Ghani, K. Sijam, R. B. Mohamad and Y. Hafiza. 2013. Effect of postharvest application of calcium chloride on brown rot and quality of red-flesh dragon fruit (Hylocereus polyrhizus). Proc. 2nd Int. Symp. on Underutilized Plants Species “Crops for the Future – Beyond Food Security”. Acta Hort. 979: 763-771.
Awang, Y., M. A. A. Ghani, K. Sijam, and R. B. Mohamad. 2011. Effect of calcium chloride on anthracnose disease and postharvest quality of red-flesh dragon fruit (Hylocereus polyrhizus). Afr. J. Microbiol. Res. 5(29): 5250-5259.
Ayon-Reyna, L. E., A. Gozalez-Robles, J. G. Rendon-Maldonado, M. E. Baez-Flores, M. E. Lopez-Lopez, and M. O. Vega-Garcia. 2017a. Application of a hydrothermal-calcium chloride treatment to inhibit postharvest anthracnose development in papaya. Postharvest Biol. Technol. 124: 85-90.
Ayon-Reyna, L. E., F. Delgado-Vergas, C. A. Soltero-Sanchez, G. Lopez-Angulo, M. E. Lopez-Lopez, J. G. Lopez-Velazquez, J. R. Parra-Unda, and M. O. Vega-Garcia. 2018. Bioactive compounds and antioxidant activity of papaya inoculated with Colletotrichum gloeosporioides as affected by hot water–calcium chloride. J Food Biochem. 42: 1-10.
Ayon-Reyna, L. E., J. A. Lopez-Valenzuela, F. Delgado-Vargas, M. E. Lopez-Lopez, F. J. Molina-Corral, A. Carrillo-Lopez, and M. O. Vega-Garcia. 2017b. Effect of _the combination hot water-calcium chloride on the In vitro growth of Colletotrichum gloeosporioides and the postharvest quality of infected papaya. Plant Pathol. J. 33(6): 572-581.
Balendres, M. A., and J. C. Bengoa. 2019. Diseases of dragon fruit (Hylocereus species): Etiology and current management options. Crop Prot. 126: 1-7.
Bordoh, P. K., A. Ali, M. Dickinson, and Y. Siddiqui. 2020. Antimicrobial effect of rhizome and medicinal herb extract in controlling postharvest anthracnose of dragon fruit and their possible phytotoxicity. Sci. Hortic. 265: 1-11.
Casas, A., and G. Barbera. 2002. Mesoamerican domestication and diffusion. In P. S. Nobel [ed.], Cacti: biology and uses, 143– 162. University of
California, Berkeley,California, USA.
Chaemsanit, S., N. Matan, and N. Matan. 2018. Effect of peppermint oil on the shelf-life of dragon fruit during storage. Food Control. 90: 172-179.
Chavez-Sanchez, I., A. Carrillo-Lopez, M. Vega-Garcia, and E. M. Yahia. 2013. The effect of antifungal hot water treatment on papaya postharvest quality and activity_of pectinmethylesterase and polygalacturonase. J Food Sci Technol. 50(1): 101-107.
Chu, Y. C., and J. C. Chang. 2020. Regulation of floral bud development and emergence by ambient temperature under a long-day photoperiod in white-flesh pitaya (Hylocereus undatus). Sci. Hortic. 271:1-7.
Chuni, S. H., Y. Awang, and M. T. Mohamed. 2010. Cell wall enzyme activities and quality of calcium treated fresh-cut red flesh dragon fruit (Hylocereus polyrhizus). Int J. Agric Biol. 12: 713-718.
Conway, W. S., W. J. Janisiewicz, J. D. Klein, and C. E. Sams. 1999. Strategy for combining heat treatment, calcium infiltration, and biological control to reduce postharvest decay of ‘Gala’ apples. Postharvest Biol. Technol. 34(4): 700-704.
Dayod, M., S. D. Tyerman, R. A. Leighc and M. Gilliham. 2010. Calcium storage in plants and the implication for calcium biofortification. Protoplasma. 247: 215-231.
Fallik, M. and Z. Ilic. 2017. Hot Water Treatment. Novel Postharvest Treatments of Fresh Produce. 9: 241-258.
Freitas, S. T., N. T. Nham, and E. J. Mitcham. 2011. Pitaya (Pitahaya, Dragon fruit) recommendations for maintaining postharvest quality. Available at: http://postharvest.ucdavis.edu/PFfruits/Pitaya/>.
Fullerton, R. A., P. A. Sutherland, R. S. Rebstock, T. H. Nguyen, N. A. T. Nguyen, T. H. Dang, T. K. T. Ngo, and V. H. Nguyen. 2018. The life cycle of dragon fruit canker caused by Neoscytalidium dimidiatum and implications for control. Dragon fruit regional network initiation workshop: 71-80.
Gao, Q., Q. Tan, Z. Song, W. Chen, X. Li, and X. Zhu. 2020. Calcium chloride postharvest treatment delays the ripening and softening of papaya fruit. J. Food Process. Preserv. 44: 1-12.
Ghani, M. A. A., Y. Awang, and K. Sijam. 2011. Disease occurrence and fruit quality of pre-harvest calcium chloride treated red flesh dragon fruit (Hylocereus polyrhizus). Afr. J. Microbiol. Res. 10(9): 1550-1558.
Guo, L. W., Y. X. Wu, Z. C. Mao, H. H. Ho, and Y. Q. He. 2012. Storage Rot of Dragon Fruit Caused by Gilbertella persicaria. https://doi.org/10.1094/PDIS-07-12-0635-PDN.
Hasbullah, R., E. Rohaeti, and R. Syarief. 2013. Fruit fly disinfestations of star fruit (Averrhoa carambola L.) using vapor heat treatment (VHT). p. 147−153. In H. K. Purwadaria, G. Srzednicki, and S. Kanlayanarat (eds.). Proceedings of the Second Asia Pasific Symposium on Postharvest Research, Education and Extension. Yogyakarta, Indonesia.
Hoa, T. T., C. J. Clark, B. C. Waddell, and A. B. Woolf. 2006. Postharvest quality of dragon fruit (Hylocereus undatus) following disinfecting hot air treatments. Postharvest Biol. Technol. 41: 62–69.
Hocking, B., S. D. Tyerman, R. A. Burton, and M. Gilliham. 2016. Fruit calcium: transport and physiology. Front. Plant Sci. 7: 1-17.
Hossain, A., M. Rana, S. Salim, and Y. Kimura. 2021. Changes in organoleptic and biochemical characteristics of mango fruits treated with calcium chloride in hot water. J. hortic. Postharvest res. 4(1): 37-50.
Hsu, W. T. 2004. Investigations on culture, growth habits and phonology in pitaya (Hylocereus spp.). MS thesis, Natl. Taiwan Univ., Taiwan.
Hu, M., Y. Zhu, G. Liu, Z. Gao, M. Li, Z. Su, and Z. Zhang. 2019. Inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit. Sci. Hortic. 245: 224-230
Jacobi, K. K., E. A. Macrea, and S. E. Hetherington. 2001. Effect of fruit maturity on the response of ‘Kensington’ mango fruit to heat treatment. Aust. J. Exp. Agric. 41: 793-803.
Jacobi, K., J. Giles, E. MacRae, and T. Wegrzyn. 1995. Conditioning‘Kensington’ mango with hot air alleviates hot water disinfestation injuries. Hortscience. 30(3):562–565.
Jiang, Y. L. 2020. Seasonal response of night-breaking on floral bud formation in red pitaya (Hylocereus spp.) in a noninductive period. Sci. Hortic. 270:1-7.
Jiang, Y. L. and W. J. Yang. 2015. Development of integrated crop management systems for pitaya in Taiwan. Intl. Wkshp. Proc. Improving Pitaya Production and Mtg._Food and Fertilizer Technology Center, Taipei, Taiwan.
Jin, P., C. Zheng, Y. P. Huang, X. L. Wang, Z. S. Luo, and Y. H. zheng. 2016. Hot air treatment activates defense responses and induces resistance against Botrytis cinera in strawberry fruit. J. Intergr. Agric. 15 (11): 2658-2665.
Kato, M., and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729-735.
Le Bellec, F., and F. Vaillant. 2011. Chapter 12, Pitahaya (pitaya) (Hylocereus spp.). Postharvest biology and technology of tropical and subtropical fruit, vol 4. Mangosteen to White sapote. Woodhead Publishing: 247-267.
Le, V. T., N. Nguyen, D. D. Nguyen, K. T. Dang, T. N. C. Nguyen, M. V. H. Dang, N. H. Chau, and N. L. Trink. 2000. Quality assurance system for dragon fruit. ACIAR Proceedings, 100: 101-114.
Li, G., M. Fanbo, W. Xiaoping, and L. Mao. 2019. Postharvest dipping treatment with BABA induced resistance against rot caused by Gilbertella persicaria in red pitaya fruit. Sci. Hortic. 257: 1-7.
Li, X., X. Zhu1, N. Zhao, D. Fu, J. Li, W. Chen, and W. Chen. 2013. Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism. Postharvest Biol. Technol. 86: 437–446.
Lin, J. P., P. J. Ann, J. N. Tsai, Z. H. Hsu, and J. T. Chang. 2014. Flower and fruit wet rot of pitaya (Hylocereus spp.) caused by Gilbertella persicaria, a new disease record in Taiwan. Plant Pathol. Bull. 23: 109-124.
Liu, J., Y. Sui, M. Wisniewski, S. Droby, S. Tian, J. Norelli, and V. Hershkovitz. 2012. Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biol. Technol. 65: 61-68.
Liu, P. C., S. H. Tsai, and C. R. Yen. 2015. Pitaya breeding strategies for improving commercial potential in Taiwan. Intl. Wkshp. Proc. Improving Pitaya Production and Mtg. Food and Fertilizer Technology Center, Taipei, Taiwan.
Lu, J., C. Vigneault, M. T. Charles, and G. S. V. Raghavan. 2007. Heat treatment application to increase fruit and vegetable quality. Stewart Postharvest Rev. 3(4): 1-7.
Lum, M. S., and M. A. Norazira. 2011. Effects of hot water, submergence time and storage duration on quality of dragon fruit (Hylocereus polyrhizus). J. Agric. Sci. 3(1): 146.
Luo, Z. 2006. Hot water treatment of postharvest Mei fruit to delay ripening. Hortscience. 41(3): 737-740.
Madani, B., A. Mirshekari, and E. Yahia. 2015. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage. J Sci Food Agric. 96: 2963–2968.
Maganaris, G. A., M. Vasilakakis, G. Diamantidis, and I. Mignani. 2005. Effect of calcium additives on physicochemical aspect of cell wall pectin and sensory attributes of canned peach (Prunus perica (L.) Batsch cv. Andross). J. Sci. Food Agric. 85: 1773-1778.
Mercado-Silva, E. M. 2018. Pitaya-Hylocereus undatus (Haw). Exotic Fruits Reference Guide: 339-349. http://dx.doi.org/10.1016/B978-0-12-803138-4.00045-9.
Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
Naser, F., V. Rabiei, F. Razavi, and O. Khademi. 2018. Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Sci. Hortic. 233:114-123.
Nerd, A., N. Tel-Zur, and Y. Mirzrahi. 2002. Fruits of vine and columnar cacti. In: Nobel, P.S. (Ed.). Cacti: biology and uses. University of California Press, Los Angeles: 185-197.
Ngoc, N. K., N. V. Phong, N. T. Tung, N. V. Hoa, A. B. Woolf, and R. A. Fullerton. 2017. Postharvest diseases and effect of hot water treatments on white fleshed dragon fruit [Hylocereus undatus (Haw.) Britton & Rose]. Int. J. Curr. Res. Biosci. Plant Biol. 4(5): 30-37.
Nguyen, H. T., P. Boonyaritthongchai, M. Buanong, S. Supapvanich, and C. Wongs-Aree. 2020. Postharvest hot water treatment followed by chitosan- and k-carrageenan-based composite coating induces the disease resistance and preserves the quality in dragon fruit (Hylocereus undatus). Int. J. Fruit Sci. 20: 2030-2044.
Nguyen, P. V., D. L. Man, N. T. Tung, and N. M. Chau. 2010. Effects of heat treatment and low-temperature conditionings on chilling injury and storage life of dragon fruits. Proceedings of Science & Technology 2006-2010.
Nguyen, P. V., M. N. Chau, and A. Woolf. 2013. Survey on the postharvest and management of dragon fruits exported from Vietnam to holland. International tropical fruits network. Superfruit Proc.
Obenland, D., M. Cantwell, R. Lobo, S. Collin, J. Sievert, and M. L. Arpaia. 2016. Impact of storage condition and variety on quality attributes and aroma volatiles of pitahaya (Hylocereus spp.). Sci. Hortic. 199: 15-22.
Rodriguez-Amaya, D. B. 2019. Betalains. Encyclopedia of food chemistry. 1: 35-39.
Romanazzi, G., S. M. Sanzani, Y. Bi, S. Tian, P. G. Martínez, and N. Alkan. 2016. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 122: 82-94.
Schirra, M., G. D’hallewin, S. Ben-Yehoshua, and E. Fallik. 2000. Host–pathogen interactions modulated by heat treatment. Postharvest Biol. Technol. 21: 71-85.
Shahkoomahally, S., and A. Ramezanian. 2013. The effect of hot water and calcium solution dipping on quality in kiwifruit during storage. Am.-Eurasian J. Sustain. Agric. 13(10): 1352-1356.
Shahkoomahally, S., and A. Ramezanian. 2015. Hot water combined with calcium treatment improves physical and physiochemical attributes of kiwifruit (Actinidia deliciosa cv. Hayward) during storage. Hort. Sci. 50(3): 412-415.
Sharma, R. R., D. Singh, and R. K. Pal. 2013. Synergistic influence of pre-harvest calcium sprays and postharvest hot water treatment on fruit firmness, decay, bitter pit incidence and postharvest quality of Royal Delicious apple (Malus × domestica Borkh). Am. J. Plant Sci. 4: 153-159.
Shellie, K. C., and R. L. Mangan. 2000. Postharvest disinfection heat treatment: response of fruit and fruit fly larvae to different heating media. Postharvest Biol. Technol. 21(1): 51-60.
Singh, S. P., and M. K. Saini. 2014. Postharvest vapour heat treatment as phytosanitary measure influences the aroma volatiles profile of mango fruit. Food Chem. 164: 387-395.
Sornvilai, S. K., C. Chaidee, and A. Sangchote. 2012. Postharvest fruit rot of pitaya fruit (Hylocereus undatus (haw) Brit. & Rose.) and its control. Proceeding of the 10th National Postharvest Technology Conference. Khonkaen, Thailand: 49.
Suh, D. H., S. Lee, D. Y. Heo, Y. S. Kim, S. K. Cho, S. Lee, and C. H. Lee. 2014. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and_Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. J. Agric. Food Chem. 62: 8764−8771
Sui, Y., S. Droby, D. Zhang, and W. Wang, Y. Liu. 2014. Reduction of Fusarium rot and maintenance of fruit quality in melon using eco-friendly hot water treatment. Environ. Sci. Pollut. Res. 21: 13956–13963.
Supapvanich, S., R. Arkajak, and K. Yalai. 2012 Maintenance of postharvest quality and bioactive compounds of fresh-cut sweet leaf bush (Sauropus androgynus L. Merr.) through CaCl2 dips. Int. J. Food Sci. Technol. 47: 2662-2670.
To, L., V. Ngu, and N. D. Duc. 2002. Dragon fruit quality and storage life: Effect of harvesting time, use of plant growth regulators and modified atmosphere packaging. Proc. Int. Symp. on Trop. Sub Trop. Fruits. 575: 11-621.
Vilaplana, R., D. Paez, and S. Valencia-Chamorro. 2017. Control of black rot caused by Alternaria alternata in yellow pitahaya (Selenicereus megalanthus) through hot water dips. LWT - Food Sci Technol. 82: 162-169.
Wang, B., J. Wang, H. Liang, J. Zhang, L. Lin, and W. Jiang. 2008. Reduces chilling injury in mango fruit by 2, 4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biol. Technol. 48(2): 172-181.
Wasantha, L. P. G., V. Sri-laong, and P. Jitareerat. 2011. Effect of hot water treatment on disease development and quality of dragon fruit. Report of Special Problem. Division of Postharvest Technology, King Mongkut’s University of Technology, Thonburi, Bangkok, Thailand.
Yin, M. C., and W. S. Cheng. 1998. Inhibition of Aspergillus niger and Aspergillus flavus by Some Herbs and Species. J. Food Prot. 61: 123-125.
Zahida, N., M. Maqboola, A. Ali, Y. Siddiqui, and Q. A. Bhatti. 2019. Inhibition in production of cellulolytic and pectinolytic enzymes of Colletotrichum gloeosporioides isolated from dragon fruit plants in response to submicron chitosan dispersions. Sci. Hortic. 243: 314-319.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top