跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳旻威
研究生(外文):Min-Wei Wu
論文名稱:吖啶衍生物的合成與光學性質的探討及應用
論文名稱(外文):Synthesis of Acridine Derivatives and Discussion of Optical Properties and Application
指導教授:張健忠
指導教授(外文):Cheng-Chung Chang
口試委員:陳志銘謝文俊
口試日期:2022-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:104
中文關鍵詞:吖啶有機金屬耦合反應分子內電荷轉移效應聚集誘導螢光增強效應分子影像
外文關鍵詞:AcridineOrganic Metal coupling ReactionIntramolecular Charge Transfer (ICT)Aggregation-Induced Emission Enhancement (AIEE)Molecular Emission Imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以吖啶酮及吖啶作為核心骨架開發並研究一系列新型的螢光染料,我們嘗試著在2,7號位進行有機金屬耦合反應 (Organic metal coupling reaction)以延長共振,使光學行為落在可見光區。同時,吖啶的9號端接上特定的側鏈以期待分子可以定位在細胞中的特定位置,合成過程中進行溴化條件的最佳化。接著比較吖啶酮及吖啶衍生物接上相同官能基後,推-拉官能基造成的光學性質差異,包括通過溶劑效應、質子轉移和理論計算來研究各個分子的分子內電荷轉移效應 (Intramolecular charge transfer, ICT)。論文中還研究分子是否具有聚集誘導螢光增強效應 (Aggregation induced emission enhancement, AIEE) 所引發的螢光有機奈米粒子 (Fluorescent organic nanoparticles, FON);以細胞分子影像來解釋分子在細胞內的行為與毒性探討。
In this thesis, acridine and acridone are chose as core scaffolds to build up a series of novel fluorescent dyes. At first, on 2,7-substituted position was formed resonance-extending functional groups enabled emmit in the visible region by organic metal coupling reaction. At the same time, to expect the molecules localized at a specific location in the cell we modified different length carbon chains on 9-substituted position of acridine. The bromination conditions were also optimized in the synthesis process. Next, we compared the difference in optical properties caused by the electron-push/withdrawing inductive effects after acridine and acridone were the same functional group through solvent effects, proton transfer, and theoretical calculations to prove intramolecular charge transfer (ICT). We also studied whether the molecules had fluorescent organic nanoparticles (FON) caused by aggregation-induced emission enhancement (AIEE). The molecular emission images can interpret molecular behavior and toxicity in cells.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
示意圖目錄 x
第一章 緒論 1
1.1 核心主幹 (Core Scaffold) 1
1.2 吖啶橙 (Acirdine Orange, AO) 3
1.3 9號位取代吖啶 4
1.4 官能基的選擇與其重要性 5
1.5 有機螢光材料 6
1.6 癌症光治療 (Cancer Phototherapy) 7
1.7 水溶性小分子螢光染料 7
1.8 分子內電荷轉移(Intramolecular Charge Transfer,ICT) 9
1.9 聚集誘導放射效應 (Aggregate Induced Emission, AIE) 10
1.10 微胞狀聚集 (Micelle-Like Aggregation) 11
第二章 研究動機與分子設計 14
2.1. 動機 14
2.2 Heck reaction 15
2.3 Suzuki reaction 15
2.4 分子設計與合成 16
第三章 結果與討論 27
3.1 分子之光譜與其物化性質探討 27
3.1.1 BVA12C 27
3.1.2 BMVA12C 29
3.1.3 BDAA12C 31
3.1.4 BAA12C 33
3.2 側鏈長度對分子性質的影響探討 35
3.3 各分子之Lippert-Mataga Plot 37
3.4 ROS產生之測量 41
3.4.1 BVA12C 44
3.4.2 BMVA12C 45
3.4.3 BDAA12C 47
3.4.4 BAA12C 47
3.4.5 ROS測量之整理 48
3.5 AIE性質測量 50
3.6 FON實驗與影像 51
3.7 細胞攝取實驗 53
3.7.1 BMVA系列 53
3.7.2 BAA4C 57
3.7.3 BAA12C 58
3.7.4 BDAA8C 59
3.7.5 BMVAc 60
第四章 實驗與方法 61
4.1. 實驗藥品與溶劑 61
4.2. 儀器與設備 63
4.2.1.核磁共振光譜儀 (Nuclear Magnetic Resonance Spectrometer) 63
4.2.2.紫外光-可見光吸收光譜儀 (Ultraviolet–Visible Spectrophotometer, UV-Vis) 64
4.2.3. 螢光光譜儀 (Spectrofluorometer) 64
4.2.4. 螢光顯微鏡 (Fluorescence microscope) 64
4.2.5. 理論計算軟體 (Hyperchem) 65
4.3. 分子合成與鑑定 65
4.3.1. 9-Chloroacridine (1) 65
4.3.2. 9-Phenoxyacridine (2) 65
4.3.3. 9-(R-amino)acridine (3) 66
4.3.4. 2,7-Dibromo-9-(R-amino)acridine (4) 66
4.3.5. 2,7-bis(4-vinylpyridine)-9-(R-amino)acridine (BVA) 67
4.3.6. 2,7-bis(4-methylvinylpyridinium)-9-(R-amino)acridine (BMVA) 67
4.3.7. 2,7-Dibromo-9(10H)-acridone (5) 68
4.3.8. 2,7-Dibromo-9-chloroacridine (6) 68
4.3.9. 2,7-Dibromo-9-phenoxyacridine (7) 68
4.3.10. 4-Bromo-N’,N’-dimethylaniline (8) 69
4.3.11. 4-(Dimethylamino)phenylboronic acid pinacol ester (9) 69
4.3.12. 2,7-bis(N,N-dimethylaniline)-9-(R-amino)acridine (BDAA) 69
4.3.13. 4-Methoxyphenylboronic acid pinacol ester (10) 70
4.3.14. 2,7-bis(4-methoxyphenyl)-9-(R-amino)acridine (BAA) 70
4.3.15. Bromo-Cn-Piperidine (11) 71
4.3.16. Azide-Cn-Piperidine (12) 71
4.3.17. Amino-Cn-Piperidine (13) 71
4.3.18. Bromo-Cn-Phthalimide (14) 72
4.3.19. Piperidine -Cn-Phthalimide (15) 72
4.3.20. 2,7-Dibromo-9-(Piperidine-R-amino)acridine (16) 72
4.3.21. 2,7-bis(4-vinylpyridine)-9-(Piperidine-R-amino)acridine (BVAP) 73
4.3.22. 2,7-bis(4-methylvinylpyridinium)-9-(Piperidine-R-amino)acridine (BMVAP) 73
4.3.23. 2,7-bis(4-vinylpyridine)-acridone (BVAc) 74
4.3.24. 2,7-bis(4-methylvinylpyridinium)-acridone (BMVAc) 74
4.3.25. 2,7-bis(N,N-dimethylaniline)- acridone (BDAAc) 75
4.3.26. 2,7-bis(4-methoxyphenyl)- acridone (BAAc) 75
4.4. ROS實驗 75
4.5. 細胞影像實驗 75
4.5.1. 化合物細胞攝取 75
4.5.2. 影像觀察 76
第五章 結論 77
第六章 參考文獻 78
附錄 84
1.Chang, C. C.; Chien, C. W.; Lin, Y. H.; Kang, C. C.; Chang, T. C., Investigation of spectral conversion of d(TTAGGG)4 and d(TTAGGG)13 upon potassium titration by a G-quadruplex recognizer BMVC molecule. Nucleic Acids Res 2007, 35 (9), 2846-60.
2.Chang, C. C.; Hsieh, M. C.; Lin, J. C.; Chang, T. C., Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles. Biomaterials 2012, 33 (3), 897-906.
3.Huang, F. C.; Chang, C. C.; Wang, J. M.; Chang, T. C.; Lin, J. J., Induction of senescence in cancer cells by the G-quadruplex stabilizer, BMVC4, is independent of its telomerase inhibitory activity. Br J Pharmacol 2012, 167 (2), 393-406.
4.Tsai, Y. L.; Chang, C. C.; Kang, C. C.; Chang, T. C., Effect of different electronic properties on 9-aryl-substituted BMVC derivatives for new fluorescence probes. Journal of Luminescence 2007, 127 (1), 41-47.
5.Tseng, T. Y.; Chen, W. W.; Chu, I. T.; Wang, C. L.; Chang, C. C.; Lin, M. C.; Lou, P. J.; Chang, T. C., The G-quadruplex fluorescent probe 3,6-bis(1-methyl-2-vinyl-pyridinium) carbazole diiodide as a biosensor for human cancers. Sci Rep 2018, 8 (1), 16082.
6.Tseng, T. Y.; Chien, C. H.; Chu, J. F.; Huang, W. C.; Lin, M. Y.; Chang, C. C.; Chang, T. C., Fluorescent probe for visualizing guanine-quadruplex DNA by fluorescence lifetime imaging microscopy. J Biomed Opt 2013, 18 (10), 101309.
7.Yu, Q. Q.; Wang, M. Q., Carbazole-based fluorescent probes for G-quadruplex DNA targeting with superior selectivity and low cytotoxicity. Bioorg Med Chem 2020, 28 (17), 115641.
8.Prasher, P.; Sharma, M., Medicinal chemistry of acridine and its analogues. Medchemcomm 2018, 9 (10), 1589-1618.
9.Schmidt, A.; Liu, M., Recent Advances in the Chemistry of Acridines. 2015; pp 287-353.
10..
11.Byvaltsev, V. A.; Bardonova, L. A.; Onaka, N. R.; Polkin, R. A.; Ochkal, S. V.; Shepelev, V. V.; Aliyev, M. A.; Potapov, A. A., Acridine Orange: A Review of Novel Applications for Surgical Cancer Imaging and Therapy. Front Oncol 2019, 9, 925.
12.Carvalho, J.; Pereira, E.; Marquevielle, J.; Campello, M. P. C.; Mergny, J. L.; Paulo, A.; Salgado, G. F.; Queiroz, J. A.; Cruz, C., Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie 2018, 144, 144-152.
13.Dimitrijevs, P.; Domracheva, I.; Arsenyan, P., Improved method for the preparation of nonyl acridine orange analogues and utilization in detection of cardiolipin. New Journal of Chemistry 2020, 44 (23), 9626-9633.
14.Eisenhart, T. T.; Dempsey, J. L., Photo-induced proton-coupled electron transfer reactions of acridine orange: comprehensive spectral and kinetics analysis. J Am Chem Soc 2014, 136 (35), 12221-4.
15.Gensicka-Kowalewska, M.; Cholewiński, G.; Dzierzbicka, K., Recent developments in the synthesis and biological activity of acridine/acridone analogues. RSC Advances 2017, 7 (26), 15776-15804.
16.Kozurkova, M., Acridine derivatives as inhibitors/poisons of topoisomerase II. J Appl Toxicol 2022, 42 (4), 544-552.
17.MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A., Discovery and characterization of an acridine radical photoreductant. Nature 2020, 580 (7801), 76-80.
18.Sharma, V. K.; Sahare, P. D.; Rastogi, R. C.; Ghoshal, S. K.; Mohan, D., Excited state characteristics of acridine dyes: acriflavine and acridine orange. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2003, 59 (8), 1799-1804.
19.Wang, M.; Fan, Q.; Jiang, X., Nitrogen-Iodine Exchange of Diaryliodonium Salts: Access to Acridine and Carbazole. Org Lett 2018, 20 (1), 216-219.
20.Zhang, P.; Yang, Y.; Liu, Y.; Rodriguez, M. E.; Kenney, M. E., Studies directed towards nonyl acridine orange analogues having the potential to act as FRET donors with the PDT drug Pc 4. RSC Advances 2016, 6 (35), 29391-29403.
21.Kang, C. C.; Huang, W. C.; Kouh, C. W.; Wang, Z. F.; Cho, C. C.; Chang, C. C.; Wang, C. L.; Chang, T. C.; Seemann, J.; Huang, L. J., Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity. Integr Biol (Camb) 2013, 5 (10), 1217-28.
22.Kuang, G.; Zhang, M.; Kang, S.; Hu, D.; Li, X.; Wei, Z.; Gong, X.; An, L. K.; Huang, Z. S.; Shu, B.; Li, D., Syntheses and Evaluation of New Bisacridine Derivatives for Dual Binding of G-Quadruplex and i-Motif in Regulating Oncogene c-myc Expression. J Med Chem 2020, 63 (17), 9136-9153.
23.Nakazono, M.; Oshikawa, Y.; Nakamura, M.; Kubota, H.; Nanbu, S., Strongly Chemiluminescent Acridinium Esters under Neutral Conditions: Synthesis, Properties, Determination, and Theoretical Study. J Org Chem 2017, 82 (5), 2450-2461.
24.Rupar, J.; Dobricic, V.; Grahovac, J.; Radulovic, S.; Skok, Z.; Ilas, J.; Aleksic, M.; Brboric, J.; Cudina, O., Synthesis and evaluation of anticancer activity of new 9-acridinyl amino acid derivatives. RSC Med Chem 2020, 11 (3), 378-386.
25..
26.Chou, Y. S.; Chang, C. C.; Chang, T. C.; Yang, T. L.; Young, T. H.; Lou, P. J., Photo-induced antitumor effect of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide. Biomed Res Int 2013, 2013, 930281.
27.Hao, X.-L.; Guo, J.-F.; Zou, L.-Y.; Ren, A.-M., Theoretical Investigations on the Photophysical Properties for a Series of Symmetrical and Asymmetrical Carbazole-Based Cationic Two-Photon Fluorescent Probes: The Magic of Methyl Groups. The Journal of Physical Chemistry C 2019, 123 (14), 9407-9419.
28.Huang, W. C.; Tseng, T. Y.; Chen, Y. T.; Chang, C. C.; Wang, Z. F.; Wang, C. L.; Hsu, T. N.; Li, P. T.; Chen, C. T.; Lin, J. J.; Lou, P. J.; Chang, T. C., Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res 2015, 43 (21), 10102-13.
29.Jiang, Q.; Xu, X.; Yin, P. A.; Ma, K.; Zhen, Y.; Duan, P.; Peng, Q.; Chen, W. Q.; Ding, B., Circularly Polarized Luminescence of Achiral Cyanine Molecules Assembled on DNA Templates. J Am Chem Soc 2019, 141 (24), 9490-9494.
30.Li, X.; Tian, M.; Zhang, G.; Zhang, R.; Feng, R.; Guo, L.; Yu, X.; Zhao, N.; He, X., Spatially Dependent Fluorescent Probe for Detecting Different Situations of Mitochondrial Membrane Potential Conveniently and Efficiently. Anal Chem 2017, 89 (6), 3335-3344.
31.<1743-8977-9-26.pdf>.
32.Siddiqui, Q. T.; Awasthi, A. A.; Bhui, P.; Muneer, M.; Chandrakumar, K. R. S.; Bose, S.; Agarwal, N., Thermally Activated Delayed Fluorescence (Green) in Undoped Film and Exciplex Emission (Blue) in Acridone–Carbazole Derivatives for OLEDs. The Journal of Physical Chemistry C 2018, 123 (2), 1003-1014.
33.Hsieh, M. C.; Chien, C. H.; Chang, C. C.; Chang, T. C., Aggregation induced photodynamic therapy enhancement based on linear and nonlinear excited FRET of fluorescent organic nanoparticles. J Mater Chem B 2013, 1 (18), 2350-2357.
34.Lai, Y. C.; Su, S. Y.; Chang, C. C., Special reactive oxygen species generation by a highly photostable BODIPY-based photosensitizer for selective photodynamic therapy. ACS Appl Mater Interfaces 2013, 5 (24), 12935-43.
35.Liu, S.; Zhou, X.; Zhang, H.; Ou, H.; Lam, J. W. Y.; Liu, Y.; Shi, L.; Ding, D.; Tang, B. Z., Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. J Am Chem Soc 2019, 141 (13), 5359-5368.
36.Luo, S.; Tan, X.; Fang, S.; Wang, Y.; Liu, T.; Wang, X.; Yuan, Y.; Sun, H.; Qi, Q.; Shi, C., Mitochondria-Targeted Small-Molecule Fluorophores for Dual Modal Cancer Phototherapy. Advanced Functional Materials 2016, 26 (17), 2826-2835.
37.Mariz, I. F. A.; Pinto, S. N.; Santiago, A. M.; Martinho, J. M. G.; Recio, J.; Vaquero, J. J.; Cuadro, A. M.; Maçôas, E., Two-photon activated precision molecular photosensitizer targeting mitochondria. Communications Chemistry 2021, 4 (1).
38.Muller, D.; Saha, P.; Panda, D.; Dash, J.; Schwalbe, H., Insights from Binding on Quadruplex Selective Carbazole Ligands. Chemistry 2021, 27 (50), 12726-12736.
39.Roy, J.; Pandey, V.; Gupta, I.; Shekhar, H., Antibacterial Sonodynamic Therapy: Current Status and Future Perspectives. ACS Biomater Sci Eng 2021, 7 (12), 5326-5338.
40.Bisballe, N.; Laursen, B. W., 2020.
41.Diacono, A.; Aquilina, M. C.; Calleja, A.; Agius, G.; Gauci, G.; Szacilowski, K.; Magri, D. C., Enhanced ion binding by the benzocrown receptor and a carbonyl of the aminonaphthalimide fluorophore in water-soluble logic gates. Org Biomol Chem 2020, 18 (25), 4773-4782.
42.Fu, Y.; Finney, N. S., Small-molecule fluorescent probes and their design. RSC Adv 2018, 8 (51), 29051-29061.
43.Gao, Z.; Zhang, X.; Zheng, M.; Chen, Y., Synthesis of a water soluble red fluorescent dye and its application to living cells imaging. Dyes and Pigments 2015, 120, 37-43.
44.Hong, Y.; Chen, S.; Leung, C. W.; Lam, J. W.; Tang, B. Z., Water-soluble tetraphenylethene derivatives as fluorescent "light-up" probes for nucleic acid detection and their applications in cell imaging. Chem Asian J 2013, 8 (8), 1806-12.
45.Jaswal, S.; Kumar, J., Review on fluorescent donor–acceptor conjugated system as molecular probes. Materials Today: Proceedings 2020, 26, 566-580.
46.Su, S.-Y.; Lin, H.-H.; Chang, C.-C., Dual optical responses of phenothiazine derivatives: near-IR chromophore and water-soluble fluorescent organic nanoparticles. Journal of Materials Chemistry 2010, 20 (39).
47.Wang, J. L.; Zhang, L.; Gao, L. X.; Chen, J. L.; Zhou, T.; Liu, Y.; Jiang, F. L., A bright, red-emitting water-soluble BODIPY fluorophore as an alternative to the commercial Mito Tracker Red for high-resolution mitochondrial imaging. J Mater Chem B 2021, 9 (41), 8639-8645.
48.Yang, S.; Gao, T.; Dong, J.; Xu, H.; Gao, F.; Chen, Q.; Gu, Y.; Zeng, W., A novel water-soluble AIE-based fluorescence probe with red emission for the sensitive detection of heparin in aqueous solution and human serum samples. Tetrahedron Letters 2017, 58 (37), 3681-3686.
49.Munan, S.; Kottarathil, S.; Joseph, M. M.; Jana, A.; Ali, M.; Mapa, K.; Maiti, K. K.; Samanta, A., IndiFluors: A New Full-Visible Color-Tunable Donor-Acceptor-Donor (D1-A-D2) Fluorophore Family for Ratiometric pH Imaging during Mitophagy. ACS Sens 2022.
50.Rout, Y.; Montanari, C.; Pasciucco, E.; Misra, R.; Carlotti, B., Tuning the Fluorescence and the Intramolecular Charge Transfer of Phenothiazine Dipolar and Quadrupolar Derivatives by Oxygen Functionalization. J Am Chem Soc 2021, 143 (26), 9933-9943.
51.Woldegiorges, K.; Belay, A.; Kebede, A.; Abebe, T.; Pedrosa, J. M., Estimating the Ground and Excited State Dipole Moments of Levofloxacin and Norfloxacin Drugs Using Solvatochromic Effects and Computational Work. Journal of Spectroscopy 2021, 2021, 1-13.
52..
53.Bi, X.; Hao, W.; Liu, H.; Chen, X.; Xie, M.; Wang, Y.; Zhao, Y., Water-soluble host-guest fluorescent systems based on fluorophores and cucurbiturils with AIE or ACQ effects. Dyes and Pigments 2021, 189.
54.Chiang, Y. C.; Lai, Z. L.; Chen, C. M.; Chang, C. C.; Liu, B., Construction of emission-tunable nanoparticles based on a TICT-AIEgen: impact of aggregation-induced emission versus twisted intramolecular charge transfer. J Mater Chem B 2018, 6 (18), 2869-2876.
55.G. R, S.; Pandey, M.; Chakravarthy, A. S. J., Review on new horizons of aggregation induced emission: from design to development. Materials Chemistry Frontiers 2021, 5 (4), 1541-1584.
56.Li, K.; Feng, Q.; Niu, G.; Zhang, W.; Li, Y.; Kang, M.; Xu, K.; He, J.; Hou, H.; Tang, B. Z., Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing. ACS Sens 2018, 3 (5), 920-928.
57.Liu, C.; Yang, W.; Shen, P.; Gao, Q.; Du, J.; Yang, C., A dual-modal red-emitting fluorescence probe for proteins based on modulation of AIE or TICT state. Heteroatom Chemistry 2017, 28 (3).
58.Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015, 115 (21), 11718-940.
59.Wang, C.; Qiao, Q.; Chi, W.; Chen, J.; Liu, W.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X. F.; Zhou, W.; Xu, N.; Zhang, Q.; Xu, Z.; Liu, X., Quantitative Design of Bright Fluorophores and AIEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angew Chem Int Ed Engl 2020, 59 (25), 10160-10172.
60.Wang, M.; Wang, Y.; Hu, R.; Yuan, J.; Tian, M.; Zhang, X.; Shuai, Z.; Wei, Y., Intrinsic hydroquinone-functionalized aggregation-induced emission core shows redox and pH sensitivity. Communications Chemistry 2021, 4 (1).
61.Wiedbrauk, S.; Maerz, B.; Samoylova, E.; Reiner, A.; Trommer, F.; Mayer, P.; Zinth, W.; Dube, H., Twisted Hemithioindigo Photoswitches: Solvent Polarity Determines the Type of Light-Induced Rotations. J Am Chem Soc 2016, 138 (37), 12219-27.
62.Zhang, T.; Li, Y.; Zheng, Z.; Ye, R.; Zhang, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. J Am Chem Soc 2019, 141 (14), 5612-5616.
63.Zhao, Z.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z., Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew Chem Int Ed Engl 2020, 59 (25), 9888-9907.
64.Zhong, D.; Chen, W.; Xia, Z.; Hu, R.; Qi, Y.; Zhou, B.; Li, W.; He, J.; Wang, Z.; Zhao, Z.; Ding, D.; Tian, M.; Tang, B. Z.; Zhou, M., Aggregation-induced emission luminogens for image-guided surgery in non-human primates. Nat Commun 2021, 12 (1), 6485.
65.Choy, P. Y.; He, X.; Kwong, F. Y., Palladacycles as Precatalysts for Heck and Sonogashira Cross-Coupling Reactions. In Palladacycles, 2019; pp 21-173.
66.Katritzky, A. R.; Ramsden, C. A.; Joule, J. A.; Zhdankin, V. V., Reactivity of Six-membered Rings. In Handbook of Heterocyclic Chemistry, 2010; pp 242-382.
67.Blakemore, D., Chapter 1. Suzuki–Miyaura Coupling. 2016; pp 1-69.
68.Cheng, M. H. Y.; Harmatys, K. M.; Charron, D. M.; Chen, J.; Zheng, G. Stable J-Aggregation of an aza-BODIPY-Lipid in a Liposome for Optical Cancer Imaging. Angew Chem Int Ed Engl 2019, 58 (38), 13394-13399. DOI: 10.1002/anie.201907754 From NLM Medline.
69.Ji, C.; Lai, L.; Li, P.; Wu, Z.; Cheng, W.; Yin, M. Organic dye assemblies with aggregation‐induced photophysical changes and their bio‐applications. Aggregate 2021, 2 (4). DOI: 10.1002/agt2.39.
70.Ma, S.; Du, S.; Pan, G.; Dai, S.; Xu, B.; Tian, W. Organic molecular aggregates: From aggregation structure to emission property. Aggregate 2021, 2 (4). DOI: 10.1002/agt2.96.
71.Peng, Q.; Shuai, Z. Molecular mechanism of aggregation‐induced emission. Aggregate 2021, 2 (5). DOI: 10.1002/agt2.91.
電子全文 電子全文(網際網路公開日期:20270822)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top