跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林詩婷
研究生(外文):LIN, SHIH-TING
論文名稱:科技準備指標影響使用者數位癡呆或幸福感相關因素之研究
論文名稱(外文):Explore the Factors of Users’ Digital Dementia or Happiness with Technology Readiness Index
指導教授:曹文瑜曹文瑜引用關係
指導教授(外文):TSAO, WEN-YU
口試委員:林鴻興范振銘曹文瑜
口試委員(外文):LIN, HUNG-HSINGFAN, CHEN-MINGTSAO, WEN-YU
口試日期:2022-06-09
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:資訊管理系研發科技與資訊管理碩士在職專班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:58
中文關鍵詞:科技準備指標科技接受模型幸福感數位癡呆
外文關鍵詞:Technology Readiness IndexTechnology Acceptance ModelHappinessDigital Dementia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技快速發展和資料傳遞速度的增長,讓人們存取網際網路的服務或使用多媒體不會受時間及空間上的限制,數位服務帶來的便利性使人們仰賴程度的提高,隨之帶來人們大腦記憶衰退或大腦癡呆的情況,本研究探討科技準備指標中的樂觀、創新性、不舒服及不安全感影響使用者數位癡呆的狀況或幸福感的程度。本研究採用問卷調查法驗證科技準備指標(樂觀、創新性、不舒服、不安全感)、科技接受模型(知覺易用性、數位依賴)、幸福感與數位癡呆之間的關係,有效問卷為 267份,並使用SPSS統計套裝軟體進行分析。結果顯示(1)正向影響的部分,科技準備指標(樂觀、創新性、不舒服、不安全感)明顯會影響知覺易用性;(2)負向影響的部分,數位依賴與數位癡呆則會被知覺易用性影響;(3)使用者對數位服務的依賴顯著影響幸福感與數位癡呆,此意謂著現代人過分依賴科技,為負向影響。本研究最後是結論、管理意涵與研究限制。
With the high-speed development of technology and increasing in data transmission speed allows people to access Internet services or use multimedia without the inconvenience by time and space constraints. Relying on digital services will bring about people's memory decline or brain dementia. Technology Readiness Index affect users' digital dementia or happiness. In the study, the questionnaire investigation way was adopted through technology preparation indicators (optimism, innovation, discomfort, insecurity), Technology Acceptance Model, happiness and digital dementia. By using 267 valid questionnaires, and SPSS statistical package software to analyze, the results show that (1) technology readiness index (optimistic, innovative, discomfortable, insecurity) has a significant impact on perceived ease of use; (2) Perceived ease of use will directly affect the intention of digital dependence and the degree of digital dementia (3) Users' dependence on digital services affects happiness and digital dementia more obviously. The result means that people in nowadays depend on digital technologies too much. The final part in this research are conclusion、management implications and research limitations.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章、緒論 1
1.1、研究背景 1
1.2、研究範圍與目的 4
1.3、研究流程 4
第二章、文獻探討 6
2.1、科技準備指標 TECHNOLOGY READINESS INDEX 6
2.2、科技接受模型(TECHNOLOGY ACCEPTANCE MODEL)和數位依賴 7
2.3、幸福感 7
2.4、數位癡呆(DIGITAL DEMENTIA) 8
第三章、研究方法 9
3.1、研究架構 9
3.2、研究假說 10
3.3、研究變項 11
3.3、前測與預測 15
第四章、實證分析結果 17
4.1、基本資料分析 17
4.2、複選題分析 22
4.3、信度與效度分析 25
4.4、迴歸分析 30
第五章、討論與建議 32
5.1、研究結果 32
5.2、貢獻與管理意涵 33
5.3、研究限制與未來研究 34
參考文獻 36
中文部分 36
英文部分 37
附錄 43
附錄一、正式問卷 43
附錄二、SPSS操作畫面 51
中文文獻
1. 王光旭、許惠鈞 (2017). 臺灣社區通網站平臺使用頻率影響因素之研究:科技接受模型的觀點 民主與治理,第 402 期,頁 01 38 。
2. 林靖文、謝寶煖、莊馥瑄 . (2013). 以科技準備度與科技接受模型探討公共圖書館使用者運用數位服務科技之意願, 臺灣大學圖書資訊學系,碩士論 文。
3. 朱斌妤、黃仟文、 翁少白 . ( 以科技接受模式探討即時交通資訊系統之使用意願 電子商務學報, 10(1) 173 200 。
4. 施建彬 . (1995). 幸福感來源與相關因素之探討, 高雄醫學院行為科學研究所論文 。
5. 李仁豪、余民寧 . (2016). 心理幸福感量表檢視中文版信效度及測量不變性:以大學生為樣本並兼論測量不變性議題, 中華輔導與諮商學報, 46 127 154 。
6. 林信志、湯凱文、賴信志( 2010 )。以科技接受模式探討大學生學習以網路教學系統製作數位教材之意圖與成效。數位學習科技期刊, 2 1 60 78 。
7. 沈旭 豐 ( 。以科技 接受模式探討數位學習之學習滿意及購買意願。國立東華大學企業管理學系碩士論文,花蓮市。
8. 汪志忠、王春榕( 2014 )。基層公務資訊系統使用接受與滿意度探討。中國行政評論, 20 4 49 75 。

英文文獻
1.Abdullah, D., Jayaraman, K., Shariff, D. N., Bahari, K. A., and Nor, N. M. (2017). The effects of perceived interactivity, perceived ease of use and perceived usefulness on online hotel booking intention: A conceptual framework. International Academic Research Journal of Social Science, 3(1), 16-23.
2.Acheampong, P., Zhiwen, L., Antwi, H. A., Otoo, A. A. A., Mensah, W. G., & Sarpong, P. B. (2017). Hybridizing an extended technology readiness index with technology acceptance model (TAM) to predict e-payment adoption in Ghana. American Journal of Multidisciplinary Research, 5(2), 172-184.
3.Ahn, J. S., Jun, H. J., & Kim, T. S. (2015). Factors affecting smartphone dependency and digital dementia. Journal of Information Technology Applications and Management, 22(3), 35-54.
4.Al-Gahtani, S. S. (2011). Modeling the electronic transactions acceptance using an extended technology acceptance model. Applied computing and informatics, 9(1), 47-77.
5.Bonn, M. A., Kim, W. G., Kang, S., & Cho, M. (2016). Purchasing wine online: The effects of social influence, perceived usefulness, perceived ease of use, and wine involvement. Journal of Hospitality Marketing & Management, 25(7), 841-869.
6.Calisir, F., & Calisir, F. (2004). The relation of interface usability characteristics, perceived usefulness, and perceived ease of use to end-user satisfaction with enterprise resource planning (ERP) systems. Computers in human behavior, 20(4), 505-515.
7.Chiu, C. M., Chang, C. C., Cheng, H. L., & Fang, Y. H. (2009). Determinants of customer repurchase intention in online shopping. Online information review, 33(4), 761-784.
8.Devaraj, S., Easley, R. F., & Crant, J. M. (2008). Research note—how does personality matter? Relating the five-factor model to technology acceptance and use. Information systems research, 19(1), 93-105.
9.Dimitriadis, E., Chatzoudes, D., Jordan, M., Cudel, F., Bourdouni, E., Mandilas, A. and Mailly, T. (2019). Factors Affecting the Acceptance of Electronic Books by the Readers. International Journal of Business and Economic Sciences Applied Research (IJBESAR), 12(1), 7-19.
10.Engadget, 2011. Google VP lays down mobile stats, boasts 150 million Maps users. Available from: <http://www.engadget.com/2011/03/14/google-vp-lays-down-mobile-stats-boasts-150-million-maps-users/> (accessed 4 March, 2013).
11.Erdoğmuş, N., & Esen, M. (2011). An investigation of the effects of technology readiness on technology acceptance in e-HRM. Procedia-Social and Behavioral Sciences, 24, 487-495.
12.F.D. Davis Jr., Perceived usefulness, perceived ease of use, and user acceptance of nformation technology, MIS Quarterly 13 (3), 1989, pp. 319-340.
13.Gallagher, E. N., & Vella-Brodrick, D. A. (2008). Social support and emotional intelligence as predictors of subjective well-being.Personality and individual differences, 44(7), 1551-1561.
14.Ho, S. Y. (2012). The effects of location personalization on individuals' intention to use mobile services. Decision Support Systems, 53(4), 802-812.
15.Joo, Y. J., Lim, K. Y., & Kim, E. K. (2011). Online university students' satisfaction and persistence: Examining perceived level of presence, usefulness and ease of use as predictors in a structural model. Computers & education, 57(2), 1654-1664.
16.Joo, Y. J., Park, S., & Lim, E. (2018). Factors influencing preservice teachers’ intention to use technology: TPACK, teacher self-efficacy, and technology acceptance model. Journal of Educational Technology & Society, 21(3), 48-59.
17.Kavota, J. K., Kamdjoug, J. R. K., and Wamba, S. F. (2020). Social media and disaster management: Case of the north and south Kivu regions in the Democratic Republic of the Congo. International Journal of Information Management, 52, 1-22.
18.Kim, M. J., Lee, C. K., & Preis, M. W. (2020). The impact of innovation and gratification on authentic experience, subjective well-being, and behavioral intention in tourism virtual reality: The moderating role of technology readiness. Telematics and Informatics, 49, 101349.
19.Kim, Y. J., Chun, J. U., & Song, J. (2009). Investigating the role of attitude in technology acceptance from an attitude strength perspective. International Journal of Information Management, 29(1), 67-77.
20.Lam, S. Y., Chiang, J., & Parasuraman, A. (2008). The effects of the dimensions of technology readiness on technology acceptance: An empirical analysis. Journal of interactive marketing, 22(4), 19-39.
21.Landers, R. N., & Lounsbury, J. W. (2006). An investigation of Big Five and narrow personality traits in relation to Internet usage. Computers in human behavior, 22(2), 283-293.
22.Lapierre, M. A., Zhao, P., & Custer, B. E. (2019). Short-term longitudinal relationships between smartphone use/dependency and psychological well-being among late adolescents. Journal of Adolescent Health, 65(5), 607-612.
23.Lee, K. E., Kim, S. H., Ha, T. Y., Yoo, Y. M., Han, J. J., Jung, J. H., & Jang, J. Y. (2016). Dependency on smartphone use and its association with anxiety in Korea. Public Health Reports, 131(3), 411-419.
24.Lin, C. H. (2014). Effects of cuisine experience, psychological well-being, and self-health perception on the revisit intention of hot springs tourists. Journal of Hospitality & Tourism Research, 38(2), 243-265.
25.Lin, T. T. C., Chiang, Y., & Jiang, Q. (2015). Sociable people beware? Investigating smartphone vs. non-smartphone dependency symptoms among young Singaporeans. Social Behavior and Personality 43(7), 1209–1216.
26. Lu, Y., Papagiannidis, S., & Alamanos, E. (2019). Exploring the emotional antecedents and outcomes of technology acceptance. Computers in Human Behavior, 90, 153-169.
27.Ma, L., Zhang, X., & Ding, X. Y. (2018). Social media users’ share intention and subjective well-being. Online Information Review, 42(6), 784-801.
28.Maican, C. I., Cazan, A. M., Lixandroiu, R. C., & Dovleac, L. (2019). A study on academic staff personality and technology acceptance: The case of communication and collaboration applications. Computers & Education, 128, 113-131.
29.Nunnally, J.C. & Bernstein, I.H. (1994). Psychometric theory. McGraw, New York.
30.Özbek, V., Alnıaçık, Ü., Koc, F., Akkılıç, M. E., & Kaş, E. (2014). The impact of personality on technology acceptance: A study on smart phone users. Procedia-Social and Behavioral Sciences, 150, 541-551.
31.Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of service research, 2(4), 307-320.
32.Park, E., & Kim, K. J. (2014). Driver acceptance of car navigation systems: integration of locational accuracy, processing speed, and service and display quality with technology acceptance model. Personal and ubiquitous computing, 18(3), 503-513.
33.Spitzer, M., Uehlein, F. A., & Oepen, G. (Eds.). (2012). Psychopathology and philosophy. Springer Science & Business Media.
34.Suki, N. M., & Suki, N. M. (2013). Dependency on smartphones: an analysis of structural equation modelling. Sains Humanika, 62(1), 49–55|.
35.Svendsen, G. B., Johnsen, J. A. K., Almås-Sørensen, L., & Vittersø, J. (2013). Personality and technology acceptance: the influence of personality factors on the core constructs of the Technology Acceptance Model. Behaviour & Information Technology, 32(4), 323-334.
36.Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’ technology readiness on technology acceptance. Information & Management, 44(2), 206-215.
37.Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & education, 68, 570-585.
38.Wong, S. H. R. (2011). Which Platform do Our Users Prefer: Website or Mobile App? Journal of Reference Services Review, 40(1), 103–115.
39.Yang, Y., and Wang, X. (2019). Modeling the intention to use machine translation for student translators: An extension of Technology Acceptance Model. Computers and Education, 133, 116-126.
40. Nathaniel Barr, Gordon Pennycook, Jennifer A. Stolz, and Jonathan A. Fugelsang(2015). Computers in Human Behavior Reports: A new vehicle for research in cyberpsychology.Computers in Human Behavior | Vol 48, Pages 1-714(July 2015) |
電子全文 電子全文(網際網路公開日期:20270721)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊