跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱子策
研究生(外文):Chiu, Zih-Ce
論文名稱:Return-free 數值積分法於異向性彈塑性模型之應用
論文名稱(外文):Applications of return-free integration to elastoplastic models for anisotropic materials
指導教授:劉立偉劉立偉引用關係
指導教授(外文):Liu, Li-Wei
口試委員:潘文峰游濟華張致文劉立偉
口試日期:2022-06-30
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:79
中文關鍵詞:彈塑性材料異向性材料數值積分方法免映射法雙軸向試驗
外文關鍵詞:Elastic-plastic materialAnisotropic materialTension compression asymmetryNumerical algorithmReturn-free integration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
彈塑性組成方程式由常微分方程組 (ordinary differential equations) 以及代數等式與 不等式 (algebra equations and inequalities) 所組成。為了得到塑性週期時正確的應力值, 所有代數方程和不等式必須在整個塑性週期內同時滿足,亦即在更新應力值時必須滿足應 力點確實落在降伏面上的限制。本研究首先引用 Liu et al. [26] 之研究探討異向性彈塑性 的內在對稱性引入新變數並建立增廣力空間,由李群變換 (Lie group transformation) 建 構免映射法 (return-free 數值積分方法),在不需特別修正結果下更新應力之餘亦滿足降伏 條件。再者我們探討並展現異向性彈塑性模式數值模擬時的力學行為,其中我們著重觀察 一致性誤差 (consistency error),亦即數值積分法在模擬塑性階段中計算並更新應力態至 降伏面上精確與否的指標、平均誤差來探討加載路徑對一致性誤差的影響,最後由前者觀 察到的極值以進行等誤差 (iso-error) 的分析。在徑向加載的範例中與其他數值積分法進行 一致性誤差等高線圖的比較,其最終結果與其他誤差分析下免映射法展現了預期內的優良 精度。然而彈塑數值模式僅考慮的應變控制不能完整的反應材料受力與變形行為,為此文 中假設應力與應變在現實中都擁有未知的項目、重新安排組成方程以求得耦合之應力與應 變,故稱應力應變混合控制模型。最後我們針對異向性材料骨皮質進行單軸加載、單軸循 環加載與五種雙軸向試驗路徑來模擬並討論循環加載硬化/軟化等機械行為。
An elastoplastic model for anisotropic-pressure-sensitive materials is proposed and its numerical integration is established in the present study. An anisotropic yield sur- face, a nonlinear isotropic hardening, and a nonlinear kinematic hardening are consid- ered. To simulate the behavior of the anisotropic-pressure-sensitive material exactly, the return-free integration which was initialized by Liu et al. [26], which automati- cally updates the stress on the yield surface during plastic phase is developed. The performance of the return-free integration was examined to demonstrate its consis- tency errors, average errors, and iso-errors. The influence of non-zero initial condition of stress, pre-straining path, the loading paths on the consistency error is conducted. The convergence analysis of average error is investigated and the iso-error maps is established. All error analysis reveal that the return-free integration for the model of anisotropic material with the anisotropic yield surface and the nonlinear isotropic- kinematic-mixed hardening rule is stable, acceptable in performance, and reliable. In three-dimensional elastoplasticity of strain driven case, the strain components were assume to known entirely. Which is in equilibrium to the boundaries were fixed or determined. However, in experiment or simulation the boundaries were free. There- fore, we assumed that the components of both stress and strain exist unknown parts, hence the constitutive equations are rearranged to obtain the coupled stress and strain formulation, i.e. the stress-strain mixed control formulation. The demonstration for the anisotropic material included the cyclic hardening/softening behavior and stress evolution under bi-axial strain path.
摘要 I
Abstract II
致謝 IV
List of figures VIII
List of tables XIII
Nomenclature XIV
1 Introduction 1
1.1 Background 1
1.1.1 Plasticintegrations 2
1.1.2 Return-free integration 4
1.2 Outline 5
2 Model formulation 6
2.1 An elastoplastic model for anisotropic materials 6
2.1.1 Generalized associate flow rule models 8
2.1.2 Sufficient and necessary conditions of plasticity mechanism 9
2.2 Mixed control of stress and strain states 11
2.2.1 Representation of elastoplastic models of mixed states control 11
2.2.2 Generalized associate flow rule models 13
3 Return-free integration 15
3.1 Continuum elastoplastic tangent 15
3.2 Coordinate transformation matrix 16
3.3 Algorithm 18
4 Error analysis of return-free integrations 21
4.1 A perfect model with anisotropic yield surface 22
4.1.1 Consistency error maps under biaxial strain control 23
4.1.2 Consistency error map under biaxial strain control with non-zero initial condition 25
4.1.3 Influence of loading path on return-free integration 26
4.1.4 Convergence analysis 27
4.1.5 Iso-error maps 28
A isotropic-kinematic mixed hardening model with anisotropic yield surface 28
4.2.1 Influence of loading path on return-free integration 29
4.2.2 Convergence analysis 29
4.2.3 Iso-error maps 30
5 Investigation elastoplastic property of materials by return-free integration 46
5.1 Contraction ratio 46
5.2 Cyclic behavior of cortical bone 49
5.3 Stress shift under bi-axial loop loading of cortical bone 50
6 Conclusions and future works 69
6.1 Conclusions 69
6.2 Future works 71
Reference 72
Appendix 79
A1.Consistency tangent 79
[1] A. A. Abdel-Wahab, K. Alam, and V. V. Silberschmidt. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Journal of the Mechanical Behavior of Biomedical Materials, 4(5):807–820, 2011.
[2] M. Alkhader and M. Vural. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial fe simulations. Journal of the Mechanics and Physics of Solids, 57(5):871–890, 2009.
[3] B. An and W. Sun. A theory of biological composites undergoing plastic deforma- tions. Journal of the Mechanical Behavior of Biomedical Materials, 93:204–212, 2019.
[4] N. Aravas. On the numerical integration of a class of pressure-dependent plasticity models. International Journal for Numerical Methods in Engineering, 24(7):1395– 1416, 1987.
[5] D. Carnelli, R. Lucchini, M. Ponzoni, R. Contro, and P. Vena. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. Journal of Biomechanics, 44(10):1852– 1858, 2011.
[6] J. Clausen, L. Damkilde, and L. Andersen. Efficient return algorithms for asso- ciated plasticity with multiple yield planes. International Journal for Numerical Methods in Engineering, 66(6):1036–1059, 2006.
[7] M. Eynbeygui, J. Arghavani, A. Akbarzadeh, and R. Naghdabadi. Anisotropic elastic-plastic behavior of architected pyramidal lattice materials. Acta Materialia, 183:118–136, 2020.
[8] F. Genna and A. Pandolfi. Accurate numerical integration of Drucker-Prager’s constitutive equations. Meccanica, 29(3):239–260, 1994.
[9] H.-K. Hong and C.-S. Liu. Internal symmetry in bilinear elastoplasticity. Inter- national Journal of Non-Linear Mechanics, 34:279–288, 1999.
[10] H.-K. Hong and C.-S. Liu. Internal symmetry in the constitutive model of perfect elastoplasticity. International Journal of Non-Linear Mechanics, 35:447–466, 2000.
[11] H.-K. Hong and C.-S. Liu. Lorentz group on Minkowski spacetime for construction of the two basic principles of plasticity. International Journal of Non-Linear Mechanics, 36:679–686, 2001.
[12] H.-K. Hong and C.-S. Liu. Some physical models with Minkowski spacetime struc- ture and Lorentz group symmetry. International Journal of Non-Linear Mechan- ics, 36:1075–1084, 2001.
[13] Y. Hou, J. Min, T. B. Stoughton, J. Lin, J. E. Carsley, and B. E. Carlson. A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. International Journal of Plasticity, 135:102808, 2020.
[14] Q. Hu and J. W. Yoon. Analytical description of an asymmetric yield function (yoon2014) by considering anisotropic hardening under non-associated flow rule. International Journal of Plasticity, 140:102978, 2021.
[15] N. Kelly and J. P. McGarry. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. Journal of the Mechanical Behavior of Biomedical Materials, 9:184–197, 2012.
[16] A. S. Khan and M. Baig. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy. International Journal of Plasticity, 27(4):522–538, 2011.
[17] A. S. Khan and S. Yu. Deformation induced anisotropic responses of Ti-6Al-4V alloy. part I: Experiments. International Journal of Plasticity, 38:1–13, 2012.
[18] F. Khor, D. Cronin, B. Watson, D. Gierczycka, and S. Malcolm. Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation. Journal of the Mechanical Behavior of Biomedical Materials, 87:213–229, 2018.
[19] R. D. Krieg and D. B. Krieg. Accuracies of numerical solution methods for the elastic-perfectly plastic model. Journal of Pressure Vessel Technology, 99:510–515, 1977.
[20] C. A. Lee, M.-G. Lee, O. S. Seo, N.-T. Nguyen, J. H. Kim, and H. Y. Kim. Cyclic behavior of AZ31B Mg: Experiments and non-isothermal forming simulations. International Journal of Plasticity, 75:39–62, 2015.
[21] S. Li, E. Demirci, and V. V. Silberschmidt. Variability and anisotropy of me- chanical behavior of cortical bone in tension and compression. Journal of the Mechanical Behavior of Biomedical Materials, 21:109–120, 2013.
[22] S. Li, E. Demirci, and V. V. Silberschmidt. Variability and anisotropy of me- chanical behavior of cortical bone in tension and compression. Journal of the Mechanical Behavior of Biomedical Materials, 21:109–120, 2013.
[23] L. Lin, J. Samuel, X. Zeng, and X. Wang. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. Journal of the Mechanical Behavior of Biomedical Materials, 65:224–235, 2017.
[24] C.-S. Liu. Internal symmetry groups for the Drucker-Prager material model of plasticity and numerical integrating methods. International Journal of Solids and Structures, 41(14):3771–3791, 2004.
[25] C.-S. Liu and H.-K. Hong. The contraction ratios of perfect elastoplasticity under biaxial controls. European Journal of Mechanics - A/Solids, 19(5):827–848, 2000.
[26] C.-S. Liu, L.-W. Liu, and H.-K. Hong. A scheme of automatic stress-updating on yield surfaces for a class of elastoplastic models. International Journal of Non- Linear Mechanics, 85:6–22, 2016.
[27] B. Loret and J. H. Prevost. Accurate numerical solutions for Drucker-Prager elastic-plastic models. Computer Methods in Applied Mechanics and Engineering, 54(3):259–277, 1986.
[28] A. Pandey, A. S. Khan, E.-Y. Kim, S.-H. Choi, and T. Gnäupel-Herold. Exper- imental and numerical investigations of yield surface, texture, and deformation mechanisms in aa5754 over low to high temperatures and strain rates. Interna- tional Journal of Plasticity, 41:165–188, 2013.
[29] R. S. Raghava and R. M. Caddell. Yield locus studies of oriented polycarbonate an anisotropic and pressure-dependent solid. International Journal of Mechanical Sciences, 16(11):789–799, 1974.
[30] M. Rezaiee-Pajand and C. Nasirai. On the integration schemes for Drucker- Prager’s elastoplastic models based on exponential maps. International Journal for Numerical Methods in Engineering, 74(5):799–826, 2008.
[31] M. Rezaiee-Pajand and M. Sharifian. A novel formulation for integrating non- linear kinematic hardening drucker-prager’s yield condition. European Journal of Mechanics - A/Solids, 31(1):163–178, 2012.
[32] M. Rezaiee-Pajand, M. Sharifian, and M. Sharifian. Accurate and approximate integrations of Drucker-Prager plasticity with linear isotropic and kinematic hard- ening. European Journal of Mechanics - A/Solids, 30(3):345–361, 2011.
[33] M. Safaei, S. lai Zang, M.-G. Lee, and W. De Waele. Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and non-associated flow rule approach. International Journal of Mechanical Sciences, 73:53–68, 2013.
[34] M. Safaei, J. W. Yoon, and W. De Waele. Study on the definition of equiva- lent plastic strain under non-associated flow rule for finite element formulation. International Journal of Plasticity, 58:219–238, 2014.
[35] J. Simo and R. Taylor. Consistent tangent operators for rate-independent elasto- plasticity. Computer Methods in Applied Mechanics and Engineering, 48(1):101 – 118, 1985.
[36] S. W. Sloan and J. R. Booker. Integration of Tresca and Mohr-Coulomb constitu- tive relations in plane strain elastoplasticity. International Journal for Numerical Methods in Engineering, 33(1):163–196, 1992.
[37] W. Spitzig, R. Sober, and O. Richmond. Pressure dependence of yielding and as- sociated volume expansion in tempered martensite. Acta Metallurgica, 23(7):885– 893, 1975.
[38] T. B. Stoughton and J.-W. Yoon. A pressure-sensitive yield criterion under a non- associated flow rule for sheet metal forming. International Journal of Plasticity, 20(4):705–731, 2004.
[39] L. Szabó and A. Kossa. A new exact integration method for the drucker–prager elastoplastic model with linear isotropic hardening. International Journal of Solids and Structures, 49(1):170–190, 2012.
[40] A. Taherizadeh, D. E. Green, and J. W. Yoon. Evaluation of advanced anisotropic models with mixed hardening for general associated and non-associated flow metal plasticity. International Journal of Plasticity, 27(11):1781–1802, 2011.
[41] M. Wali, H. Chouchene, L. B. Said, and F. Dammak. One-equation integra- tion algorithm of a generalized quadratic yield function with chaboche non-linear isotropic/kinematic hardening. International Journal of Mechanical Sciences, 92:223–232, 2015.
[42] J. Yoon, O. Cazacu, and R. K. Mishra. Constitutive modeling of AZ31 sheet alloy with application to axial crushing. Materials Science and Engineering: A, 565:203–212, 2013.
電子全文 電子全文(網際網路公開日期:20270720)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top