[1]Abolfathi, S., Yeganeh-Bakhtiary, A., Hamze-Ziabari, S.M., &Borzooei, S., 2016. Wave runup prediction using M5′ model tree algorithm. Ocean Eng. 112, 76–81.
[2]Bakhtyar, R., Yeganeh Bakhtiary, A., &Ghaheri, A., 2008. Application of neuro-fuzzy approach in prediction of runup in swash zone. Appl. Ocean Res. 30, 17–27.
[3]Camus, P., Mendez, F.J., Medina, R., &Cofiño, A.S., 2011. Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coast. Eng. 58, 453–462.
[4]Deppermann, C.E., 1947. Notes on the Origin and Structure of Philippine Typhoons. Bull. Am. Meteorol. Soc. 28, 399–404.
[5]Demirbilek, Z., Nwogu, O., &Ward, D., 2007. Laboratory Study of Wind Effect on Runup over Fringing Reefs-Report 1: Data Report. Surge Wave Isl. Model. Stud. Progr. Coast. Inlets Res. Progr. ERDC/CHL TR-07-4.
[6]Doong, D.J., Tsai, C.H., Chen, Y.C., Peng, J.P., &Huang, C.J., 2015. Statistical analysis on the long-Term observations of typhoon waves in the Taiwan sea. J. Mar. Sci. Technol. 23, 893–900.
[7]Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., DeChiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., deRosnay, P., Rozum, I., Vamborg, F., Villaume, S., &Thépaut, J.-N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049.
[8]Holman, R.A., 1986. Extreme value statistics for wave run-up on a natural beach. Coast. Eng. 9, 527–544.
[9]Hsiao, S.-C., Chen, H., Chen, W.-B., Chang, C.-H., &Lin, L.-Y., 2019. Quantifying the contribution of nonlinear interactions to storm tide simulations during a super typhoon event. Ocean Eng. 194, 106661.
[10]Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., &Joseph, D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–472.
[11]Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., &Takahashi, K., 2015. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. 気象集誌. 第2輯 93, 5–48.
[12]Lakhan, V.C., 2003. Advances in coastal modeling. Elsevier.
[13]Martínez Pés, V., 2013. Applicability and Limitations of the SWASH model to predict wave overtopping.
[14]Mase, H., 1989. Random Wave Runup Height on Gentle Slope. J. Waterw. Port, Coastal, Ocean Eng. 115, 649–661.
[15]Mase, H., 1995. Frequency down-shift of swash oscillations compared to incident waves. J. Hydraul. Res. 33, 397–411.
[16]Molod, A., Takacs, L., Suarez, M., &Bacmeister, J., 2015. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8, 1339–1356.
[17]Passarella, M., Goldstein, E.B., DeMuro, S., &Coco, G., 2018. The use of genetic programming to develop a predictor of swash excursion on sandy beaches. Nat. Hazards Earth Syst. Sci. 18, 599–611.
[18]Roelvink, D., McCall, R., Mehvar, S., Nederhoff, K., &Dastgheib, A., 2018. Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup. Coast. Eng. 134, 103–123.
[19]Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.P., van denDool, H., Zhang, Q., Wang, W., Chen, M., &Becker, E., 2014. The NCEP Climate Forecast System Version 2. J. Clim. 27, 2185–2208.
[20]Scott, F., Antolinez, J.A.A., McCall, R., Storlazzi, C., Reniers, A., &Pearson, S., 2020. Hydro-Morphological Characterization of Coral Reefs for Wave Runup Prediction. Front. Mar. Sci. 7, 1–20.
[21]Shao, Z., Liang, B., Li, H., Wu, G., &Wu, Z., 2018. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea. Appl. Ocean Res. 71, 20–33.
[22]U.S. Army Corps of Engineers., 2020. Coastal engineering manual. Washington, D.C.
[23]Zhang, Y.J., Ye, F., Stanev, E.V., &Grashorn, S., 2016. Seamless cross-scale modeling with SCHISM. Ocean Model. 102, 64–81.
[24]Zhang, Y., &Baptista, A.M., 2008. SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model. 21, 71–96.
[25]Zijlema, M., Stelling, G., &Smit, P., 2011. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 58, 992–1012.
[26]陳彥彰, 2004. “應用 Boussinesq 方程式計算斜坡上之波浪溯升及反射”. 國立成功大學水利及海洋工程研究所碩士論文[27]程嘉彥, 劉邦輝, 陳陽益, 2000. “新型消波塊模型試驗,”. 第 22 屆海洋工程研討會論文集
[28]經濟部水利署第六河川局,2021. “110年第六河川局河川監測資訊管理精進計畫”
[29]經濟部水利署第六河川局,2021. “110年度臺南市一般性海堤風險評估計畫”