跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅雅蘭
研究生(外文):Lo, Ya-Lan
論文名稱:由Sentinel-1雷達衛星時間序列影像推算之誤警率異常值及統計值門檻偵測小型崩塌地
論文名稱(外文):Detecting the emergence of small-area landslides by the anomaly of false alarm rate and statistical threshold derived from the time series of Sentinel-1 SAR imagery
指導教授:劉正千劉正千引用關係
指導教授(外文):Liu, Cheng-Chien
口試委員:林冠瑋陳毅青
口試委員(外文):Lin, Guan-WeiChen, Yi-Chin
口試日期:2022-08-11
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:小規模崩塌Sentinel-1雷達衛星誤警率時間序列
外文關鍵詞:small landslideSentinel-1SAR satellitefalse alarm ratetime series
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
崩塌是泛指重力作用下土砂、岩石和有機材料的下坡運動,以及該運動所產生的地形。不同的自然災害如豪雨、地震、火山爆發等,及人為的活動皆可能引發崩塌事件,特別是在地形陡峭、地質脆弱的地區。崩塌災害對於人類的威脅甚鉅,造成生命、財產的損失。在衛星遙測的技術上,多以光學影像之多波段的資訊判釋崩塌地,技術成熟且效果顯著;然而,獲取清晰無雲的光學影像往往需數週至數月的時間,在即時性上有很大的限制。近年來合成孔徑雷達衛星逐漸普及,已發展出許多方法偵測地表變形,其相位、強度和極性的資料皆有應用於崩塌偵測的相關研究。然而干涉的方法適用於大範圍的監測,對小型崩塌效果不彰,而極性的資料取得相對困難,限制了研究的可行性。強度的資料則有分析上的困難,過去研究發現規模小於5公頃之崩塌難有良好的偵測結果。因此,本研究利用基於統計的變異偵測方法,包括統計值門檻及高斯模型兩種方法,分別對Sentinel-1時間序列衛星影像進行計算與擬合,偵測崩塌異常訊號。由於雷達強度影像難以直接判釋,因此本研究以偵測為主要策略,而非圈繪崩塌。
本研究根據近年之崩塌事件目錄,挑選濁口溪、志樂溪、知本溪及玉穗溪四處面積不超過10公頃的小規模崩塌事件,利用高斯模型法偵測具有長時間穩定的時間序列影像,包括濁口溪、志樂溪及知本溪三處研究區,利用誤警率閾值偵測異常訊號;而針對強度值高低起伏較大的玉穗溪研究區,由於高斯模型擬合較差,因此結合統計值門檻及高斯模型兩種方法偵測異常。同時,將雷達時間序列資料的偵測結果與Sentinel-2可見光影像進行比對,評估偵測結果。本研究在濁口溪及玉穗溪研究區偵測到崩塌異常訊號,但志樂溪及知本溪研究區受限於地形遮蔽效應的影響,無法進行異常偵測。另外,由於玉穗溪研究區的崩塌皆分布於河道周圍,因此崩塌訊號及河道變異訊號間有區分的困難。
A landslide is defined as the movement of a mass of ground materials, and the terrain formed by such movement. Natural hazards such as torrential rain, earthquakes, volcanic eruptions, etc., as well as man-made activities, may trigger landslides. Landslide disasters greatly threaten human beings, causing loss of life and property. In satellite remote sensing, the multi-band information of optical images is widely used to interpret landslide areas. Yet, it usually takes several weeks or even months to acquire cloudless optical images. The data from SAR images, including phase, intensity, and polarization are used in the related research of landslide detection. However, interferometric methods are solely suitable for large-scale monitoring; polarization data is relatively difficult to obtain, and intensity data is difficult to analyze. Past studies have found poor interpretation in intensity data with landslides smaller than 5 hectares.
In order to overcome the limits from past studies, we use statistical-based anomaly detection methods, including statistical threshold and the Gaussian model to detect abnormal landslide signals. In this study, we use detection as the main strategy rather than mapping landslides. According to the landslide inventories of Taiwan in recent years, four study areas with small-scale landslide events are selected, including the Zhuo-Kou River, Zhi-Le River, Zhi-Ben River, and Yu-Suei River, to conduct detection methods. The detection results are compared with the Sentinel-2 RGB images to evaluate the results. In this study, abnormal signals of landslides were successfully detected in the study areas of Zhuo-Kou River and Yu-Suei River, but the research areas of Zhi-Le River and Zhi-Ben River are affected by the terrain effect.
摘要 I
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 7
1.3 論文架構 8
第2章 文獻回顧 10
2.1 崩塌地偵測 10
2.1.1 光學影像 11
2.1.2 合成孔徑雷達資料 15
2.2 合成孔徑雷達時間序列 22
2.2.1 相位資料 22
2.2.2 強度資料 24
2.2.3 極性資料 25
2.3 時間序列分析方法 26
2.3.1 時間序列變異偵測 26
2.3.2 統計值門檻 27
2.3.3 高斯模型 29
2.4 小結 30
第3章 研究資料與崩塌事件 31
3.1 Sentinel-1雷達強度資料 31
3.1.1 Sentinel-1衛星介紹 31
3.1.2 Sentinel-1影像資料 32
3.1.3 Sentinel-1資料取得及前處理 34
3.1.4 Sentinel-1時間序列 35
3.2 驗證資料 38
3.2.1 Sentinel-2衛星介紹 38
3.2.2 Sentinel-2影像資料 39
3.2.3 Sentinel-2資料取得 39
3.3 輔助資料 40
3.4 崩塌事件 43
3.4.1 20190627濁口溪崩塌事件 46
3.4.2 20190418志樂溪崩塌事件 48
3.4.3 20171011知本溪崩塌事件 50
3.4.4 20210807玉穗溪崩塌事件 52
3.5 小結 54
第4章 研究方法 55
4.1 統計值門檻法 55
4.1.1 方法介紹 55
4.1.2 方法步驟 56
4.2 高斯模型法 58
4.2.1 方法介紹 58
4.2.2 方法步驟 60
4.3 資料處理與分析流程 62
4.4 小結 68
第5章 結果與討論 69
5.1 高斯模型法 69
5.1.1 高斯擬合 69
5.1.2 高斯異常偵測 70
5.2 統計值門檻法 71
5.2.1 統計值門檻 71
5.2.2 Reduced Chi-square閾值異常偵測 71
5.2.3 設定最小偵測區域 72
5.3 Layover-shadow mask計算結果 73
5.4 各研究區討論 77
5.4.1 濁口溪崩塌事件 77
5.4.2 志樂溪塌事件 78
5.4.3 知本溪崩塌事件 78
5.4.4 玉穗溪崩塌事件 79
5.5 其他資料因素討論 84
5.5.1 σ0與 β0影像差異 84
5.5.2 DEM精度對產製layover-shadow mask的影響 85
第6章 結論 87
參考文獻 89
Acito, N., Diani, M., & Corsini, G. (2005). Gaussian mixture model based approach to anomaly detection in multi/hyperspectral images. Paper presented at the Image and Signal Processing for Remote Sensing XI.
Aimaiti, Y., Yamazaki, F., Liu, W., & Alimujiang, K. (2017). Monitoring of Land-Surface Deformation in the Karamay Oilfield, Xinjiang, China, Using SAR Interferometry. Applied Sciences, 7. doi: 10.3390/app7080772
Ainsworth, T., Kelly, J., & Lee, J.-S. (2009). Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 464-471.
Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the environment, 58(1), 21-44.
Alghushairy, O., Alsini, R., Soule, T., & Ma, X. (2021). A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams. Big Data and Cognitive Computing, 5(1), 1.
Ariza, A., Davila, N. A., Kemper, H., & Kemper, G. (2021). LANDSLIDE DETECTION IN CENTRAL AMERICA USING THE DIFFERENTIAL BARE SOIL INDEX. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
Aschbacher, J., & Milagro-Pérez, M. P. (2012). The European Earth monitoring (GMES) programme: Status and perspectives. Remote Sensing of Environment, 120, 3-8. doi: https://doi.org/10.1016/j.rse.2011.08.028
Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse problems, 14(4), R1.
Bechor, N. B., & Zebker, H. A. (2006). Measuring two‐dimensional movements using a single InSAR pair. Geophysical Research Letters, 33(16).
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375-2383.
Blaschke, T., Lang, S., & Hay, G. (2008). Object-based image analysis: spatial concepts for knowledge-driven remote sensing applications: Springer Science & Business Media.
Cai, J., Wang, C., Mao, X., & Wang, Q. (2017). An adaptive offset tracking method with SAR images for landslide displacement monitoring. Remote sensing, 9(8), 830.
Casagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., Righini, G., . . . Bianchi, M. (2016). Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment, 4, 92-108. doi: https://doi.org/10.1016/j.rsase.2016.07.001
Casson, B., Delacourt, C., & Allemand, P. (2005). Contribution of multi-temporal remote sensing images to characterize landslide slip surface‒Application to the La Clapière landslide (France). Natural Hazards and Earth System Sciences, 5(3), 425-437.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58.
Chang, C.-I., & Chiang, S.-S. (2002). Anomaly detection and classification for hyperspectral imagery. IEEE Transactions on geoscience and remote sensing, 40(6), 1314-1325.
Chang, L., Chen, Y.-T., Wang, J.-H., & Chang, Y.-L. (2021). Rice-Field Mapping with Sentinel-1A SAR Time-Series Data. Remote sensing, 13(1), 103.
Chuvieco, E. (2016). Fundamentals of satellite remote sensing: An environmental approach: CRC press.
Comert, R., Avdan, U., Gorum, T., & Nefeslioglu, H. A. (2019). Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data. Engineering Geology, 260, 105264.
Corsini, A., Farina, P., Antonello, G., Barbieri, M., Casagli, N., Coren, F., . . . Tarchi, D. (2006). Space‐borne and ground‐based SAR interferometry as tools for landslide hazard management in civil protection. International Journal of Remote Sensing, 27(12), 2351-2369.
Crippen, R. E. (1992). Measurement of subresolution terrain displacements using SPOT panchromatic imagery. Episodes Journal of International Geoscience, 15(1), 56-61.
Crosetto, M., Monserrat, O., Luzi, G., Cuevas-González, M., & Devanthéry, N. (2013). A noninterferometric procedure for deformation measurement using GB-SAR imagery. IEEE Geoscience and Remote Sensing Letters, 11(1), 34-38.
Cryer, J. D. (1986). Time series analysis (Vol. 286): Springer.
Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213-228. doi: https://doi.org/10.1016/S0169-555X(01)00087-3
Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B., Grandjean, P., . . . Varel, E. (2007). Remote-sensing techniques for analysing landslide kinematics: a review. Bulletin de la Société Géologique de France, 178(2), 89-100.
Denize, J., Hubert-Moy, L., & Pottier, E. (2019). Polarimetric SAR Time-Series for Identification of Winter Land Use. Sensors, 19(24), 5574.
Du, X. y., Yang, Q., Cai, B., & Liang, D. n. (2017, 16-19 Oct. 2017). A new method on shadow and layover detection of InSAR. Paper presented at the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP).
El-Darymli, K., McGuire, P., Gill, E., Power, D., & Moloney, C. (2014, 4-7 May 2014). Understanding the significance of radiometric calibration for synthetic aperture radar imagery. Paper presented at the 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE).
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on geoscience and remote sensing, 49(9), 3460-3470.
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191.
Ge, P., Gokon, H., Meguro, K., & Koshimura, S. (2019). Study on the Intensity and Coherence Information of High-Resolution ALOS-2 SAR Images for Rapid Massive Landslide Mapping at a Pixel Level. Remote sensing, 11(23), 2808.
GISGeography. (2022). OBIA – Object-Based Image Analysis (GEOBIA). from https://gisgeography.com/obia-object-based-image-analysis-geobia/
Guo, Q., Zhang, B., Ran, Q., Gao, L., Li, J., & Plaza, A. (2014). Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2351-2366. doi: 10.1109/JSTARS.2014.2302446
Hardin, J., & Rocke, D. M. (2004). Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Computational Statistics & Data Analysis, 44(4), 625-638. doi: https://doi.org/10.1016/S0167-9473(02)00280-3
He, L., Wu, L., Liu, S., & Su, C. (2014). Landslide Displacement Monitoring Using Multi-aperture InSAR and D-InSAR. Paper presented at the PIERS Proceedings.
Highland, L., & Bobrowsky, P. T. (2008). The landslide handbook: a guide to understanding landslides: US Geological Survey Reston.
Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514-517, 1-13. doi: https://doi.org/10.1016/j.tecto.2011.10.013
Hu, J., Li, Z., Ding, X., Zhu, J., Zhang, L., & Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195-213. doi: https://doi.org/10.1016/S0034-4257(02)00096-2
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. doi: https://doi.org/10.1016/0034-4257(88)90106-X
Hunt, E., Cavigelli, M., Daughtry, C., McMurtrey, J., & Walthall, C. (2005). Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precision Agriculture, 6, 359-378. doi: 10.1007/s11119-005-2324-5
Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61(1), 5-28. doi: 10.1007/s11069-010-9634-2
Jianjun, Z., Zhiwei, L., & Jun, H. (2017). Research progress and methods of InSAR for deformation monitoring. Acta Geodaetica et Cartographica Sinica, 46(10), 1717.
Jordan, C. F. (1969). Derivation of leaf‐area index from quality of light on the forest floor. Ecology, 50(4), 663-666.
Jung, J., & Yun, S.-H. (2020). Evaluation of Coherent and Incoherent Landslide Detection Methods Based on Synthetic Aperture Radar for Rapid Response: A Case Study for the 2018 Hokkaido Landslides. Remote sensing, 12(2), 265.
Kirchgässner, G., Wolters, J., & Hassler, U. (2012). Introduction to modern time series analysis: Springer Science & Business Media.
Knorr, E. M., & Ng, R. T. (1997). A Unified Notion of Outliers: Properties and Computation. Paper presented at the KDD.
Lê, T. T., Atto, A. M., Trouvé, E., Solikhin, A., & Pinel, V. (2015). Change detection matrix for multitemporal filtering and change analysis of SAR and PolSAR image time series. ISPRS Journal of Photogrammetry and Remote Sensing, 107, 64-76. doi: https://doi.org/10.1016/j.isprsjprs.2015.02.008
Lahousse, T., Chang, K., & Lin, Y. (2011). Landslide mapping with multi-scale object-based image analysis–a case study in the Baichi watershed, Taiwan. Natural Hazards and Earth System Sciences, 11(10), 2715-2726.
Larrinaga, A. R., & Brotons, L. (2019). Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery. Drones, 3(1), 6.
Lauknes, T. R., Piyush Shanker, A., Dehls, J. F., Zebker, H. A., Henderson, I. H. C., & Larsen, Y. (2010). Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment, 114(9), 2097-2109. doi: https://doi.org/10.1016/j.rse.2010.04.015
Liao, T. W. (2005). Clustering of time series data—a survey. Pattern recognition, 38(11), 1857-1874.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation: John Wiley & Sons.
Lin, Y. N., Chen, Y.-C., Kuo, Y.-T., & Chao, W.-A. (2022). Performance Study of Landslide Detection Using Multi-Temporal SAR Images. Remote sensing, 14(10), 2444.
Lissak, C., Bartsch, A., De Michele, M., Gomez, C., Maquaire, O., Raucoules, D., & Roulland, T. (2020). Remote sensing for assessing landslides and associated hazards. Surveys in Geophysics, 41(6), 1391-1435.
Lu, P., Stumpf, A., Kerle, N., & Casagli, N. (2011). Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters, 8(4), 701-705.
Mahalakshmi, G., Sridevi, S., & Rajaram, S. (2016, 7-9 Jan. 2016). A survey on forecasting of time series data. Paper presented at the 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE'16).
Manconi, A., Casu, F., Ardizzone, F., Bonano, M., Cardinali, M., De Luca, C., . . . Vennari, C. (2014). Brief communication: Rapid mapping of landslide events: The 3 December 2013 Montescaglioso landslide, Italy. Natural Hazards and Earth System Sciences, 14(7), 1835-1841.
Markou, M., & Singh, S. (2003). Novelty detection: a review—part 2:: neural network based approaches. Signal processing, 83(12), 2499-2521.
Marsh, S., Paganini, M., Missotten, R., Bannert, D., Benecke, N., Bessis, J.-L., . . . Woldai, T. (2004). IGOS Geohazards Report.
Matteoli, S., Diani, M., & Corsini, G. (2010). A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerospace and Electronic Systems Magazine, 25(7), 5-28. doi: 10.1109/MAES.2010.5546306
Mazzanti, P., Caporossi, P., & Muzi, R. (2020). Sliding Time Master Digital Image Correlation Analyses of CubeSat Images for landslide Monitoring: The Rattlesnake Hills Landslide (USA). Remote sensing, 12(4), 592.
Michel, R., Avouac, J. P., & Taboury, J. (1999). Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophysical Research Letters, 26(7), 875-878.
Mondini, A. C. (2017). Measures of Spatial Autocorrelation Changes in Multitemporal SAR Images for Event Landslides Detection. Remote sensing, 9(6), 554.
Mondini, A. C., Guzzetti, F., Chang, K.-T., Monserrat, O., Martha, T. R., & Manconi, A. (2021). Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Science Reviews, 216, 103574.
Mondini, A. C., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., & Monserrat, O. (2019). Sentinel-1 SAR amplitude imagery for rapid landslide detection. Remote sensing, 11(7), 760.
Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote sensing, 2(10), 2369-2387.
Nandini Mehrotra, & Srinivasan, S. (2019). Analysing Drone and Satellite Imagery using Vegetation Indices. from https://www.techforwildlife.com/blog/2019/1/22/analysing-drone-and-satellite-imagery-using-vegetation-indices
Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., & Joswig, M. (2012). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11. doi: https://doi.org/10.1016/j.enggeo.2011.03.012
Novellino, A., Cigna, F., Sowter, A., Ramondini, M., & Calcaterra, D. (2017). Exploitation of the Intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy. Geomorphology, 280, 153-166. doi: https://doi.org/10.1016/j.geomorph.2016.12.009
Nunziata, F., de Macedo, C. R., Buono, A., Velotto, D., & Migliaccio, M. (2019). On the analysis of a time series of X–band TerraSAR–X SAR imagery over oil seepages. International Journal of Remote Sensing, 40(9), 3623-3646.
Ohki, M., Abe, T., Tadono, T., & Shimada, M. (2020). Landslide detection in mountainous forest areas using polarimetry and interferometric coherence. Earth, Planets and Space, 72(1), 67. doi: 10.1186/s40623-020-01191-5
Oliver, C., & Quegan, S. (2004). Understanding synthetic aperture radar images: SciTech Publishing.
Osmanoğlu, B., Sunar, F., Wdowinski, S., & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102.
Paradella, W. R., Ferretti, A., Mura, J. C., Colombo, D., Gama, F. F., Tamburini, A., . . . Gomes, L. L. (2015). Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Engineering Geology, 193, 61-78. doi: https://doi.org/10.1016/j.enggeo.2015.04.015
Plank, S., Twele, A., & Martinis, S. (2016). Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data. Remote sensing, 8(4), 307.
Rasmussen, C. (1999). The infinite Gaussian mixture model. Advances in neural information processing systems, 12.
Raspini, F., Ciampalini, A., Del Conte, S., Lombardi, L., Nocentini, M., Gigli, G., . . . Casagli, N. (2015). Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy). Remote sensing, 7(11), 14576-14596.
Rau, J., Jhan, J., Lo, C., & Lin, Y. (2011). Landslide mapping using imagery acquired by a fixed-wing UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 38(1/C22), 195-200.
Reed, I. S., & Yu, X. (1990). Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE transactions on acoustics, speech, and signal processing, 38(10), 1760-1770.
Reynolds, D. A. (2009). Gaussian mixture models. Encyclopedia of biometrics, 741(659-663).
Richardson, A. J., & Wiegand, C. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing, 43(12), 1541-1552.
Rignot, E. J. M., & Zyl, J. J. v. (1993). Change detection techniques for ERS-1 SAR data. IEEE Transactions on geoscience and remote sensing, 31(4), 896-906. doi: 10.1109/36.239913
Rikimaru, A., Roy, P., & Miyatake, S. (2002). Tropical forest cover density mapping. Tropical ecology, 43(1), 39-47.
Rocca, F. (2003). 3D motion recovery with multi-angle and/or left right interferometry. Paper presented at the Proceedings of the third International Workshop on ERS SAR.
Rosen, P. A., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry package released. Eos, Transactions American Geophysical Union, 85(5), 47-47.
Rosi, A., Tofani, V., Tanteri, L., Tacconi Stefanelli, C., Agostini, A., Catani, F., & Casagli, N. (2018). The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides, 15(1), 5-19.
Rouse Jr, J., Haas, R., Schell, J., & Deering, D. (1973). Paper a 20. Paper presented at the Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, DC on.
Schlaffer, S., Chini, M., Giustarini, L., & Matgen, P. (2017). Probabilistic mapping of flood-induced backscatter changes in SAR time series. International Journal of Applied Earth Observation and Geoinformation, 56, 77-87. doi: https://doi.org/10.1016/j.jag.2016.12.003
Shaou-Gang Miaou, J.-S. C. (2012). Fundamentals of probability and statistics: 高立圖書.
Shi, X., Zhang, L., Balz, T., & Liao, M. (2015). Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 128-140.
Shibayama, T., Yamaguchi, Y., & Yamada, H. (2015). Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle. Remote sensing, 7(11), 15424-15442.
Simons, M., & Rosen, P. A. (2007). 3.12 - Interferometric Synthetic Aperture Radar Geodesy. In G. Schubert (Ed.), Treatise on Geophysics (pp. 391-446). Amsterdam: Elsevier.
Singleton, A., Li, Z., Hoey, T., & Muller, J. P. (2014). Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sensing of Environment, 147, 133-144. doi: https://doi.org/10.1016/j.rse.2014.03.003
Soeters, R., & Van Westen, C. (1996). Slope instability recognition, analysis and zonation. Landslides: investigation and mitigation, 247, 129-177.
Stumpf, A., Malet, J.-P., Allemand, P., & Ulrich, P. (2014). Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 95, 1-12.
Sun, Q., Hu, J., Zhang, L., & Ding, X. (2016). Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets: The Zhouqu case study, China. Remote sensing, 8(11), 908.
Sunshine, J. M., Pieters, C. M., & Pratt, S. F. (1990). Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research: Solid Earth, 95(B5), 6955-6966.
Svensson, S. (2005). Snow cover dynamics and plant phenology documentation using digital camera images and their relation with CO2-fluxes at Stordalen mire, Northern Sweden. Lunds universitets Naturgeografiska institution-Seminarieuppsatser.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., . . . Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9-24. doi: https://doi.org/10.1016/j.rse.2011.05.028
Travelletti, J., Delacourt, C., Allemand, P., Malet, J.-P., Schmittbuhl, J., Toussaint, R., & Bastard, M. (2012). Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 39-55.
Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3-4), 112-131.
Vega, F. C., Touveneau, M., Snoeij, P., Navas-Traver, I., Poupaert, J., Osborne, S., . . . Rommen, B. (2018). Sentinel-1 C/D: modifications and enhancements. Paper presented at the Sensors, Systems, and Next-Generation Satellites XXII.
Vázquez-Jiménez, R., Ramos-Bernal, R., Romero-Calcerrada, R., Arrogante-Funes, P., Sanchez Tizapa, S., & Novillo, C. (2018). Thresholding Algorithm Optimization for Change Detection to Satellite Imagery.
Wang, G., Xie, M., Chai, X., Wang, L., & Dong, C. (2013). D-InSAR-based landslide location and monitoring at Wudongde hydropower reservoir in China. Environmental earth sciences, 69(8), 2763-2777.
Wang, H. B., Xu, W. Y., & Xu, R. C. (2005). Slope stability evaluation using Back Propagation Neural Networks. Engineering Geology, 80(3), 302-315. doi: https://doi.org/10.1016/j.enggeo.2005.06.005
Wasowski, J., & Bovenga, F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103-138. doi: https://doi.org/10.1016/j.enggeo.2014.03.003
Wu, H. (2016, 16-18 Dec. 2016). A survey of research on anomaly detection for time series. Paper presented at the 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP).
Wu, L., Wang, H., Li, Y., Guo, Z., & Li, N. (2021). A Novel Method for Layover Detection in Mountainous Areas with SAR Images. Remote sensing, 13(23), 4882.
Xie, M., Esaki, T., & Zhou, G. (2004). GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33(2), 265-282.
Xie, Q., Lai, K., Wang, J., Lopez-Sanchez, J. M., Shang, J., Liao, C., . . . Peng, X. (2021). Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada. Remote sensing, 13(7), 1394.
Zebker, H. A., & Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 91(B5), 4993-4999.
Zhang, L., Ding, X., & Lu, Z. (2011). Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 146-152.
成功大學全球觀測與資料分析中心 (2018)。土砂災害空間資訊建置分析(2/3) (計畫編號:SWCB-107-095)。行政院農業委員會水土保持局。
成功大學全球觀測與資料分析中心 (2019)。土砂災害空間資訊建置與潛勢分析 (計畫編號:SWCB-108-186)。行政院農業委員會水土保持局。
成功大學全球觀測與資料分析中心 (2020)。土砂災害空間資訊蒐集判釋與變遷分析 (計畫編號:SWCB-109-135)。行政院農業委員會水土保持局。
成功大學全球觀測與資料分析中心 (2021)。土砂災害空間資訊蒐集判釋與變遷分析 (計畫編號:SWCB-110-177)。行政院農業委員會水土保持局。
行政院農業委員會水土保持局 (2016)。為土地把脈從梨山看臺灣。
張同同、楊紅磊、李東明、李永杰、劉俊男 (2019)。SAR影像中疊掩與陰影區域的識别——以湖北巴東為例。測繪通報,11,頁85-88。
陳柔妃、林慶偉 (2018)。大型山崩判釋新利器--結合InSAR與光達數值地形。中華技術,頁40-51。
陳培源 (2008)。台灣地質。科技圖書。
蔡亞倫、林士淵 (2018)。利用偏移偵測法監測格陵蘭Russell冰河之位移。航測及遙測學刊,23 (3),頁173-189。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top