|
[1] Gunter Ludwig. Wave mechanics. Pergamon Press, 1968. [2] Hugh Everett. ”relative state” formulation of quantum mechanics. Rev. Mod. Phys., 29:454–462, Jul 1957. [3] David Bohm. A suggested interpretation of the quantum theory in terms of ”hidden'' variables. i. Phys. Rev., 85:166–179, Jan 1952. [4] Satosi Watanabe. Symmetry of physical laws. part iii. prediction and retrodiction. Rev. Mod. Phys., 27:179–186, Apr 1955. [5] Ramamurti Shankar. Chpater 4 - Principles of quantum mechanics. Springer, 2014. [6] H. P. Robertson. The uncertainty principle. Phys. Rev., 34:163–164, Jul 1929. [7] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777–780, May 1935. [8] Hermann Haken. Laser theory. Springer, Berlin, corr. pr edition, 1984. [9] Karlheinz Seeger. Semiconductor Physics. Springer Vienna, Vienna, 1973. [10] S. D. Brotherton. Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer International Publishing Springer e-books Imprint: Springer, Heidelberg, 2013. [11] Mansoor Niaz, Stephen Klassen, Barbara McMillan, and Don Metz. Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94(5):903–931, 2010. [12] R. Wiesendanger and H.-J. Güntherodt, editors. Scanning tunneling microscopy III: theory of STM and related scanning probe methods. Number 29 in Springer series in surface sciences. Springer, Berlin ; New York, 2nd ed edition, 1996. [13] Kishore V. Chellappan, Erdem Erden, and Hakan Urey. Laser-based displays: a review. Appl. Opt., 49(25):F79–F98, Sep 2010. [14] Geoffrey Duxbury, Nigel Langford, Kenneth Hay, and Nicola Tasinato. Quantum cascade laser spectroscopy: diagnostics to non-linear optics. Journal of Modern Optics, 56(18-19):2034–2048, 2009. [15] Franck Vidal and Abderrahmane Tadjeddine. Sum-frequency generation spectroscopy of interfaces. Reports on Progress in Physics, 68(5):1095–1127, mar 2005. [16] Inder P. Batra, N. García, H. Rohrer, H. Salemink, E. Stoll, and S. Ciraci. A study of graphite surface with stm and electronic structure calculations. Surface Science, 181(1):126–138, 1987. 197 [17] Christopher E.D. Chidsey, Dominic N. Loiacono, Tycho Sleator, and Sho Nakahara. Stm study of the surface morphology of gold on mica. Surface Science, 200(1):45–66, 1988. [18] Jitender S. Deogun and George Steiner. Polynomial algorithms for hamiltonian cycle in cocomparability graphs. SIAM Journal on Computing, 23(3):520–552, 1994. [19] Fabio L. Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(2):023107, 2017. [20] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms, volume 2 of Springer Series in Information Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981. [21] Douglas R. Stinson and Maura B. Paterson. Cryptography: theory and practice. CRC Press, Taylor & Francis Group, Boca Raton, fourth edition edition, 2019. [22] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560:7–11, December 2014. [23] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography. Rev. Mod. Phys., 74:145–195, Mar 2002. [24] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299(5886):802–803, October 1982. [25] Roy J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130:2529–2539, Jun 1963. [26] Roman Schnabel. Squeezed states of light and their applications in laser interferometers. Physics Reports, 684:1–51, 2017. Squeezed states of light and their applications in laser interferometers. [27] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys, 7:962–965, 2011. Squeezed states of light and their applications in laser interferometers. [28] Ling-An Wu, H. J. Kimble, J. L. Hall, and Huifa Wu. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57:2520–2523, Nov 1986. [29] M. D. Reid and D. F. Walls. Generation of squeezed states via degenerate four-wave mixing. Phys. Rev. A, 31:1622–1635, Mar 1985. [30] G. Mauro D’Ariano, Paoloplacido Lo Presti, and Matteo G. A. Paris. Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett., 87:270404, Dec 2001. [31] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proceedings of the National Academy of Sciences, 106(27):10960– 10965, 2009. 198 [32] Christopher Ferrie and Joshua Combes. How the result of a single coin toss can turn out to be 100 heads. Phys. Rev. Lett., 113:120404, Sep 2014. [33] Feizpour A. Dmochowski G. et al Hallaji, M. Weak-value amplification of the nonlinear effect of a single photon. Nature Phys, 13:540–544, 2017. [34] Amir Feizpour, Xingxing Xing, and Aephraim M. Steinberg. Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett., 107:133603, Sep 2011. [35] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, Cambridge ; New York, 10th anniversary ed edition, 2010. [36] David Deutsch and Richard Jozsa. Rapid Solution of Problems by Quantum Computation. Proceedings of the Royal Society of London Series A, 439(1907):553–558, December 1992. [37] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994. [38] Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O’Brien. Shor’s quantum factoring algorithm on a photonic chip. Science, 325(5945):1221–1221, 2009. [39] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, pages 212–219, Philadelphia, Pennsylvania, United States, 1996. ACM Press. [40] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79:325–328, Jul 1997. [41] P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White. Grover’s search algorithm: An optical approach. Journal of Modern Optics, 47(2-3):257–266, 2000. [42] A. Trabesinger. Quantum simulation. Nature Phys, 8:263, 2012. [43] Sanders B. Lvovsky, A. and W. Tittel. Optical quantum memory. Nature Photon, 3:706–714, December 2009. [44] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao Hung, Chih-Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, Ite A. Yu, and Ying-Cheng Chen. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett., 120:183602, May 2018. [45] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15(24):1476–1478, Dec 1990. [46] Chin-Yao Cheng, Zi-Yu Liu, Pi-Sheng Hu, Tsai-Ni Wang, Chung-Yu Chien, Jia-Kang Lin, Jz-Yuan Juo, Jiun-Shiuan Shiu, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Efficient frequency conversion based on resonant four-wave mixing. Opt. Lett., 46(3):681–684, Feb 2021. 199 [47] H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett., 105:093604, Aug 2010. [48] Shengwang Du, Pavel Kolchin, Chinmay Belthangady, G. Y. Yin, and S. E. Harris. Subnatural linewidth biphotons with controllable temporal length. Phys. Rev. Lett., 100:183603, May 2008. [49] Chia-Yu Hsu, Yu-Sheng Wang, Jia-Mou Chen, Fu-Chen Huang, Yi-Ting Ke, Emily Kay Huang, Weilun Hung, Kai-Lin Chao, Shih-Si Hsiao, Yi-Hsin Chen, Chih- Sung Chuu, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu. Generation of sub-mhz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme. Opt. Express, 29(3):4632–4644, Feb 2021. [50] Robert H. Hadfield. Single-photon detectors for optical quantum information applications. Nature Photon, 3:696–705, December 2009. [51] Kao-Fang Chang, Ta-Pang Wang, Chun-Yi Chen, Yi-Hsin Chen, Yu-Sheng Wang, Yong-Fan Chen, Ying-Cheng Chen, and Ite A. Yu. Low-loss high-fidelity frequency beam splitter with tunable split ratio based on electromagnetically induced transparency. Phys. Rev. Research, 3:013096, Jan 2021. [52] Shamsolah Salemian and Shahram Mohammadnejad. Quantum hadamard gate implementation using planar lightwave circuit and photonic crystal structures. [53] Zi-Yu Liu, Yi-Hsin Chen, Yen-Chun Chen, Hsiang-Yu Lo, Pin-Ju Tsai, Ite A. Yu, Ying- Cheng Chen, and Yong-Fan Chen. Large cross-phase modulations at the few-photon level. Phys. Rev. Lett., 117:203601, Nov 2016. [54] Pieter Kok and Brendon W. Lovett. Introduction to optical quantum information processing. Cambridge University Press, Cambridge ; New York, 2010. OCLC: ocn496958911. [55] H. J. Kimble. The quantum internet. Nature, 453(7198):1023–1030, June 2008. [56] Boris Albrecht, Pau Farrera, Georg Heinze, Matteo Cristiani, and Hugues de Riedmatten. Controlled rephasing of single collective spin excitations in a cold atomic quantum memory. Phys. Rev. Lett., 115:160501, Oct 2015. [57] Lukas Heller, Pau Farrera, Georg Heinze, and Hugues de Riedmatten. Cold-atom temporally multiplexed quantum memory with cavity-enhanced noise suppression. Phys. Rev. Lett., 124:210504, May 2020. [58] Moustafa Abdel Hafiz, Grégoire Coget, Michael Petersen, Cyrus Rocher, Stéphane Guérandel, Thomas Zanon-Willette, Emeric de Clercq, and Rodolphe Boudot. Toward a high-stability coherent population trapping cs vapor-cell atomic clock using autobalanced ramsey spectroscopy. Phys. Rev. Applied, 9:064002, Jun 2018. [59] Zugenmaier M. Petersen J. et al Borregaard, J. Scalable photonic network architecture based on motional averaging in room temperature gas. Nat Commun, 7:11356, April 2016. 200 [60] Cyril Laplane, Pierre Jobez, Jean Etesse, Nicolas Gisin, and Mikael Afzelius. Multimode and long-lived quantum correlations between photons and spins in a crystal. Phys. Rev. Lett., 118:210501, May 2017. [61] Kutlu Kutluer, Margherita Mazzera, and Hugues de Riedmatten. Solid-state source of nonclassical photon pairs with embedded multimode quantum memory. Phys. Rev. Lett., 118:210502, May 2017. [62] Bernien H. Dréau A. et al Hensen, B. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526:682–686, September 2015. [63] K. Nagayama, T. Saitoh, M. Kakui, K. Kawasaki, M. Matsui, H. Takamizawa, H. Miyaki, Y. Ooga, I. Tsuchiya, and Y. Chigusa. Ultra low loss (0.151 db/km) fiber and its impact on submarine transmission systems. In Optical Fiber communications Conference, page FA10. Optical Society of America, 2002. [64] Toshiki Kobayashi, Daisuke Yamazaki, Kenichiro Matsuki, Rikizo Ikuta, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Takashi Yamamoto, Masato Koashi, and Nobuyuki Imoto. Mach-zehnder interferometer using frequency-domain beamsplitter. Opt. Express, 25(10):12052–12060, May 2017. [65] D.N. Makarov. Theory of a frequency-dependent beam splitter in the form of coupled waveguides. Sci Rep, 11:5014, March 2021. [66] Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues de Riedmatten. Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom c-band. Optica, 5(5):507–513, May 2018. [67] J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express, 19(22):21445–21456, Oct 2011. [68] J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer. Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters. Opt. Lett., 35(16):2804–2806, Aug 2010. [69] Xavier Fernandez-Gonzalvo, Giacomo Corrielli, Boris Albrecht, Marcel.li Grimau, Matteo Cristiani, and Hugues de Riedmatten. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. Opt. Express, 21(17):19473–19487, Aug 2013. [70] Marius A. Albota and Franco N. C. Wong. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt. Lett., 29(13):1449–1451, Jul 2004. [71] Aiko Samblowski, Christina E. Vollmer, Christoph Baune, Jaromír Fiurášek, and Roman Schnabel. Weak-signal conversion from 1550 to 532 nm with 84% efficiency. Opt. Lett., 39(10):2979–2981, May 2014. [72] Carsten Langrock, Eleni Diamanti, Rostislav V. Roussev, Yoshihisa Yamamoto, M. M. Fejer, and Hiroki Takesue. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled linbo3 waveguides. Opt. Lett., 30(13):1725–1727, Jul 2005. 201 [73] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden. A photonic quantum information interface. Nature, 437(7055):116–120, September 2005. [74] Qing Li, Marcelo Davanço, and Kartik Srinivasan. Efficient and low-noise singlephoton- level frequency conversion interfaces using silicon nanophotonics. Nature Photonics, 10(6):406–414, June 2016. [75] Mikkel Heuck, Jacob Gade Koefoed, Jesper Bjerge Christensen, Yunhong Ding, Lars Hagedorn Frandsen, Karsten Rottwitt, and Leif Katsuo Oxenløwe. Unidirectional frequency conversion in microring resonators for on-chip frequency-multiplexed single-photon sources. New Journal of Physics, 21(3):033037, mar 2019. [76] A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic. Demonstration of low-noise frequency conversion by bragg scattering in a fiber. Opt. Express, 14(20):8989–8994, Oct 2006. [77] Stéphane Clemmen, Alessandro Farsi, Sven Ramelow, and Alexander L. Gaeta. Ramsey interference with single photons. Phys. Rev. Lett., 117:223601, Nov 2016. [78] Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, and Kartik Srinivasan. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 6(5):563–569, May 2019. [79] Xiang Guo, Chang-Ling Zou, Hojoong Jung, and Hong X. Tang. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett., 117:123902, Sep 2016. [80] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy. A quantum memory with telecom-wavelength conversion. Nature Physics, 6(11):894–899, November 2010. [81] Chin-Yao Cheng, Jia-Juan Lee, Zi-Yu Liu, Jiun-Shiuan Shiu, and Yong-Fan Chen. Quantum frequency conversion based on resonant four-wave mixing. Phys. Rev. A, 103:023711, Feb 2021. [82] K.-J. Boller, A. Imamoğlu, and S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66:2593–2596, May 1991. [83] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64:1107–1110, Mar 1990. [84] A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra. Electromagnetically induced transparency in an open v-type molecular system. Phys. Rev. A, 83:063419, Jun 2011. [85] Julio Gea-Banacloche, Yong-qing Li, Shao-zheng Jin, and Min Xiao. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A, 51:576–584, Jan 1995. [86] S. H. Autler and C. H. Townes. Stark effect in rapidly varying fields. Phys. Rev., 100:703–722, Oct 1955. 202 [87] Hai-Chao Li, Guo-Qin Ge, and Hai-Yang Zhang. Dressed-state realization of the transition from electromagnetically induced transparency to autler-townes splitting in superconducting circuits. Opt. Express, 23(8):9844–9851, Apr 2015. [88] Hai-Chao Li, Guo-Qin Ge, and M. Suhail Zubairy. Efficient nonlinear frequency mixing using autler-townes splitting. Phys. Rev. A, 102:053701, Nov 2020. [89] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124:1866–1878, Dec 1961. [90] Petr M. Anisimov, Jonathan P. Dowling, and Barry C. Sanders. Objectively discerning autler-townes splitting from electromagnetically induced transparency. Phys. Rev. Lett., 107:163604, Oct 2011. [91] Yan-Cheng Wei, Bo-Han Wu, Ya-Fen Hsiao, Pin-Ju Tsai, and Ying-Cheng Chen. Broadband coherent optical memory based on electromagnetically induced transparency. Phys. Rev. A, 102:063720, Dec 2020. [92] Yu-Chih Tseng, Yan-Cheng Wei, and Ying-Cheng Chen. Efficient quantum memory for heralded single photons generated by cavity-enhanced spontaneous parametric downconversion, 2020. [93] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84:5094–5097, May 2000. [94] You-Lin Chuang, Ite A. Yu, and Ray-Kuang Lee. Quantum theory for pulse propagation in electromagnetically-induced-transparency media beyond the adiabatic approximation. Phys. Rev. A, 91:063818, Jun 2015. [95] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols. An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour. Il Nuovo Cimento B Series 11, 36(1):5–20, November 1976. [96] G. Orriols. Nonabsorption resonances by nonlinear coherent effects in a three-level system. Il Nuovo Cimento B Series 11, 53(1):1–24, September 1979. [97] H. R. Gray, R. M. Whitley, and C. R. Stroud. Coherent trapping of atomic populations. Optics Letters, 3(6):218, December 1978. [98] J. Vanier. Atomic clocks based on coherent population trapping: a review. Applied Physics B, 81(4):421–442, August 2005. [99] Chin-Yuan Lee, Bo-Han Wu, Gang Wang, Yong-Fang Chen, Ying-Cheng Chen, and Ite A. Yu. High conversion efficiency in resonant four-wave mixing processes. Opt. Express, 24(2):1008–1016, Jan 2016. [100] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu. Resonant four-wave mixing with slow light. Phys. Rev. A, 70:061804, Dec 2004. [101] M. G. Payne and L. Deng. Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing. Phys. Rev. A, 65:063806, Jun 2002. 203 [102] Chang-Kai Chiu, Yi-Hsin Chen, Yen-Chun Chen, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Low-light-level four-wave mixing by quantum interference. Phys. Rev. A, 89:023839, Feb 2014. [103] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan Chen. Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms. Phys. Rev. A, 97:053815, May 2018. [104] Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu. Backward fourwave mixing in a four-level medium with electromagnetically induced transparency. J. Opt. Soc. Am. B, 23(4):718–722, Apr 2006. [105] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng, and Yong-Fan Chen. High-efficiency backward four-wave mixing by quantum interference. Scientific Reports, 7(1):15796, December 2017. [106] Robert W. Boyd. Chapter 1 - the nonlinear optical susceptibility. In Robert W. Boyd, editor, Nonlinear Optics, pages 1–55. Academic Press, San Diego, 1992. [107] Zijian Cui, Dean Liu, Meizhi Sun, Jie Miao, and Jianqiang Zhu. Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems. J. Opt. Soc. Am. B, 33(4):525–534, Apr 2016. [108] Pierre-Marc Dansette, Maksim Eremchev, and Andrejus Michailovas. Continuous compensation of the phase mismatch by using temperature gradients for second harmonic generation. Optics Communications, 484:126687, 2021. [109] Takashi Nakajima and Kenzo Miyazaki. Spectrally compensated third harmonic generation using angular dispersers. Optics Communications, 163(4):217–222, 1999. [110] Deanna Marie Pennington, Mark A. Henesian, David Milam, and David Eimerl. Efficient broadband third-harmonic frequency conversion via angular dispersion. In Michel Andre and Howard T. Powell, editors, Solid State Lasers for Application to Inertial Confinement Fusion (ICF), volume 2633, pages 645 – 654. International Society for Optics and Photonics, SPIE, 1995. [111] Daniel A. Steck. Rubidium 87 d line data, 2001. [112] Jean Sansonetti. Wavelengths, transition probabilities and energy levels for the spectra of rubidium (rb i through rb xxxvii), 1970. [113] J. Vanier and C. Audoin. The Quantum Physics of Atomic Frequency Standards, volume 2. Adam Hilger, Philadelphia, 1989. [114] Yu-Wei Zheng. Setup and optimization of rubidium magneto-optical trap, Master’s thesis, National Cheng Kung University, 2009. [115] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59:2631–2634, Dec 1987. [116] Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of optically trapped atoms. Phys. Rev. Lett., 57:314–317, Jul 1986. 204 [117] William D. Phillips. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70:721–741, Jul 1998. [118] Cheng-Wei Chien. Electromagnetically induced transparency in dark spontaneousforce optical trap, Master’s thesis, National Cheng Kung University, 2011. [119] Bo-Sheng Yang. Electromegnetically induced transparency in a single zeeman sublevel, Master’s thesis, National Cheng Kung University, 2014. [120] Mark Fox. Quantum optics: an introduction. Oxford master series in atomic, optical, and laser physics. Oxford Univ. Press, Oxford, 2006. [121] Wolfgang Demtröder. Laser Spectroscopy. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996. [122] Geol Moon and Heung-Ryoul Noh. Linewidth in saturated absorption spectroscopy for two-level atoms: an empirical formula. Appl. Opt., 57(14):3881–3883, May 2018. [123] Martyn D. Wheeler, Stuart M. Newman, Andrew J. Orr-Ewing, and Michael N. R. Ashfold. Cavity ring-down spectroscopy. Journal of the Chemical Society, Faraday Transactions, 94(3):337–351, 1998. [124] R. Lang. Injection locking properties of a semiconductor laser. IEEE Journal of Quantum Electronics, 18(6):976–983, 1982. [125] Chang-Kai Chui. Studies on eit-based four-wave mixing at low-light levels, Master’s thesis, National Cheng Kung University, 2013. [126] Chen-Hsuan Fang. Studies on oscillation behavior of eit-based light storage and retrival, Master’s thesis, National Cheng Kung University, 2013. [127] David J. Griffiths. Section 4.4 - Introduction to quantum mechanics. 2nd ed. Pearson Prentice Hall, 2005. [128] Pi-Sheng Hu. Highly efficient optical wavelength converter based on electromagnetically induced transparency, Master’s thesis, National Cheng Kung University, 2018. [129] Jian-Ting Xiao. High-efficiency backward resonant four-wave mixing by quantum interference, Master’s thesis, National Cheng Kung University, 2017. [130] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E. Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett., 70:2253–2256, Apr 1993. [131] Danielle A. Braje, Vlatko Balić, G. Y. Yin, and S. E. Harris. Low-light-level nonlinear optics with slow light. Phys. Rev. A, 68:041801, Oct 2003. [132] Hoonsoo Kang and Yifu Zhu. Observation of large kerr nonlinearity at low light intensities. Phys. Rev. Lett., 91:093601, Aug 2003. [133] Yong-Fan Chen, Zen-Hsiang Tsai, Yu-Chen Liu, and Ite A. Yu. Low-light-level photon switching by quantum interference. Opt. Lett., 30(23):3207–3209, Dec 2005. 205 [134] Nikolai Lauk, Christopher O’Brien, and Michael Fleischhauer. Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing. Phys. Rev. A, 88:013823, Jul 2013. [135] Pavel Kolchin. Electromagnetically-induced-transparency-based paired photon generation. Phys. Rev. A, 75:033814, Mar 2007. [136] You-Lin Chuang, Ray-Kuang Lee, and Ite A. Yu. Generation of quantum entanglement based on electromagnetically induced transparency media. Opt. Express, 29(3):3928– 3942, Feb 2021. [137] Xihua Yang and Min Xiao. Electromagnetically Induced Entanglement. Scientific Reports, 5(1):13609, October 2015. [138] You-Lin Chuang and Ray-Kuang Lee. Conditions to preserve quantum entanglement of quadrature fluctuation fields in electromagnetically induced transparency media. Optics Letters, 34(10):1537, May 2009. [139] Amitabh Joshi and Min Xiao. Generalized dark-state polaritons for photon memory in multilevel atomic media. Phys. Rev. A, 71:041801, Apr 2005. [140] Luwei Zhao, Yumian Su, and Shengwang Du. Narrowband biphoton generation in the group delay regime. Phys. Rev. A, 93:033815, Mar 2016. [141] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich. Quantum telecommunication based on atomic cascade transitions. Phys. Rev. Lett., 96:093604, Mar 2006. [142] Marlan O. Scully and Muhammad Suhail Zubairy. Quantum optics. Cambridge University Press, Cambridge ; New York, 1997. [143] John C. Garrison and Raymond Y. Chiao. Quantum optics / J.C. Garrison and R.Y. Chiao. Oxford University Press Oxford ; New York, 2008. [144] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, 2019. [145] William H. Louisell. Quantum statistical properties of radiation. Wiley, New York, 1973. [146] Agata M. Brańczyk. Hong-ou-mandel interference, 2017. [147] Markus Rambach, Aleksandrina Nikolova, Till J. Weinhold, and Andrew G. White. Sub-megahertz linewidth single photon source. APL Photonics, 1(9):096101, 2016. [148] Jianji Liu, Jiachen Liu, Ping Yu, and Guoquan Zhang. Sub-megahertz narrowband photon pairs at 606 nm for solid-state quantum memories. APL Photonics, 5(6):066105, 2020. [149] Luwei Zhao, Xianxin Guo, Chang Liu, Yuan Sun, M. M. T. Loy, and Shengwang Du. Photon pairs with coherence time exceeding 1 ; ;μ;s. Optica, 1(2):84–88, Aug 2014.
|