跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭晉堯
研究生(外文):Cheng, Chin-Yao
論文名稱:基於共振型量子非線性光學之量子轉頻研究
論文名稱(外文):Quantum Frequency Conversion Based on Resonant-Type Quantum Nonlinear Optics
指導教授:陳泳帆
指導教授(外文):Chen, Yong-Fan
口試委員:李瑞光余怡德張為民陳應誠
口試委員(外文):Lee, Ray-KuangYu, Ite A.Zhang, Wei-MinChen, Ying-Cheng
口試日期:2021-11-05
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:252
中文關鍵詞:量子轉頻器電磁波引發透明反向四波混頻波函數預測保真度預測
外文關鍵詞:quantum frequency conversionelectromagnetically induced transparencybackward four-wave mixingprediction of the wave functionprediction of the fidelity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:554
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
因為傳播速度的優勢與和環境交互作用力較弱的特性,光子,又名飛行位元成
為了量子通訊與量子演算中,科學家致力發展的資訊載體之一。然而,一個由光子
作為資訊載體所構成的量子網路中的各個量子節點(如: 邏輯閘、偵測器、光纖、記
憶體等等) 所響應的頻率,都是不相同的。為了讓所有節點都能在高效率下運行,以
增進運算或通訊的效率,如何實現一個高效率的量子轉頻器成為了全光學量子網路
中一個至關重要的問題。在我的博士論文中,我們提出並實現了一個基於共振量子
非線性光學的高效率量子頻率轉換器。有別於遠離共振型的非線性轉頻過程,這類
型的頻率轉換器利用共振引發的光與材料間的強交互作用力,有效降低了達到高轉
換效率所需要的介質密度與幫浦光強度,因此,這類型轉頻器在高轉換效率的條件
下,不會誘發額外的非線性噪音,這使得這類型的轉頻器具有相當高的保真度。此
外,運用基於電磁波引發透明的四波混頻效應,本應由共振系統所引起的自發輻射
耗損,也能被有效的抑制。結合這兩個特性,使得我們可以在這類型的系統中享受
帶來的強交互作用(低噪音) 的優勢的同時,不需要付出高自發耗損的代價。藉由這
類型的系統,我們就可以完成一個高效率、高保真度的量子頻率轉換器了。在理論
分析上,我們使用一般儲層理論(general reservoir theory) 來研究基於共振四波混頻的
雙Λ 結構量子頻率轉換,根據我們的理論模型,我們發現這類型的系統確實可以藉
由電磁波引發透明來抑制自發輻射的現象。由分析的結果我們發現,當轉換效率接
近100% 的時候,入射頻率與轉換頻率的量子特性是幾乎完全一樣的,也就是保真
度接近1。此外,我們的理論也有給出多頻率模態的分析。根據我們的研究,我們發
現200 奈秒時間寬度的單光子波包可以在光學深度(OD) 300 的條件下,達到92.4%
的轉換效率與對應0.96 的保真度。在實驗上,我們展示了基於電磁波引發透明之反
向四波混頻的實驗結果。結果指出,91.2% 的轉換效率可以在光學深度130 的情況
下以87Rb 的原子完成。我的博士論文主要是在理論與實驗上完成了深入分析一套基
於共振型量子非線性光學且低噪音高轉換效率的量子轉頻器。這個研究提供了未來
一套有潛力被當作高效率量子轉頻器且用來完成量子通訊,與量子運算的實驗方法。
Due to the advantages of fast propagation and weak interaction with the environment, photons or flying qubits have become one of the excellent quantum carriers that scientists are committed to developing in quantum communication and quantum computing. However, in a quantum network connected by photons, the wavelengths of photons applied to various quantum nodes are quite different. To enable all nodes to work under optimal conditions, the realization of efficient quantum frequency conversion (QFC) becomes a key issue in the construction of optical quantum network. In this doctoral dissertation, we propose and demonstrate a high-efficiency QFC based on resonance-type quantum nonlinear optics. This resonant QFC uses a four-wave mixing (FWM) process based on the electromagnetically induced transparency (EIT) mechanism. Unlike far-resonant nonlinear systems, this resonant EIT-based FWM requires a relatively small pump light intensity and medium density. This feature makes the EIT-based QFC not cause additional nonlinear processes and accompanying noise photons, making it have an excellent performance in the fidelity of the quantum state of the converted photons. Furthermore, by leveraging the characteristics of EIT, the spontaneous emission loss, which is the shortage of the resonant system, can be considerably
suppressed. Thus, the EIT-based FWM system allows us to take advantage of the strong interaction strength without paying for the spontaneous emission loss, and a high-fidelity low-loss QFC can be implemented. In the theoretical model, we use the general reservoir theory to study a double-Λ QFC based on a resonant FWM. Due to the effect of EIT, this resonant QFC can considerably suppress vacuum field noise; consequently, the converted photon can inherit the quantum state of the input photon with high fidelity. Our research demonstrates that if the conversion efficiency (CE) of the EIT-based QFC is close to 100%, the wave function and quadrature variance of the converted photon are almost the same as
the input probe photon. In addition, the fidelity in the multi-mode case is also studied in our quantum model. Based on our theoretical calculation, a Fock state single photon with a duration of 200 ns can achieve a CE of 92.4% with a fidelity of 0.96 under an optical depth (OD) of 300. In the experiment, we demonstrate the use of EIT-based double-Λ FWM for efficient frequency conversion, and achieve a CE of 91.2% with an OD of 130 in cold 87Rb atoms. This doctoral dissertation has carried out a detailed research on the low-loss, high-fidelity QFC of resonant-type quantum nonlinear optics from both theoretical and experimental aspects.
The current work provides another promising scheme for the future development of efficient QFC applications in quantum communication, network and computing.
摘要 i
Abstract ii
誌謝 iii
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1. Introduction 1
1.1 Why we need quantum technology 1
1.2 The breakthroughs of technology utilizing quantum mechanics 3
1.3 Why we need the quantum frequency conversion 7
1.4 How to realize the quantum frequency conversion 8
1.5 The arrangement of this thesis 12
Chapter 2. Semi-Classical Model of Electromagnetically Induced Transparency 13
2.1 Optical-Bloch equation and Maxwell-Schr¨odinger equation 14
2.2 Steady-state solution under the first-order perturbation expansion 35
2.3 Autler-Townes splitting (ATS) 40
2.4 Coherent population trapping (CPT) 49
Chapter 3. Semi-Classical Model of Double-Λ Four-Wave Mixing 55
3.1 Balance condition 56
3.2 All-resonance forward four-wave mixing (FFWM) 60
3.3 Detuned forward four-wave mixing (DFFWM) 75
3.4 Spatially-modulated four-wave mixing (SFWM) 81
3.5 Backward four-wave mixing (BFWM) 85
3.6 Phase-mismatch effect in backward four-wave-mixing system 95
Chapter 4. Experimental Detail 98
4.1 Information of Rubidium atom 98
4.2 Preparation of the 87Rb cold-atom cloud 106
4.3 Experimental data of the backward four-wave mixing 126
Chapter 5. Quantum Model of Backward Four-Wave Mixing 137
5.1 Heisenberg-Langevin equation and Maxwell-Schr¨odinger equation 138
5.2 Single-mode case 158
5.3 Multi-mode case 173
5.4 High conversion efficiency band in backward four-wave mixing 182
Chapter 6. Conclusion and Outlook 192
6.1 Conclusion 192
6.2 Outlook 194
References 197
Appendix A. Quantum Dissipation Theorem 207
A.1 Spontaneous emission of two-level system : Weisskopf-Wigner theory 208
A.2 Master equations : density matrix approach 212
A.3 Heisenberg-Langevin equation - Langevin approach 218
A.4 Comparing the master equation to the Heisenberg-Langevin equation: Damping light field problem 223
A.5 Master equation : Two-level system 225
A.6 Heisenberg-Langevin equation : Two-level system 228
Appendix B. Langevin Equation : Classical Fluctuation-Dissipation Theorem 234
B.1 Model-1 : Dissipation process only 235
B.2 Model-2 : Dissipation process accompanied by the noise process 238
Appendix C. Briefly Introduce of the Continuous Wave Packet 242
C.1 Expression of the fock state pulses 243
C.2 Expression of the Coherent State Pulses 249
Appendix D. Another Useful Description for the Light Pulse 251
[1] Gunter Ludwig. Wave mechanics. Pergamon Press, 1968.
[2] Hugh Everett. ”relative state” formulation of quantum mechanics. Rev. Mod. Phys., 29:454–462, Jul 1957.
[3] David Bohm. A suggested interpretation of the quantum theory in terms of ”hidden'' variables. i. Phys. Rev., 85:166–179, Jan 1952.
[4] Satosi Watanabe. Symmetry of physical laws. part iii. prediction and retrodiction. Rev. Mod. Phys., 27:179–186, Apr 1955.
[5] Ramamurti Shankar. Chpater 4 - Principles of quantum mechanics. Springer, 2014.
[6] H. P. Robertson. The uncertainty principle. Phys. Rev., 34:163–164, Jul 1929.
[7] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777–780, May 1935.
[8] Hermann Haken. Laser theory. Springer, Berlin, corr. pr edition, 1984.
[9] Karlheinz Seeger. Semiconductor Physics. Springer Vienna, Vienna, 1973.
[10] S. D. Brotherton. Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer International Publishing Springer e-books Imprint: Springer, Heidelberg, 2013.
[11] Mansoor Niaz, Stephen Klassen, Barbara McMillan, and Don Metz. Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94(5):903–931, 2010.
[12] R. Wiesendanger and H.-J. Güntherodt, editors. Scanning tunneling microscopy III: theory of STM and related scanning probe methods. Number 29 in Springer series in surface sciences. Springer, Berlin ; New York, 2nd ed edition, 1996.
[13] Kishore V. Chellappan, Erdem Erden, and Hakan Urey. Laser-based displays: a review. Appl. Opt., 49(25):F79–F98, Sep 2010.
[14] Geoffrey Duxbury, Nigel Langford, Kenneth Hay, and Nicola Tasinato. Quantum cascade laser spectroscopy: diagnostics to non-linear optics. Journal of Modern Optics, 56(18-19):2034–2048, 2009.
[15] Franck Vidal and Abderrahmane Tadjeddine. Sum-frequency generation spectroscopy of interfaces. Reports on Progress in Physics, 68(5):1095–1127, mar 2005.
[16] Inder P. Batra, N. García, H. Rohrer, H. Salemink, E. Stoll, and S. Ciraci. A study
of graphite surface with stm and electronic structure calculations. Surface Science,
181(1):126–138, 1987. 197
[17] Christopher E.D. Chidsey, Dominic N. Loiacono, Tycho Sleator, and Sho Nakahara. Stm study of the surface morphology of gold on mica. Surface Science, 200(1):45–66, 1988.
[18] Jitender S. Deogun and George Steiner. Polynomial algorithms for hamiltonian cycle in cocomparability graphs. SIAM Journal on Computing, 23(3):520–552, 1994.
[19] Fabio L. Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(2):023107, 2017.
[20] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms, volume 2 of Springer Series in Information Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981.
[21] Douglas R. Stinson and Maura B. Paterson. Cryptography: theory and practice. CRC Press, Taylor & Francis Group, Boca Raton, fourth edition edition, 2019.
[22] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560:7–11, December 2014.
[23] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography. Rev. Mod. Phys., 74:145–195, Mar 2002.
[24] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, October 1982.
[25] Roy J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130:2529–2539, Jun 1963.
[26] Roman Schnabel. Squeezed states of light and their applications in laser interferometers. Physics Reports, 684:1–51, 2017. Squeezed states of light and their applications in laser interferometers.
[27] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys, 7:962–965, 2011. Squeezed states of light and their applications in laser interferometers.
[28] Ling-An Wu, H. J. Kimble, J. L. Hall, and Huifa Wu. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57:2520–2523, Nov 1986.
[29] M. D. Reid and D. F. Walls. Generation of squeezed states via degenerate four-wave mixing. Phys. Rev. A, 31:1622–1635, Mar 1985.
[30] G. Mauro D’Ariano, Paoloplacido Lo Presti, and Matteo G. A. Paris. Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett., 87:270404, Dec 2001.
[31] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik.
Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proceedings of the National Academy of Sciences, 106(27):10960– 10965, 2009. 198
[32] Christopher Ferrie and Joshua Combes. How the result of a single coin toss can turn out to be 100 heads. Phys. Rev. Lett., 113:120404, Sep 2014.
[33] Feizpour A. Dmochowski G. et al Hallaji, M. Weak-value amplification of the nonlinear effect of a single photon. Nature Phys, 13:540–544, 2017.
[34] Amir Feizpour, Xingxing Xing, and Aephraim M. Steinberg. Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett., 107:133603, Sep
2011.
[35] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, Cambridge ; New York, 10th anniversary ed edition, 2010.
[36] David Deutsch and Richard Jozsa. Rapid Solution of Problems by Quantum Computation. Proceedings of the Royal Society of London Series A, 439(1907):553–558, December 1992.
[37] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.
[38] Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O’Brien. Shor’s quantum factoring algorithm on a photonic chip. Science, 325(5945):1221–1221, 2009.
[39] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, pages 212–219, Philadelphia, Pennsylvania, United States, 1996. ACM Press.
[40] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79:325–328, Jul 1997.
[41] P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White. Grover’s search
algorithm: An optical approach. Journal of Modern Optics, 47(2-3):257–266, 2000.
[42] A. Trabesinger. Quantum simulation. Nature Phys, 8:263, 2012.
[43] Sanders B. Lvovsky, A. and W. Tittel. Optical quantum memory. Nature Photon,
3:706–714, December 2009.
[44] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao Hung, Chih-Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, Ite A. Yu, and Ying-Cheng Chen.
Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett., 120:183602, May 2018.
[45] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15(24):1476–1478, Dec 1990.
[46] Chin-Yao Cheng, Zi-Yu Liu, Pi-Sheng Hu, Tsai-Ni Wang, Chung-Yu Chien, Jia-Kang Lin, Jz-Yuan Juo, Jiun-Shiuan Shiu, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan
Chen. Efficient frequency conversion based on resonant four-wave mixing. Opt. Lett., 46(3):681–684, Feb 2021. 199
[47] H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett., 105:093604, Aug 2010.
[48] Shengwang Du, Pavel Kolchin, Chinmay Belthangady, G. Y. Yin, and S. E. Harris.
Subnatural linewidth biphotons with controllable temporal length. Phys. Rev. Lett.,
100:183603, May 2008.
[49] Chia-Yu Hsu, Yu-Sheng Wang, Jia-Mou Chen, Fu-Chen Huang, Yi-Ting Ke,
Emily Kay Huang, Weilun Hung, Kai-Lin Chao, Shih-Si Hsiao, Yi-Hsin Chen, Chih-
Sung Chuu, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu. Generation of sub-mhz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme. Opt. Express, 29(3):4632–4644, Feb 2021.
[50] Robert H. Hadfield. Single-photon detectors for optical quantum information applications. Nature Photon, 3:696–705, December 2009.
[51] Kao-Fang Chang, Ta-Pang Wang, Chun-Yi Chen, Yi-Hsin Chen, Yu-Sheng Wang, Yong-Fan Chen, Ying-Cheng Chen, and Ite A. Yu. Low-loss high-fidelity frequency beam splitter with tunable split ratio based on electromagnetically induced transparency. Phys. Rev. Research, 3:013096, Jan 2021.
[52] Shamsolah Salemian and Shahram Mohammadnejad. Quantum hadamard gate implementation using planar lightwave circuit and photonic crystal structures.
[53] Zi-Yu Liu, Yi-Hsin Chen, Yen-Chun Chen, Hsiang-Yu Lo, Pin-Ju Tsai, Ite A. Yu, Ying- Cheng Chen, and Yong-Fan Chen. Large cross-phase modulations at the few-photon level. Phys. Rev. Lett., 117:203601, Nov 2016.
[54] Pieter Kok and Brendon W. Lovett. Introduction to optical quantum information processing. Cambridge University Press, Cambridge ; New York, 2010. OCLC: ocn496958911.
[55] H. J. Kimble. The quantum internet. Nature, 453(7198):1023–1030, June 2008.
[56] Boris Albrecht, Pau Farrera, Georg Heinze, Matteo Cristiani, and Hugues de Riedmatten. Controlled rephasing of single collective spin excitations in a cold atomic quantum memory. Phys. Rev. Lett., 115:160501, Oct 2015.
[57] Lukas Heller, Pau Farrera, Georg Heinze, and Hugues de Riedmatten. Cold-atom temporally multiplexed quantum memory with cavity-enhanced noise suppression. Phys. Rev. Lett., 124:210504, May 2020.
[58] Moustafa Abdel Hafiz, Grégoire Coget, Michael Petersen, Cyrus Rocher, Stéphane Guérandel, Thomas Zanon-Willette, Emeric de Clercq, and Rodolphe Boudot. Toward a high-stability coherent population trapping cs vapor-cell atomic clock using autobalanced ramsey spectroscopy. Phys. Rev. Applied, 9:064002, Jun 2018.
[59] Zugenmaier M. Petersen J. et al Borregaard, J. Scalable photonic network architecture based on motional averaging in room temperature gas. Nat Commun, 7:11356, April 2016. 200
[60] Cyril Laplane, Pierre Jobez, Jean Etesse, Nicolas Gisin, and Mikael Afzelius. Multimode and long-lived quantum correlations between photons and spins in a crystal. Phys. Rev. Lett., 118:210501, May 2017.
[61] Kutlu Kutluer, Margherita Mazzera, and Hugues de Riedmatten. Solid-state source of nonclassical photon pairs with embedded multimode quantum memory. Phys. Rev. Lett., 118:210502, May 2017.
[62] Bernien H. Dréau A. et al Hensen, B. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526:682–686, September 2015.
[63] K. Nagayama, T. Saitoh, M. Kakui, K. Kawasaki, M. Matsui, H. Takamizawa,
H. Miyaki, Y. Ooga, I. Tsuchiya, and Y. Chigusa. Ultra low loss (0.151 db/km) fiber
and its impact on submarine transmission systems. In Optical Fiber communications Conference, page FA10. Optical Society of America, 2002.
[64] Toshiki Kobayashi, Daisuke Yamazaki, Kenichiro Matsuki, Rikizo Ikuta, Shigehito
Miki, Taro Yamashita, Hirotaka Terai, Takashi Yamamoto, Masato Koashi, and
Nobuyuki Imoto. Mach-zehnder interferometer using frequency-domain beamsplitter. Opt. Express, 25(10):12052–12060, May 2017.
[65] D.N. Makarov. Theory of a frequency-dependent beam splitter in the form of coupled waveguides. Sci Rep, 11:5014, March 2021.
[66] Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues de Riedmatten. Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom c-band. Optica, 5(5):507–513, May 2018.
[67] J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and
M. M. Fejer. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express, 19(22):21445–21456, Oct 2011.
[68] J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer. Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters. Opt. Lett., 35(16):2804–2806, Aug 2010.
[69] Xavier Fernandez-Gonzalvo, Giacomo Corrielli, Boris Albrecht, Marcel.li Grimau, Matteo Cristiani, and Hugues de Riedmatten. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. Opt. Express, 21(17):19473–19487, Aug 2013.
[70] Marius A. Albota and Franco N. C. Wong. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt. Lett., 29(13):1449–1451, Jul 2004.
[71] Aiko Samblowski, Christina E. Vollmer, Christoph Baune, Jaromír Fiurášek, and Roman Schnabel. Weak-signal conversion from 1550 to 532 nm with 84% efficiency. Opt. Lett., 39(10):2979–2981, May 2014.
[72] Carsten Langrock, Eleni Diamanti, Rostislav V. Roussev, Yoshihisa Yamamoto, M. M. Fejer, and Hiroki Takesue. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled linbo3 waveguides. Opt. Lett., 30(13):1725–1727, Jul 2005.
201
[73] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden. A photonic quantum information interface. Nature, 437(7055):116–120, September 2005.
[74] Qing Li, Marcelo Davanço, and Kartik Srinivasan. Efficient and low-noise singlephoton- level frequency conversion interfaces using silicon nanophotonics. Nature Photonics, 10(6):406–414, June 2016.
[75] Mikkel Heuck, Jacob Gade Koefoed, Jesper Bjerge Christensen, Yunhong Ding,
Lars Hagedorn Frandsen, Karsten Rottwitt, and Leif Katsuo Oxenløwe. Unidirectional frequency conversion in microring resonators for on-chip frequency-multiplexed single-photon sources. New Journal of Physics, 21(3):033037, mar 2019.
[76] A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic. Demonstration of low-noise frequency conversion by bragg scattering in a fiber. Opt. Express, 14(20):8989–8994, Oct 2006.
[77] Stéphane Clemmen, Alessandro Farsi, Sven Ramelow, and Alexander L. Gaeta. Ramsey interference with single photons. Phys. Rev. Lett., 117:223601, Nov 2016.
[78] Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider,
Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, and
Kartik Srinivasan. Quantum frequency conversion of a quantum dot single-photon
source on a nanophotonic chip. Optica, 6(5):563–569, May 2019.
[79] Xiang Guo, Chang-Ling Zou, Hojoong Jung, and Hong X. Tang. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett., 117:123902, Sep 2016.
[80] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and
T. A. B. Kennedy. A quantum memory with telecom-wavelength conversion. Nature
Physics, 6(11):894–899, November 2010.
[81] Chin-Yao Cheng, Jia-Juan Lee, Zi-Yu Liu, Jiun-Shiuan Shiu, and Yong-Fan Chen.
Quantum frequency conversion based on resonant four-wave mixing. Phys. Rev. A,
103:023711, Feb 2021.
[82] K.-J. Boller, A. Imamoğlu, and S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66:2593–2596, May 1991.
[83] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64:1107–1110, Mar 1990.
[84] A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra. Electromagnetically induced transparency in an open v-type molecular system. Phys. Rev. A, 83:063419, Jun 2011.
[85] Julio Gea-Banacloche, Yong-qing Li, Shao-zheng Jin, and Min Xiao. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A, 51:576–584, Jan 1995.
[86] S. H. Autler and C. H. Townes. Stark effect in rapidly varying fields. Phys. Rev.,
100:703–722, Oct 1955. 202
[87] Hai-Chao Li, Guo-Qin Ge, and Hai-Yang Zhang. Dressed-state realization of the transition from electromagnetically induced transparency to autler-townes splitting in superconducting circuits. Opt. Express, 23(8):9844–9851, Apr 2015.
[88] Hai-Chao Li, Guo-Qin Ge, and M. Suhail Zubairy. Efficient nonlinear frequency mixing using autler-townes splitting. Phys. Rev. A, 102:053701, Nov 2020.
[89] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124:1866–1878, Dec 1961.
[90] Petr M. Anisimov, Jonathan P. Dowling, and Barry C. Sanders. Objectively discerning autler-townes splitting from electromagnetically induced transparency. Phys. Rev. Lett., 107:163604, Oct 2011.
[91] Yan-Cheng Wei, Bo-Han Wu, Ya-Fen Hsiao, Pin-Ju Tsai, and Ying-Cheng Chen.
Broadband coherent optical memory based on electromagnetically induced transparency. Phys. Rev. A, 102:063720, Dec 2020.
[92] Yu-Chih Tseng, Yan-Cheng Wei, and Ying-Cheng Chen. Efficient quantum memory for heralded single photons generated by cavity-enhanced spontaneous parametric downconversion, 2020.
[93] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84:5094–5097, May 2000.
[94] You-Lin Chuang, Ite A. Yu, and Ray-Kuang Lee. Quantum theory for pulse propagation in electromagnetically-induced-transparency media beyond the adiabatic approximation. Phys. Rev. A, 91:063818, Jun 2015.
[95] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols. An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour. Il Nuovo Cimento B Series 11, 36(1):5–20, November 1976.
[96] G. Orriols. Nonabsorption resonances by nonlinear coherent effects in a three-level system. Il Nuovo Cimento B Series 11, 53(1):1–24, September 1979.
[97] H. R. Gray, R. M. Whitley, and C. R. Stroud. Coherent trapping of atomic populations. Optics Letters, 3(6):218, December 1978.
[98] J. Vanier. Atomic clocks based on coherent population trapping: a review. Applied Physics B, 81(4):421–442, August 2005.
[99] Chin-Yuan Lee, Bo-Han Wu, Gang Wang, Yong-Fang Chen, Ying-Cheng Chen, and Ite A. Yu. High conversion efficiency in resonant four-wave mixing processes. Opt. Express, 24(2):1008–1016, Jan 2016.
[100] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu. Resonant four-wave mixing with slow light. Phys. Rev. A, 70:061804, Dec 2004.
[101] M. G. Payne and L. Deng. Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing. Phys. Rev. A, 65:063806, Jun 2002. 203
[102] Chang-Kai Chiu, Yi-Hsin Chen, Yen-Chun Chen, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Low-light-level four-wave mixing by quantum interference. Phys. Rev. A, 89:023839, Feb 2014.
[103] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan
Chen. Demonstration of spatial-light-modulation-based four-wave mixing in cold
atoms. Phys. Rev. A, 97:053815, May 2018.
[104] Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu. Backward fourwave mixing in a four-level medium with electromagnetically induced transparency. J. Opt. Soc. Am. B, 23(4):718–722, Apr 2006.
[105] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng, and Yong-Fan Chen. High-efficiency backward four-wave mixing by quantum interference. Scientific Reports, 7(1):15796, December 2017.
[106] Robert W. Boyd. Chapter 1 - the nonlinear optical susceptibility. In Robert W. Boyd, editor, Nonlinear Optics, pages 1–55. Academic Press, San Diego, 1992.
[107] Zijian Cui, Dean Liu, Meizhi Sun, Jie Miao, and Jianqiang Zhu. Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems. J. Opt. Soc. Am. B, 33(4):525–534, Apr 2016.
[108] Pierre-Marc Dansette, Maksim Eremchev, and Andrejus Michailovas. Continuous compensation of the phase mismatch by using temperature gradients for second harmonic generation. Optics Communications, 484:126687, 2021.
[109] Takashi Nakajima and Kenzo Miyazaki. Spectrally compensated third harmonic generation using angular dispersers. Optics Communications, 163(4):217–222, 1999.
[110] Deanna Marie Pennington, Mark A. Henesian, David Milam, and David Eimerl. Efficient broadband third-harmonic frequency conversion via angular dispersion. In
Michel Andre and Howard T. Powell, editors, Solid State Lasers for Application to
Inertial Confinement Fusion (ICF), volume 2633, pages 645 – 654. International Society for Optics and Photonics, SPIE, 1995.
[111] Daniel A. Steck. Rubidium 87 d line data, 2001.
[112] Jean Sansonetti. Wavelengths, transition probabilities and energy levels for the spectra of rubidium (rb i through rb xxxvii), 1970.
[113] J. Vanier and C. Audoin. The Quantum Physics of Atomic Frequency Standards, volume 2. Adam Hilger, Philadelphia, 1989.
[114] Yu-Wei Zheng. Setup and optimization of rubidium magneto-optical trap, Master’s thesis, National Cheng Kung University, 2009.
[115] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of
neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59:2631–2634, Dec
1987.
[116] Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of optically trapped atoms. Phys. Rev. Lett., 57:314–317, Jul 1986. 204
[117] William D. Phillips. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70:721–741, Jul 1998.
[118] Cheng-Wei Chien. Electromagnetically induced transparency in dark spontaneousforce optical trap, Master’s thesis, National Cheng Kung University, 2011.
[119] Bo-Sheng Yang. Electromegnetically induced transparency in a single zeeman sublevel, Master’s thesis, National Cheng Kung University, 2014.
[120] Mark Fox. Quantum optics: an introduction. Oxford master series in atomic, optical, and laser physics. Oxford Univ. Press, Oxford, 2006.
[121] Wolfgang Demtröder. Laser Spectroscopy. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.
[122] Geol Moon and Heung-Ryoul Noh. Linewidth in saturated absorption spectroscopy for two-level atoms: an empirical formula. Appl. Opt., 57(14):3881–3883, May 2018.
[123] Martyn D. Wheeler, Stuart M. Newman, Andrew J. Orr-Ewing, and Michael N. R. Ashfold. Cavity ring-down spectroscopy. Journal of the Chemical Society, Faraday Transactions, 94(3):337–351, 1998.
[124] R. Lang. Injection locking properties of a semiconductor laser. IEEE Journal of
Quantum Electronics, 18(6):976–983, 1982.
[125] Chang-Kai Chui. Studies on eit-based four-wave mixing at low-light levels, Master’s thesis, National Cheng Kung University, 2013.
[126] Chen-Hsuan Fang. Studies on oscillation behavior of eit-based light storage and retrival, Master’s thesis, National Cheng Kung University, 2013.
[127] David J. Griffiths. Section 4.4 - Introduction to quantum mechanics. 2nd ed. Pearson Prentice Hall, 2005.
[128] Pi-Sheng Hu. Highly efficient optical wavelength converter based on electromagnetically induced transparency, Master’s thesis, National Cheng Kung University, 2018.
[129] Jian-Ting Xiao. High-efficiency backward resonant four-wave mixing by quantum interference, Master’s thesis, National Cheng Kung University, 2017.
[130] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E. Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett., 70:2253–2256, Apr 1993.
[131] Danielle A. Braje, Vlatko Balić, G. Y. Yin, and S. E. Harris. Low-light-level nonlinear optics with slow light. Phys. Rev. A, 68:041801, Oct 2003.
[132] Hoonsoo Kang and Yifu Zhu. Observation of large kerr nonlinearity at low light intensities. Phys. Rev. Lett., 91:093601, Aug 2003.
[133] Yong-Fan Chen, Zen-Hsiang Tsai, Yu-Chen Liu, and Ite A. Yu. Low-light-level photon switching by quantum interference. Opt. Lett., 30(23):3207–3209, Dec 2005.
205
[134] Nikolai Lauk, Christopher O’Brien, and Michael Fleischhauer. Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing. Phys. Rev. A, 88:013823, Jul 2013.
[135] Pavel Kolchin. Electromagnetically-induced-transparency-based paired photon generation. Phys. Rev. A, 75:033814, Mar 2007.
[136] You-Lin Chuang, Ray-Kuang Lee, and Ite A. Yu. Generation of quantum entanglement based on electromagnetically induced transparency media. Opt. Express, 29(3):3928– 3942, Feb 2021.
[137] Xihua Yang and Min Xiao. Electromagnetically Induced Entanglement. Scientific Reports, 5(1):13609, October 2015.
[138] You-Lin Chuang and Ray-Kuang Lee. Conditions to preserve quantum entanglement of quadrature fluctuation fields in electromagnetically induced transparency media. Optics Letters, 34(10):1537, May 2009.
[139] Amitabh Joshi and Min Xiao. Generalized dark-state polaritons for photon memory in multilevel atomic media. Phys. Rev. A, 71:041801, Apr 2005.
[140] Luwei Zhao, Yumian Su, and Shengwang Du. Narrowband biphoton generation in the group delay regime. Phys. Rev. A, 93:033815, Mar 2016.
[141] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich. Quantum telecommunication based on atomic cascade transitions. Phys. Rev. Lett., 96:093604, Mar 2006.
[142] Marlan O. Scully and Muhammad Suhail Zubairy. Quantum optics. Cambridge University Press, Cambridge ; New York, 1997.
[143] John C. Garrison and Raymond Y. Chiao. Quantum optics / J.C. Garrison and R.Y. Chiao. Oxford University Press Oxford ; New York, 2008.
[144] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, 2019.
[145] William H. Louisell. Quantum statistical properties of radiation. Wiley, New York, 1973.
[146] Agata M. Brańczyk. Hong-ou-mandel interference, 2017.
[147] Markus Rambach, Aleksandrina Nikolova, Till J. Weinhold, and Andrew G. White. Sub-megahertz linewidth single photon source. APL Photonics, 1(9):096101, 2016.
[148] Jianji Liu, Jiachen Liu, Ping Yu, and Guoquan Zhang. Sub-megahertz narrowband photon pairs at 606 nm for solid-state quantum memories. APL Photonics, 5(6):066105, 2020.
[149] Luwei Zhao, Xianxin Guo, Chang Liu, Yuan Sun, M. M. T. Loy, and Shengwang Du. Photon pairs with coherence time exceeding 1 ; ;μ;s. Optica, 1(2):84–88, Aug 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top