跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鈺涵
研究生(外文):Huang, Yu-Han
論文名稱:以立方觀點探討擴增實境與地理資訊結合之設計策略
論文名稱(外文):A Cube Perspective Towards the Design Strategies for Integrating Augmented Reality and Geographic Information
指導教授:洪榮宏洪榮宏引用關係
指導教授(外文):Hong, Jung-Hong
口試委員:蔡博文徐百輝
口試日期:2022-08-15
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:202
中文關鍵詞:擴增實境三維空間資訊立方觀點
外文關鍵詞:Augmented Reality3D spatial informationCube perspective
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
擴增實境(Augmented Reality, AR)透過特定技術之組合,在實景之基礎上額外整合呈現用戶需求之虛擬資訊內容,以在真實環境之合適位置提供虛實融合之註解或展示效果,進而達到直觀與簡化之人機操作介面。虛實內容能夠準確結合展示之關鍵取決於擴增實境系統對真實環境之掌握程度,而三維地理資訊系統(Three-Dimensional Geographic Information System, 3D GIS)基於三維空間位置及物件化觀點,記錄了大量空間現象之資訊內容,所記錄之內容將能透過空間位置因素與AR介面進行整合,一方面豐富AR介面中基於真實現象設計之多元資訊,另一方面則為3D GIS提供創新之視覺化展示可能性,進而使空間資訊躍然於現實環境之中,創造嶄新之運作模式。AR系統之運作將涉及不同之技術及資訊類型,每種可能之組合型態都將會影響應用之特性及建置過程之複雜度,在額外考量與空間資訊整合之因素後,更考驗如何發展有效之設計策略。有鑒於擴增實境及空間資訊整合之討論大多仍侷限於應用導向之特定案例,本研究主要著重於探討AR之基本組成及應用特性,透過系統化之分析架構探討AR 與GIS整合之可能應用及設計策略。
本研究首先基於文獻回顧之討論,自AR之基本組成要素觀點切入,將完整的 AR 體驗定義為實體空間、虛擬內容和用戶等三個要素的組合,並藉由不同之追蹤(Tracking)對象、渲染(Rendering)效果及互動(Interacting)模式,分析這三個要素之間的關係,形成三軸之立方(Cube)設計觀點,並組合為27個獨特之元素(Element),進而介定實現各元素需要滿足的條件,包括技術需求、軟硬體成本、資料建置品質、專業技術能力、互動模式及應用限制等考量。本研究更基於各元素運作條件之分析及空間資訊實務運作之考量,進一步將立方中之元素歸結為具有相似特性之群組,並設計一系列對應之決策問題,提供AR及GIS整合應用開發之設計決策參考依據,進而簡化應用系統建置與發展之過程。此外,為提供後續實際建置應用之參考,本研究亦基於Web AR技術彙整相關之軟體工具,對應於前述之立方分析架構,並根據前述提出之設計決策問題,實際建置與測試可能之服務介面,突顯兩領域結合可帶來之影響。總結而言,面對AR系統之設計,本研究嘗試以立方觀點勾勒出AR應用之多元面向,進而將特定之面向歸結為滿足特定空間資訊應用之群組,在設計應用前可透過回答特定問題協助篩選出合適之元素群組,判斷所需滿足之建置條件,善用GIS多元資訊之優勢,引導AR及GIS結合之應用設計過程,創造直觀且智慧之三維輔助和決策環境。
Through combining specific technologies and integrating virtual content and real scene on the display devices, Augmented Reality (AR) can provide annotations or effects at appropriate locations in the visual environment to enable the development of an intuitive and simplified human-machine interface. The design strategies of AR system for virtual and real content will depend on the degree that AR system tracks the real environment. On the other hand, the Three-Dimensional Geographic Information System (3D GIS) records a large amount of information about spatial phenomena, which can be integrated with the AR interface from the location and content perspective. In this way, the various types of information of real-world phenomena presented in the AR interface can be enriched, and the use of 3D GIS can be also expanded. In other words, AR can be regarded as a brand-new visualization method which can jump up GIS data into real world and fully integrated in human lives. Dependent on the intended applications, the aforementioned operation modes will involve different types of technologies of AR and different demands of information. Each possible combination type will affect the characteristics of the applications and the complexity of the developing processes. After considering the factors of integration with spatial information, the strategic analysis for the application operation and establishment will be even more complex. However, most of the discussions about the integration of GIS and AR so far are still focusing on some successful application-oriented cases. A comprehensive set of design strategies for AR systems that considers how 3D GIS is used is yet to be developed. Therefore, this study mainly focuses on the analysis of composition and application characteristics of AR in order to develop a more systematic strategy for the integration of AR and GIS.
Based on the literature review, this study starts from the perspective of the basic elements of AR. AR is defined as the combination of three major components which form a complete AR experience, including reality, virtual content and user. The relationship between these elements can be further analyzed from three major perspectives, namely, tracking targets, rendering effects and interacting modes. This research proposed to use a three-axis cube to model these three perspectives, which includes 27 unique elements. Each element represents an unique combination of requirements determined from the three chosen perspectives, such as technical requirements, software and hardware costs, data quality, professional skills, interaction modes, limitation and so on. After analyzing the distinguished characteristics of each element, we further categorize the elements into groups with similar characteristics based on the consideration of requirements analysis and practical operation of geospatial information, and propose a series of questions to guide the developers for designing AR/GIS systems that appropriately meet their demands. In order to provide a technical reference for application development, this research examines related Web-AR software tools and link their uses with the elements in the cube. Finally, we use chosen application examples to demonstrate how their requirements can be readily implemented with the aforementioned design decision-making questions, and to show the benefit of integration of GIS and AR. In summary, this study successfully explores the multiple aspects of AR applications and how 3D GIS can be integrated with AR by the proposed cube design perspective, and then summarizes the cube elements into specific groups that meet different spatial information applications. Before developing AR systems, answering specific decision-making questions can help to select suitable groups of elements and to determine the data and technical requirements for the intended applications. Based on the proposed cube, we look forward to providing design references for the AR/GIS application development, and creating a smart three-dimensional assistance and intuitive decision-making environment.
摘要 I
誌謝 X
目錄 XII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1.1 研究背景 1
1.2 研究目標 5
1.3 研究流程 7
1.4 論文架構 9
1.5 先期研究 10
第二章 文獻回顧 11
2.1 擴增實境之發展、特性及應用 11
2.1.1 實境體驗之發展 11
2.1.2 擴增實境發展 17
2.1.3 擴增實境特性及應用 20
2.2 三維空間資訊及其視覺化內容 33
2.2.1 三維空間資訊特色 33
2.2.2 三維空間資訊視覺化展示內容 36
2.3 擴增實境與三維空間資訊結合之應用案例 39
2.3.1 無空間概念引入 40
2.3.2 引入空間因素 42
2.3.3 應用趨勢 50
2.4 不同觀點之擴增實境分類方法 52
2.4.1 技術觀點之擴增實境環境構建 52
2.4.2 展示觀點之擴增實境環境體驗 53
2.4.3 結合擴增實境之技術及展示觀點 53
第三章 擴增實境設計立方體架構 56
3.1 擴增實境體驗之特性分析 56
3.1.1 擴增實境基本要素 57
3.1.2 擴增實境基本要素間之關係 59
3.1.3 擴增實境應用型態 62
3.2 擴增實境立方設計觀點 65
3.2.1 追蹤(Tracking)對象 65
3.2.2 渲染(Rendering)效果 71
3.2.3 互動(Interacting)模式 75
3.3 立方體元素之應用特性分析 79
3.3.1 無需掌握實體條件之九元素 81
3.3.2 基於特徵之九元素 84
3.3.3 基於定位之九元素 87
3.3.4 擴增實境各特性組合應用型態之歸納 90
第四章 擴增實境之運作需求及設計策略 92
4.1 技術面設計需求 93
4.1.1 與基本技術及人機互動需求相關之硬體設備 93
4.1.2 與感測及運算處理需求相關之軟體工具 95
4.1.3 技術面之統整 101
4.2 資料面設計需求 102
4.2.1 展示資料類型 102
4.2.2 非用於展示之資料需求 105
4.2.3 資料篩選方式 106
4.2.4 資料面之統整 108
4.3 功能面設計需求 109
4.3.1 視覺化展示 109
4.3.2 主題式服務 109
4.3.3 情境感知服務 109
4.3.4 功能面之統整 110
4.4 基於運作需求及立方中特定面向之討論 111
4.4.1 沿軸向提升 115
4.4.2 面及線分析 116
4.5 面向空間資訊應用之擴增實境設計策略 127
4.5.1 基於空間相關度之分群 127
4.5.2 擴增實境視覺化技術選擇及設計 131
第五章 基於立方設計觀點之應用開發及測試 136
5.1 整體開發環境 136
5.1.1 應用環境架構 136
5.1.2 開發工具介紹 137
5.1.3 開發工具及立方設計觀點之對應 142
5.1.4 實作開發說明及基礎測試 149
5.2 空間數據展示與規劃討論之應用場合 160
5.2.1 應用情境之設計說明 160
5.2.2 對應元素之分析 161
5.2.3 建置方法及成果 163
5.3 系館內部簡介及相關活動之應用場合 167
5.3.1 應用情境之設計說明 167
5.3.2 對應元素之分析 169
5.3.3 建置方法及成果 171
5.4 設施管理之應用場合 175
5.4.1 應用情境之設計說明 175
5.4.2 對應元素之分析 178
5.4.3 建置方法及成果 180
5.5 實作之總結討論 186
5.5.1 可能影響內容展示位置誤差之因素 186
5.5.2 實作成果之效益 188
第六章 結論與建議 189
參考文獻 193
Abdul-Rahman, A., & J. E. Drummond. (2000). The implementation of object-oriented TIN-based subsystems for GIS, International Archives of Photogrammetry and Remote Sensing, Vol. 33, No. B4/1; PART 4, pp. 30-37.
Abramovici, M., M. Wolf, S. Adwernat, & M. Neges. (2017). Context-aware Maintenance Support for Augmented Reality Assistance and Synchronous Multi-user Collaboration, Procedia CIRP, Vol. 59, pp. 18-22.
AccuVein. (2013). AV400 Vein Viewing System, retrieved Jul 25, 2022, from https://www.accuvein.com/products/catalog/av400-vein-viewing-system/
Amirebrahimi, S., A. Rajabifard, P. Mendis, & T. Ngo. (2016). A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building, Journal of Spatial Science, Vol. 61, pp. 1-34.
ARtilleryIntelligence. (2021). Mobile AR Global Revenue Forecast, 2021-2026, retrieved Jul 26, 2022, from https://artillry.co/artillry-intelligence/mobile-ar-global-revenue-forecast-2021-2026/
Atyabi, S., M. Kiavarz, & A. Rajabifard. (2019). OPTIMIZATION OF EMERGENCY EVACUATION IN FIRE BUILDING BY INTEGRATED BIM AND GIS, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-4/W18, pp. 131-139.
Azuma, R. T. (1997). A survey of augmented reality, Presence: Teleoperators & Virtual Environments, Vol. 6, No. 4, pp. 355-385.
Behzadan, A. H., & V. R. Kamat. (2007). Georeferenced registration of construction graphics in mobile outdoor augmented reality, Journal of computing in civil engineering, Vol. 21, No. 4, pp. 247-258.
Berryman, D. R. (2012). Augmented Reality: A Review, Medical Reference Services Quarterly, Vol. 31, No. 2, pp. 212-218.
Billinghurst, M., A. Clark, & G. Lee. (2015). A survey of augmented reality.
Bimber, O., & R. Raskar. (2005). Spatial Augmented Reality: Merging Real and Virtual Worlds,(1st edition), A K Peters/CRC Press.
Bishop, I. (2005). Visualization for Participation: The Advantages of Real-Time?, Trends in Real-Time Landscape Visualization and Participation.
Blake, P., & R. Polidoro. (2016). Exclusive: Why Apple CEO Tim Cook Prefers Augmented Reality Over Virtual Reality, retrieved Sep 17, 2021, from https://abcnews.go.com/Technology/exclusive-apple-ceo-tim-cook-prefers-augmented-reality/story?id=42064913
Bloch, T., R. Sacks, & O. Rabinovitch. (2016). Interior models of earthquake damaged buildings for search and rescue, Advanced Engineering Informatics, Vol. 30, pp. 65-76.
Brata, K. C., & D. Liang. (2019). An effective approach to develop location-based augmented reality information support, International Journal of Electrical and Computer Engineering (IJECE), Vol. 9, No. 4.
Breunig, M. (2009). Three-Dimensional GIS and Geological Applications, Encyclopedia of Database Systems, Springer US.
Buyuksalih, I., S. Bayburt, G. Buyuksalih, A. Baskaraca, H. Karim, & A. Rahman. (2017). 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES.
Çöltekin, A., I. Lochhead, M. Madden, S. Christophe, A. Devaux, C. Pettit, . . . N. Hedley. (2020). Extended Reality in Spatial Sciences: A Review of Research Challenges and Future Directions, ISPRS International Journal of Geo-Information, Vol. 9, No. 7, pp. 439.
Carmigniani, J., B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, & M. Ivkovic. (2010). Augmented reality technologies, systems and applications, Multimedia Tools and Applications, Vol. 51, pp. 341-377.
Cashen, D., & E. Robb. (2015). Augmented Reality Human-Machine Interface: Defining Future AR System Technology, SID Symposium Digest of Technical Papers, pp. 23-28.
Caudell, T., & D. Mizell. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes.
Coldewey, D. (2018). GrokStyle’s visual search tech makes it into IKEA’s Place AR app, retrieved Sep 17, 2021, from https://techcrunch.com/2018/03/16/grokstyles-visual-search-tech-makes-it-into-ikeas-place-ar-app/
Croatti, A., M. Gabellini, S. Montagna, & A. Ricci. (2020). On the Integration of Agents and Digital Twins in Healthcare, Journal of Medical Systems, Vol. 44, No. 9, pp. 161.
de Almeida Pereira, G. H., K. Stock, L. Stamato Delazari, & J. A. S. Centeno. (2017). Augmented reality and maps: new possibilities for engaging with geographic data, The Cartographic Journal, Vol. 54, No. 4, pp. 313-321.
de la Losa, A., & B. Cervelle. (1999). 3D Topological modeling and visualisation for 3D GIS, Computers & Graphics, Vol. 23, No. 4, pp. 469-478.
Dell’Unto, N. (2016). Using 3D GIS Platforms to Analyse and Interpret the Past, Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing, Springer International Publishing.
Deng, Y., J. Cheng, & C. Anumba. (2016). A framework for 3D traffic noise mapping using data from BIM and GIS integration, Structure and Infrastructure Engineering, Vol. 12, pp. 1-14.
Devaux, A., C. Hoarau, M. Brédif, & S. Christophe. (2018). 3D URBAN GEOVISUALIZATION: IN SITU AUGMENTED AND MIXED REALITY EXPERIMENTS, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., Vol. IV-4, pp. 41-48.
DiVerdi, S., T. Hollerer, & R. Schreyer, 2004. Level of detail interfaces, Third IEEE and ACM International Symposium on Mixed and Augmented Reality, 5-5 Nov. 2004, pp. 300-301.
Feiner, S., B. Macintyre, & D. Seligmann. (1993a). Knowledge-based augmented reality, Commun. ACM, Vol. 36, No. 7, pp. 53–62.
Feiner, S., B. Macintyre, & D. Seligmann. (1993b). Knowledge-based Augmented Reality for Maintenance Assistance, retrieved Apr 14, 2022, from https://graphics.cs.columbia.edu/projects/karma/karma.html
Fenais, A., S. Ariaratnam, S. Ayer, & N. Smilovsky. (2019). Integrating Geographic Information Systems and Augmented Reality for Mapping Underground Utilities, Infrastructures, Vol. 4, pp. 60.
Fenais, A. S., S. T. Ariaratnam, S. Ayer, & N. Smilovsky. (2020). A review of augmented reality applied to underground construction, Journal of Information Technology in Construction, Vol. 25, pp. 308-324.
Feng, Z., H. B. Duh, & M. Billinghurst, 2008. Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR, 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, Sep15-18, pp. 193-202.
Ghadirian, P., & I. Bishop. (2002). Composition of Augmented Reality and GIS To Visualize Environmental Changes.
GoogleTrends. (2022). AR與MR搜尋熱度的趨勢變化(2017年4月至2022年4月), retrieved 4月15日, 2022, from https://trends.google.com.tw/trends/explore?date=today%205-y&q=%2Fm%2F0lqtr,%2Fm%2F03kyyz
Grasset, R., T. Langlotz, D. Kalkofen, M. Tatzgern, & D. Schmalstieg, 2012. Image-driven view management for augmented reality browsers, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 5-8 Nov. 2012, pp. 177-186.
Grieves, M. (2002). SME Management Forum Completing the Cycle: Using PLM Information in the Sales and Service Functions.
Grieves, M. (2016). Origins of the Digital Twin Concept.
Grubert, J., T. Langlotz, S. Zollmann, & H. Regenbrecht. (2016). Towards pervasive augmented reality: Context-awareness in augmented reality, IEEE Transactions on Visualization and Computer Graphics, Vol. 23, No. 6, pp. 1706-1724.
Guo, J., & Z. Lv. (2022). Application of Digital Twins in multiple fields, Multimedia Tools and Applications, Vol. 81, No. 19, pp. 26941-26967.
Hallaway, D., S. Feiner, & T. Höllerer. (2004). Bridging the Gaps: Hybrid Tracking for Adaptive Mobile Augmented Reality, Applied Artificial Intelligence, Vol. 18, pp. 477-500.
Hansen, R., & N. Furness. (2019). Power mobile augmented reality experiences with ArcGIS Runtime, retrieved Sep 17, 2021, from https://www.esri.com/arcgis-blog/products/developers/developers/power-mobile-augmented-reality-experiences-with-arcgis-runtime/
HTC. (2022). hTC Desire 22 pro, retrieved Jul 26, 2022, from https://www.htc.com/tw/smartphones/htc-desire-22-pro/
Huang, W., M. Sun, & S. Li. (2016). A 3D GIS-based interactive registration mechanism for outdoor augmented reality system, Expert Systems with Applications, Vol. 55, pp. 48-58.
Hugues, O., J.-M. Cieutat, & P. Guitton. (2011). GIS and Augmented Reality: State of the Art and Issues, Handbook of Augmented Reality, (1 edition), Springer.
IBM. (2022). What is a digital twin?, retrieved Apr 15, 2022, from https://www.ibm.com/topics/what-is-a-digital-twin
Jet Propulsion Laboratory, N. (2015). NASA, Microsoft Collaborate to Bring Science Fiction to Science Fact, retrieved Jul 24, 2022, from https://www.jpl.nasa.gov/news/nasa-microsoft-collaborate-to-bring-science-fiction-to-science-fact
Johnson, G. (2021). Using Roblox in the Classroom: Teachers Share Advice, retrieved Jul 24, 2022, from https://blog.roblox.com/2021/01/using-roblox-classroom-teachers-share-advice/
Julier, S., Y. Baillot, D. Brown, & M. Lanzagorta. (2002). Information filtering for mobile augmented reality, Computer Graphics and Applications, IEEE, Vol. 22, pp. 12-15.
Kaji, S., H. Kolivand, R. Madani, M. Salehinia, & M. Shafaie. (2018). Augmented reality in smart cities : applications and limitations, Journal of Engineering Technology, Vol. 6, No. 1, pp. 28-45.
Kalkofen, D., E. Veas, S. Zollmann, M. Steinberger, & D. Schmalstieg, 2013. Adaptive ghosted views for Augmented Reality, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 1-4 Oct. 2013, pp. 1-9.
Kim, K., M. Billinghurst, G. Bruder, H. B. Duh, & G. F. Welch. (2018). Revisiting Trends in Augmented Reality Research: A Review of the 2nd Decade of ISMAR (2008–2017), IEEE Transactions on Visualization and Computer Graphics, Vol. 24, No. 11, pp. 2947-2962.
Kim, S.-K., S. J. Kang, Y.-J. Choi, M. H. Choi, & M. Hong. (2017). Augmented-Reality Survey: from Concept to Application, KSII Transactions on Internet and Information Systems, Vol. 11, pp. 982-1004.
Krueger, M. (1975). VIDEOPLACE 1975, retrieved Apr 15, 2022, from https://aboutmyronkrueger.weebly.com/videoplace.html
Kuliga, S. F., T. Thrash, R. C. Dalton, & C. Hölscher. (2015). Virtual reality as an empirical research tool — Exploring user experience in a real building and a corresponding virtual model, Computers, Environment and Urban Systems, Vol. 54, pp. 363-375.
Laidlaw, D. H., W. B. Trumbore, & J. F. Hughes. (1986). Constructive solid geometry for polyhedral objects, Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pp. 161–170.
Levin, S., & M. Zhu. (2020). Metro ARchive, retrieved Jul 25, 2022, from https://www.sammylevin.com/metro-archive-info
Liarokapis, F., I. Greatbatch, D. Mountain, A. Gunesh, V. Brujic-Okretic, & J. Raper, 2005. Mobile augmented reality techniques for geovisualisation, Ninth International Conference on Information Visualisation (IV'05), pp. 745-751.
Liu, X., X. Wang, G. Wright, J. C. P. Cheng, X. Li, & R. Liu. (2017). A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS), ISPRS International Journal of Geo-Information, Vol. 6, No. 2, pp. 53.
Ma, W., X. Hanjiang, X. Dai, X. Zheng, & Y. Zhou. (2018). An Indoor Scene Recognition-Based 3D Registration Mechanism for Real-Time AR-GIS Visualization in Mobile Applications, ISPRS International Journal of Geo-Information, Vol. 7, pp. 112.
Mark, D. M., & A. U. Frank. (1996). Experiential and Formal Models of Geographic Space, Environment and Planning B: Planning and Design, Vol. 23, No. 1, pp. 3-24.
Meta. (2021). Inside Facebook Reality Labs: The next era of human-computer interaction, retrieved from https://tech.fb.com/ar-vr/2021/03/inside-facebook-reality-labs-the-next-era-of-human-computer-interaction/
Milgram, P., & F. Kishino. (1994). A taxonomy of mixed reality visual displays, IEICE TRANSACTIONS on Information and Systems, Vol. 77, No. 12, pp. 1321-1329.
Milgram, P., H. Takemura, A. Utsumi, & F. Kishino. (1995). Augmented reality: a class of displays on the reality-virtuality continuum, SPIE.
Min, S., L. Lei, H. Wei, & R. Xiang, 2012. Interactive registration for Augmented Reality GIS, 2012 international conference on computer vision in remote sensing, pp. 246-251.
Mulloni, A., H. Seichter, & D. Schmalstieg. (2012). Indoor Navigation with Mixed Reality World-in-Miniature Views and Sparse Localization on Mobile Devices.
Musliman, I. A., A. A. Rahman, & M. H. Rashidan. (2015). INTEGRATION OF AUGMENTED REALITY AND GEOGRAPHIC INFORMATION SYSTEM: AN APPROACH FOR ENHANCING CONTEXT AND LOCATION-AWARE LEARNING, Jurnal Teknologi, Vol. 75, No. 4.
Mystakidis, S. (2022). Metaverse, Encyclopedia, Vol. 2, No. 1, pp. 486-497.
Newcombe, R. A., S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, . . . A. Fitzgibbon, 2011. KinectFusion: Real-time dense surface mapping and tracking, 2011 10th IEEE International Symposium on Mixed and Augmented Reality, 26-29 Oct. 2011, pp. 127-136.
Normand, J.-M., M. Servières, & G. Moreau. (2012). A new typology of augmented reality applications, the 3rd Augmented Human International Conference on - AH '12, Megève, France, pp. 1-8.
Nunes, I. L., R. Lucas, M. Simões-Marques, & N. Correia, 2018. Augmented Reality in Support of Disaster Response, International Conference on Applied Human Factors and Ergonomics, Advances in Human Factors and Systems Interaction, Orlando, Florida, USA, pp. 155-167.
OxSight. (2022). See Your World Clearly., retrieved Jul 25, 2022, from https://www.oxsightglobal.com/
Park, J., & B. Yang. (2020). GIS-Enabled Digital Twin System for Sustainable Evaluation of Carbon Emissions: A Case Study of Jeonju City, South Korea, Sustainability, Vol. 12, No. 21, pp. 9186.
Park, S. M., & Y. G. Kim. (2022). A Metaverse: Taxonomy, Components, Applications, and Open Challenges, IEEE Access, Vol. 10, pp. 4209-4251.
Parthasarathy, A. (2016). Virtual Reality: Digital Maya Bazaar.
Perez, S. (2016). Pokémon Go tops Twitter’s daily users, sees more engagement than Facebook, retrieved Jul 27, 2022, from https://techcrunch.com/2016/07/13/pokemon-go-tops-twitters-daily-users-sees-more-engagement-than-facebook/
Pezent, E., M. K. O'Malley, A. Israr, M. Samad, S. Robinson, P. Agarwal, . . . N. Colonnese. (2020). Explorations of Wrist Haptic Feedback for AR/VR Interactions with Tasbi, Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, pp. 1–4.
Pilouk, M., & K. Tempfli, 1994. An object-oriented approach to the Unified Data Structure of DTM and GIS, ISPRS 1994: Vol. 30: part 4, commission IV: proceedings of the symposium mapping and Geographic Information Systems: May 31-June 3 1994, Athens, Georgia, USA/ed. by R. Welch and M. Remillard, pp. 672-679, pp. 672-679.
Reitmayr, G., E. Eade, & T. Drummond, 2005. Localisation and interaction for augmented maps, Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05), pp. 120-129.
Reitmayr, G., & D. Schmalstieg, 2003. Location based applications for mobile augmented reality, Proceedings of the Fourth Australasian user interface conference on User interfaces 2003-Volume 18, pp. 65-73.
Santana, J. M., J. Wendel, A. Trujillo, J. P. Suárez, A. Simons, & A. Koch, 2017. Multimodal Location Based Services—Semantic 3D City Data as Virtual and Augmented Reality, Progress in Location-Based Services 2016, Cham, pp. 329-353.
Sinton, D. F. (1978). The inherent structure of information as a constraint to analysis: mapped thematic data as a case study, Harvard Papers on Geographic Information Systems.
Speicher, M., B. D. Hall, & M. Nebeling, 2019. What is mixed reality?, Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1-15.
Stroud, I. (2006). Boundary representation modelling techniques, Springer Science & Business Media.
Sun, J., S. Mi, P.-o. Olsson, J. Paulsson, & L. Harrie. (2019). Utilizing BIM and GIS for Representation and Visualization of 3D Cadastre, ISPRS International Journal of Geo-Information, Vol. 8, No. 11, pp. 503.
Sutherland, I. E. (1965). The ultimate display.
Sutherland, I. E., 1968. A head-mounted three dimensional display, Proceedings of the December 9-11, 1968, fall joint computer conference, part I, pp. 757-764.
Swatman, R. (2016). Pokémon Go catches five new world records, retrieved Sep 17, 2021, from https://www.guinnessworldrecords.com/news/2016/8/pokemon-go-catches-five-world-records-439327
Thomas, M., B. Klenz, & P. R. Goodwin. (2019). Artificial and Human Intelligence with Digital Twins, IIC Journal of Innovation.
Van Krevelen, D., & R. Poelman. (2010). A survey of augmented reality technologies, applications and limitations, International journal of virtual reality, Vol. 9, No. 2, pp. 1-20.
Veenhof, S., & M. Skwarek. (2010). WeARinMoMA, retrieved Jul 25, 2022, from http://www.sndrv.nl/moma/
Venkatesan, S. (2021). Our New Augmented Reality Feature for Associates has Made Inventory That Plays “Hide & Seek” a Thing of the Past, retrieved Jul 25, 2022, from https://www.linkedin.com/pulse/our-new-augmented-reality-feature-associates-has-made-venkatesan/
Verhulsdonck, T., D. Kneubuhler, I. N. Oiza, I. Sachs, & K. Bhat. (2022). Real Time Facial Animation for Avatars, retrieved Jul 24, 2022, from https://blog.roblox.com/2022/03/real-time-facial-animation-avatars/
Wang, X., M. J. Kim, P. E. D. Love, & S.-C. Kang. (2013). Augmented Reality in built environment: Classification and implications for future research, Automation in Construction, Vol. 32, pp. 1-13.
Wang, X., P. E. D. Love, M. J. Kim, C.-S. Park, C.-P. Sing, & L. Hou. (2013). A conceptual framework for integrating building information modeling with augmented reality, Automation in Construction, Vol. 34, pp. 37-44.
Wikipedia. (2021a). Project Sidekick, retrieved Jul 25, 2022, from https://en.wikipedia.org/wiki/Project_Sidekick
Wikipedia. (2021b). Sensorama, retrieved Jul 24, 2022, from https://en.wikipedia.org/wiki/Sensorama
Wikipedia. (2022a). AutoCAD, retrieved Jul 25, 2022, from https://en.wikipedia.org/wiki/AutoCAD
Wikipedia. (2022b). Blender (software), retrieved Jul 25, 2022, from https://en.wikipedia.org/wiki/Blender_(software)
Wikipedia. (2022c). Metaverse, retrieved Apr 15, 2022, from https://en.wikipedia.org/wiki/Metaverse
Wikipedia. (2022d). SketchUp, retrieved Jul 25, 2022, from https://en.wikipedia.org/wiki/SketchUp
Wu, L., W. Z. Shi, & G. M. Christopher. (2003). Spatial modeling technologies for 3D GIS and 3D GMS, Geography and Geo-Information Science, Vol. 19, pp. 5-11.
Yanbing, W., W. Lixin, S. Wenzhong, & L. Xiaomeng, 2007. On 3D GIS spatial modeling, ISPRS Workshop on Updating Geo-spatial Databases with Imagery & The 5th ISPRS Workshop on DMGISs. ISPRS, pp.
Yang, J., F. Wu, E. Lai, M. Liu, B. Liu, & Y. Zhao. (2021). Analysis of Visualization Technology of 3D Spatial Geographic Information System, Mobile Information Systems, Vol. 2021, pp. 1-9.
Yi-bo, L., K. Shao-peng, Q. Zhi-hua, & Z. Qiong, 2008. Development Actuality and Application of Registration Technology in Augmented Reality, 2008 International Symposium on Computational Intelligence and Design, 17-18 Oct. 2008, pp. 69-74.
Young, E. M., A. H. Memar, P. Agarwal, & N. Colonnese, 2019. Bellowband: A Pneumatic Wristband for Delivering Local Pressure and Vibration, 2019 IEEE World Haptics Conference (WHC), 9-12 July 2019, pp. 55-60.
Zheng, M., & A. G. Campbell, 2019. Location-Based Augmented Reality In-situ Visualization Applied for Agricultural Fieldwork Navigation, 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 10-18 Oct. 2019, pp. 93-97.
伍韶勁, 方敏兒, 羅璧如, 奔子墨, 陳雨橋, 陳艮珊, . . . 曾明輝. (2021). 再見 Letting Go, retrieved Jul 25, 2022, from https://www.artsgodigital.hk/project/letting-go/
吳可久. (2021). 設計智慧圖書館以促進兒童資訊搜尋及樂於其中, 國立公共圖書館.
李貴連, 陳俊宏, & 嚴貞. (2008). 「五感」設計模式之建構初探-以食品類包裝設計為例, 設計研究, No. 8, pp. 156-164.
柯志祥, & 張文德. (2019). 擴增實境使用者操作介面研究-以銀髮族3D試戴系統為例, [A Study of AR User Interface - The 3D Portrait Try-on System for the Elderly as an Example]. 資訊社會研究, No. 36, pp. 151-188.
國家通訊傳播委員會. (2022). 111年行動通信業務客戶統計數, retrieved from https://www.ncc.gov.tw/chinese/news.aspx?site_content_sn=2017.
張郁靂. (2006). 網路數位城市的空間認知界面-視覺性分析. 國立交通大學, 國立交通大學土木工程研究所博士論文. Retrieved from https://140.113.39.130/cgi-bin/gs32/tugsweb.cgi?o=dnctucdr&s=id=%22GT009016821%22.&searchmode=basic
教育部. (2017). 中華民國學科標準分類(第5次修正), 教育部.
莊偉慈. (2018). AR如何影響展覽面貌?以「日本近代洋画大展」為例, 2018年4月515期, retrieved Jul 25, 2022, from https://www.artist-magazine.com/edcontent_d.php?lang=tw&tb=8&id=3612
陳明陽. (2020). AR打造「聽覺超能力」 Facebook Reality Labs造福聽障, retrieved Jul 25, 2022, from https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=130&id=0000598157_qs62a7a64wo2i48oa9xap
黃鈺涵, & 洪榮宏. (2021). 擴增實境技術發展與三維空間資訊整合之框架討論及應用, 第三十九屆測量及空間資訊研討會.
黃鈺涵, & 洪榮宏. (2022a). 面向三維空間資訊應用之擴增實境開發立方設計觀點, 2022台灣地理資訊學會年會暨學術研討會, pp. 156.
黃鈺涵, & 洪榮宏. (2022b). 基於三維空間資訊與擴增實境整合應用開發之立方設計觀點, [A cube design perspective towards the application development based on the integration of gis and ar]. 中國土木水利工程學刊, Vol. 34, No. 3, pp. 201-213.
楊善茹, 黃鈺涵, & 黃得倫. (2021). 三維化公眾參與地理資訊系統. In. 2021國土測繪圖資GIS競賽3D新創應用組專案計畫書.Retrieved from https://easytolearn.tw/gismap/Download/2021/3D/%E4%BD%B3%E4%BD%9C-%E4%B8%89%E7%B6%AD%E5%8C%96%E5%85%AC%E7%9C%BE%E5%8F%83%E8%88%87%E5%9C%B0%E7%90%86%E8%B3%87%E8%A8%8A%E7%B3%BB%E7%B5%B1.pdf
董芷菁. (2021). 空中藝廊, retrieved Jul 25, 2022, from https://www.artsgodigital.hk/project/arts-in-the-air/
臺北市政府工務局新建工程處. (2021). 地下管線圖資知行蹤,AR擴增實境窺面目,道路挖掘不再靠運氣, retrieved Jul 25, 2022, from https://nco.gov.taipei/News_Content.aspx?n=BB8CF6F431E10630&sms=72544237BBE4C5F6&s=BD2E105BF74E447F
盧奕璇. (2021). 結合即時定位與模式化室內空間之應用研究. 國立成功大學, 國立成功大學測量及空間資訊學系碩士論文. Available from http://ir.lib.ncku.edu.tw/handle/987654321/206093
謝尚琳. (2016). 手機感測識別知多少?漫談智慧型手機感測識別技術, retrieved Aug 01, 2022, from https://sites.google.com/site/sunnynfcrfid/Talks/sensors
饒見有. (2007). 空間資訊:地理資訊新紀元–數碼城市, retrieved Jul 25, 2022, from https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=7ea4c8ac-41ac-4b84-abe8-f4c8bdbabdee
電子全文 電子全文(網際網路公開日期:20250914)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top