跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳允中
研究生(外文):Chen, Yun-Chung
論文名稱:改質廢棄木材衍生碳對水中銅離子去除之研究
論文名稱(外文):Modified Carbon Derived from Waste Wood for Copper Ions Removal from Aqueous Solution
指導教授:陳偉聖陳偉聖引用關係
指導教授(外文):Chen, Wei-Sheng
口試委員:向性一王立邦胡紹華陳偉聖
口試日期:2022-07-04
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:120
中文關鍵詞:廢棄木材化學改質廢棄生物質衍生碳吸附銅離子
外文關鍵詞:adsorptionwaste woodsurface modificationcopper ionwaste biomass derived carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著工商業快速的發展與環保意識的抬頭,從廢水中移除有害元素已變成重要的議題,尤其是針對無法降解且具有生物累積性的金屬元素。在眾多含金屬廢水處理的方法中,利用碳材吸附已成為經常性使用的技術之一,此外,由於社會長期依賴線性經濟發展的模式,有許多能製備成碳材的生質廢棄物產生,若能將其應用於金屬廢水的處理,不但能減少生質廢棄物所造成嚴重的空氣和環境的污染還能減少吸附劑製備的成本,達到以廢制廢,永續循環的目標。
本研究選擇廢棄木材作為原料,透過磷酸活化後碳化的方式製備生質活性碳(AC),再將其進行硝酸氧化(OAC)及亞胺基二乙酸接枝(G-OAC)的改質程序,期望能有效提升碳材吸附容量及移除能力。通過 FTIR、SEM、N2等溫吸脫附、元素分析、Boehm滴定和零電荷點進行材料特徵分析,確定官能基嵌入碳材後進行批次和管柱實驗,以評估三種吸附劑從水溶液中去除銅離子的能力。並於後續使用相同方法改質直接碳化之生質碳(BC)、產氣後之殘餘碳(RC)和活化後之殘餘碳(RAC),觀察不同碳吸附劑氧化及接枝後吸附能力的變化。
實驗結果顯示AC、OAC、G-OAC在pH=5時最大吸附容量分別為25.04 mg/g、53.99 mg/g和83.75 mg/g,且在管柱實驗中也發現突破點的時間延後,說明改質有效提升碳吸附劑的吸附能力,並透過等溫吸附模型、動力吸附模型、XPS得知吸附劑主要以化學吸附方式和金屬離子作用。後續將BC、RC、RAC及其改質的碳吸附劑進行吸附實驗,觀察到活化後之吸附劑擁有較佳的吸附容量和移除率,並根據碳材製備方式的不同,氧化程序所增加的含氧官能基會隨種類變化影響吸附劑的吸附能力,而RC雖然為產氣副產物但經過硝酸處理也可以有效提升其吸附容量,另外,在接枝部分觀察到皆之後的氧化殘餘活性碳(G-ORAC)擁有最大吸附容量(88.73mg/g),說明亞胺基二乙酸能有效取代ORAC表面含氧基。
Because of increasing environmental awareness, it is becoming more important to remove harmful elements from water solutions. This study used waste wood as the base material becoming into activated carbon (AC), after that, oxidized with nitric acid (OAC) and grafted with iminodiacetic acid (G-OAC) to improve the adsorption capacity and affinity for metals. The characterization of adsorbents was conducted via FTIR, SEM, N2 adsorption and desorption analysis, elemental analysis, Boehm titration, and point of zero charge (PZC) to prove the modified increasing of the functional groups of the adsorbents. Moreover, batch and column experiments were conducted to evaluate the ability of the three adsorbents to remove copper ions from aqueous solution. In the subsequent, the same method was used to modify the directly carbonized biochar (BC), the residual carbon (RC) after gas production and the activated residual carbon (RAC). The changes in adsorption capacity after oxidation and grafting of different carbon adsorbents were observed.
In batch sorption, the adsorption capacity of AC, OAC and G-OAC was 24.86mg/g, 54.74mg/g and 84.51mg/g at pH 5, respectively. The breakthrough points of copper ions for G-OAC occurred much later than AC in the column experiment. The Langmuir isotherm, pseudo-second-model kinetics modeling and XPS results could better explain copper ions interaction G-OAC with chemical reaction. The significant capacity and reusability of G-OAC displayed high applicability for water treatment. In subsequent, the adsorption experiments were carried out on BC, RC, RAC and their modified carbon adsorbents. The results showed that the types of oxygen-containing functional groups increased on the carbon surface will affect the removal rate for copper ions. After the grafting process, G-ORAC (oxidized activated residual carbon grafted with iminodiacetic acid) had the highest adsorption capacity(88.73mg/g).
中文摘要 I
Abstract II
誌謝 X
目錄 XI
圖目錄 XIV
表目錄 XVII
此研究製備之廢棄生物質衍生碳改質前後代號 XVIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 理論基礎與文獻回顧 4
2.1 金屬汙染及其處理方式 4
2.1.1 金屬汙染來源及其危害 4
2.1.2 金屬廢水處理方式 5
2.2 生質廢棄物再生與應用 8
2.3 廢棄木材介紹 12
2.5 碳材改質方式 17
2.6 吸附理論 21
2.6.1 吸附原理 21
2.6.2 等溫吸附曲線 24
2.6.3 等溫吸附模式 26
2.6.4 動力吸附模式 27
2.6.5 吸附機制 28
2.6.6 影響吸附因素 30
2.6.7 管柱吸附 32
第三章 實驗方法與步驟 33
3.1 實驗材料 33
3.1.1實驗樣品 33
3.1.2 實驗藥品 34
3.2 研究架構 35
3.3 實驗流程 37
3.3.1 廢棄木材前處理與基本性質分析 37
3.3.2 生質活性碳製備 37
3.3.3 生質活性碳改質 38
3.3.4 生質活性碳批次與管柱吸附實驗 39
3.3.5 生物質衍生碳之改質與吸附 43
3.4 性質分析與實驗設備和儀器 44
第四章 結果與討論 50
4.1 廢棄木材之特性分析 50
4.2 生質活性碳製備及其改質前後之特性分析 54
4.2.1 生質活性碳的製備 54
4.2.2 生質活性碳之特性分析 57
4.3 生質活性碳批次及管柱吸附實驗 68
4.3.1 pH值影響 68
4.3.2 初始濃度影響及等溫吸附模式探討 71
4.3.3 吸附時間影響及動力吸附模式探討 75
4.3.4 G-OAC吸附銅離子XPS分析 78
4.3.5 吸附熱力學 81
4.3.6 離子強度之影響 82
4.3.7 吸附劑再生與再吸附實驗 83
4.3.8生質活性碳管柱吸附實驗 85
4.4 生物質衍生碳之改質與吸附實驗 87
4.4.1 生物質衍生碳特性分析 87
4.4.2 生物質衍生碳吸附實驗 99
第五章 結論 107
5.1 結論 107
5.2 建議 109
參考文獻 110
[1]F. S. Awad, K. M. AbouZeid, W. M. A. El-Maaty, A. M. El-Wakil, and M. S. El-Shall, "Efficient removal of heavy metals from polluted water with high selectivity for mercury (II) by 2-imino-4-thiobiuret–partially reduced graphene oxide (IT-PRGO)," ACS applied materials & interfaces, vol. 9, no. 39, pp. 34230-34242, 2017.
[2]R. P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. V. Gunten, B. Wehrli, "The challenge of micropollutants in aquatic systems," Science, vol. 313, no. 5790, pp. 1072-1077, 2006.
[3]G. A. Mulungulungu, T. Mao, and K. Han, "Efficient removal of high-concentration copper ions from wastewater via 2D g-C3N4 photocatalytic membrane filtration," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 623, p. 126714, 2021.
[4]H. Demiral and C. Güngör, "Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagasse," Journal of cleaner production, vol. 124, pp. 103-113, 2016.
[5]S. Virolainen, T. Wesselborg, A. Kaukinen, and T. Sainio, "Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange," Hydrometallurgy, vol. 202, 2021, doi: 10.1016/j.hydromet.2021.105602.
[6]C. C. Ho, J. S. Yu, S. W. Yang, V. Ya, H. A. Le, L. P. Cheng, K. H. Choo, C. W. Li, "Use of packed scrap iron anodes for continuous electrochemical Cr (VI) reduction process in electroplating wastewater treatment," Journal of Water Process Engineering, vol. 42, p. 102191, 2021.
[7]T.-H. Tsai, H.-W. Chou, and Y.-F. Wu, "Removal of nickel from chemical plating waste solution through precipitation and production of microsized nickel hydroxide particles," Separation and Purification Technology, vol. 251, 2020.
[8]F.-C. Yen, S.-J. You, and T.-C. Chang, "Performance of electrodialysis reversal and reverse osmosis for reclaiming wastewater from high-tech industrial parks in Taiwan: A pilot-scale study," Journal of environmental management, vol. 187, pp. 393-400, 2017.
[9]J. Jin, S. Li, X. Peng, W. Liu, C. Zhang, Y. Yang, L. Han, Z. Du, K. Sun, X. Wang, "HNO3 modified biochars for uranium (VI) removal from aqueous solution," Bioresour Technol, vol. 256, pp. 247-253, May 2018.
[10]L. S. Queiroz, L. K. C. de Souza, K. T. C. Thomaz, E. T. Leite Lima, G. N. da Rocha Filho, L. A. S. do Nascimento, L. H. de Oliveira Pires, K. D. C. F. Faial, C. E. F. da Costa, "Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water," J Environ Manage, vol. 270, p. 110868, Sep 15 2020.
[11]E.-W. A. M. Abou El-Maaty, "Removal of Lead from Aqueous Solution on Activated Carbon and Modified Activated Carbon Prepared from Dried Water Hyacinth Plant," Journal of Analytical & Bioanalytical Techniques, vol. 5, no. 2, 2014.
[12]A. T. S. Konan, R. Richard, C. Andriantsiferana, K. B. Yao, and M.-H. Manero, "Low-cost activated carbon for adsorption and heterogeneous ozonation of phenolic wastewater," Desalination and Water Treatment, vol. 163, pp. 336-346, 2019.
[13]K. A. Adegoke, O. O. Adesina, O. A. Okon-Akan, O. R. Adegoke, A. B. Olabintan, O. A. Ajala, H. Olagoke, N. W. Maxakato, O. S. Bello, "Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications," Current Research in Green and Sustainable Chemistry, vol. 5, 2022.
[14]J. Shi, X. Fan, D. C. W. Tsang, F. Wang, Z. Shen, D. Hou, D. S. Alessi, "Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations," Chemosphere, vol. 235, pp. 825-831, Nov 2019.
[15]D. S. Gökkaya, M. Sert, M. Sağlam, M. Yüksel, and L. Ballice, "Hydrothermal gasification of the isolated hemicellulose and sawdust of the white poplar (Populus alba L.)," The Journal of Supercritical Fluids, vol. 162, p. 104846, 2020.
[16]D. Dias, N. Lapa, M. Bernardo, W. Ribeiro, I. Matos, I. Fonseca, F. Pinto, "Cr (III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams," Bioresource technology, vol. 266, pp. 139-150, 2018.
[17]X. Zuo, Z. Liu, and M. Chen, "Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar," Bioresour Technol, vol. 207, pp. 262-7, May 2016.
[18]K. Pytlakowska, M. Matussek, B. Hachuła, M. Pilch, K. Kornaus, M. Zubko, W. Pisarski, "Graphene oxide covalently modified with 2,2′-iminodiacetic acid for preconcentration of Cr(III), Cu(II), Zn(II) and Pb(II) from water samples prior to their determination by energy dispersive X-ray fluorescence spectrometry," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 147, pp. 79-86, 2018.
[19]O. A. Malik, A. Hsu, L. A. Johnson, and A. de Sherbinin, "A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs)," Environmental Science & Policy, vol. 48, pp. 172-185, 2015.
[20]H. Haroon, J. A. Shah, M. S. Khan, T. Alam, R. Khan, S. A. Asad, M. A. Ali, G. Farooq, M. Iqbal, M. Bilal, "Activated carbon from a specific plant precursor biomass for hazardous Cr(VI) adsorption and recovery studies in batch and column reactors: Isotherm and kinetic modeling," Journal of Water Process Engineering, vol. 38, 2020.
[21]M. Nazaripour, M. A. M. Reshadi, S. A. Mirbagheri, M. Nazaripour, and A. Bazargan, "Research trends of heavy metal removal from aqueous environments," Journal of Environmental Management, vol. 287, p. 112322, 2021.
[22]V. Beaugeard, J. Muller, A. Graillot, X. Ding, J.-J. Robin, and S. Monge, "Acidic polymeric sorbents for the removal of metallic pollution in water: A review," Reactive and Functional Polymers, vol. 152, p. 104599, 2020.
[23]M. Abdel-Raouf and A. Abdul-Raheim, "Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review. J Pollut Eff Cont, vol. 8, pp. 15-19, 2017.
[24]J. Ye, H. Yin, B. Mai, H. Peng, H. Qin, B. He, N. Zhang, "Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge," Bioresource Technology, vol. 101, no. 11, pp. 3893-3902, 2010.
[25]K. H. Vardhan, P. S. Kumar, and R. C. Panda, "A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives," Journal of Molecular Liquids, vol. 290, p. 111197, 2019.
[26]S. Yana, M. Nizar, and D. Mulyati, "Biomass waste as a renewable energy in developing bio-based economies in Indonesia: A review," Renewable and Sustainable Energy Reviews, vol. 160, p. 112268, 2022.
[27]IEA, "Outlook for biogas and biomethane: Prospects for organic growth," 2020: IEA Paris.
[28]S. Kandasamy, N. K. Manickam, K. Subbiah, K. Muthukumar, M. Kumaraguruparaswami, and M. V. Ratnam, "Nanotechnology’s contribution to next-generation bioenergy production," in Nanomaterials: Elsevier, 2021, pp. 511-518.
[29]J. B. Heo, Y.-S. Lee, and C.-H. Chung, "Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF," Biotechnology advances, vol. 37, no. 8, p. 107422, 2019.
[30]S. Tamantini, A. Del Lungo, M. Romagnoli, A. Paletto, M. Keller, J. Bersier, F. Zikeli, "Basic Steps to Promote Biorefinery Value Chains in Forestry in Italy," Sustainability, vol. 13, no. 21, p. 11731, 2021.
[31]R. V. Crume, Environmental Health in the 21st Century: From Air Pollution to Zoonotic Diseases [2 volumes]. ABC-CLIO, 2018.
[32]G. Kwon, A. Bhatnagar, H. Wang, E. E. Kwon, and H. Song, "A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar," Journal of Hazardous Materials, vol. 400, p. 123242, 2020.
[33]Y. Zhou, S. Qin, S. Verma, T. Sar, S. Sarsaiya, B. Ravindran, T. Liu, R. Sindhu, A. Patel, P. Binod, "Production and beneficial impact of biochar for environmental application: A comprehensive review," Bioresource Technology, vol. 337, p. 125451, 2021.
[34]C. Duan, T. Ma, J. Wang, and Y. Zhou, "Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review," Journal of Water Process Engineering, vol. 37, p. 101339, 2020.
[35]F. Berger, F. Gauvin, and H. Brouwers, "The recycling potential of wood waste into wood-wool/cement composite," Construction and Building Materials, vol. 260, p. 119786, 2020.
[36]吳俊賢, 陳溢宏, 林俊成, and 陳豐熙, "國內木質包裝材料之木箱及木棧板使用量分析," 林業研究專訊, vol. 25, no. 6, pp. 40-44, 2018.
[37]S. Guo, X. Dong, T. Wu, and C. Zhu, "Influence of reaction conditions and feedstock on hydrochar properties," Energy Conversion and Management, vol. 123, pp. 95-103, 2016.
[38]A. Fuertes, M. C. Arbestain, M. Sevilla, J. A. Maciá-Agulló, S. Fiol, R. López, R. Smernik, W. Aitkenhead, F. Arce, F. Macìas, "Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover," Soil Research, vol. 48, no. 7, pp. 618-626, 2010.
[39]Z.-E. Tang, S. Lim, Y.-L. Pang, H.-C. Ong, and K.-T. Lee, "Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review," Renewable and Sustainable Energy Reviews, vol. 92, pp. 235-253, 2018.
[40]M. J. Prauchner and F. Rodríguez-Reinoso, "Chemical versus physical activation of coconut shell: A comparative study," Microporous and Mesoporous Materials, vol. 152, pp. 163-171, 2012.
[41]H. Liu, C. Cheng, and H. Wu, "Sustainable utilization of wetland biomass for activated carbon production: A review on recent advances in modification and activation methods," Science of The Total Environment, vol. 790, p. 148214, 2021.
[42]H. Liu, X. Wang, G. Zhai, J. Zhang, C. Zhang, N. Bao, C. Cheng, "Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni (II) sorption," Chemical engineering journal, vol. 209, pp. 155-162, 2012.
[43]Z. M. Yunus, A. Al-Gheethi, N. Othman, R. Hamdan, and N. N. Ruslan, "Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: A microstructure and techno-economic analysis," Journal of Cleaner Production, vol. 251, 2020.
[44]M. A. A. Zaini, L. L. Zhi, T. S. Hui, Y. Amano, and M. Machida, "Effects of physical activation on pore textures and heavy metals removal of fiber-based activated carbons," Materials Today: Proceedings, vol. 39, pp. 917-921, 2021.
[45]D. K. K. Akpa Jackson Gunorubon, "Effect of Activation Method and Agent on the Characterization of Prewinkle Shell Activated Carbon," Chemical and Process Engineering Research, vol. 56, 2018.
[46]P. Ravichandran, P. Sugumaran, S. Seshadri, and A. H. Basta, "Optimizing the route for production of activated carbon from Casuarina equisetifolia fruit waste," Royal Society open science, vol. 5, no. 7, p. 171578, 2018.
[47]R. Chand, T. Watari, K. Inoue, H. N. Luitel, T. Torikai, and M. Yada, "Chemical modification of carbonized wheat and barley straw using HNO3 and the adsorption of Cr(III)," J Hazard Mater, vol. 167, no. 1-3, pp. 319-24, Aug 15 2009.
[48]W.-J. Liu, H. Jiang, and H.-Q. Yu, "Development of biochar-based functional materials: toward a sustainable platform carbon material," Chemical reviews, vol. 115, no. 22, pp. 12251-12285, 2015.
[49]W. Ahmed, S. Mehmood, M. Qaswar, S. Ali, Z. H. Khan, H. Ying, D. Y. Chen, A. Núñez-Delgado, "Oxidized biochar obtained from rice straw as adsorbent to remove uranium (VI) from aqueous solutions," Journal of Environmental Chemical Engineering, vol. 9, no. 2, 2021.
[50]H. Xu, B. Shen, P. Yuan, F. Lu, L. Tian, and X. Zhang, "The adsorption mechanism of elemental mercury by HNO 3 -modified bamboo char," Fuel Processing Technology, vol. 154, pp. 139-146, 2016.
[51]J. Jaramillo, P. M. Álvarez, and V. Gómez-Serrano, "Oxidation of activated carbon by dry and wet methods," Fuel Processing Technology, vol. 91, no. 11, pp. 1768-1775, 2010.
[52]Y. Ma, W.-J. Liu, N. Zhang, Y.-S. Li, H. Jiang, and G.-P. Sheng, "Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution," Bioresource technology, vol. 169, pp. 403-408, 2014.
[53]X. Xie, H. Gao, X. Luo, T. Su, Y. Zhang, and Z. Qin, "Polyethyleneimine modified activated carbon for adsorption of Cd (II) in aqueous solution," Journal of Environmental Chemical Engineering, vol. 7, no. 3, p. 103183, 2019.
[54]N. M. Bandaru, N. Reta, H. Dalal, A. V. Ellis, J. Shapter, and N. H. Voelcker, "Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes," Journal of Hazardous Materials, vol. 261, pp. 534-541, 2013.
[55]Y. Shen and B. Chen, "Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water," Environmental science & technology, vol. 49, no. 12, pp. 7364-7372, 2015.
[56]B. Li, J. Z. Guo, J. L. Liu, L. Fang, J. Q. Lv, and K. Lv, "Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar," Sci Total Environ, vol. 714, p. 136897, Apr 20 2020.
[57]H. Tian, Z. Hu, Q. He, X. Liu, L. Zhang, and X. Chang, "Preconcentration of trace lead and iron on activated carbon functionalized by o-Anisic acid derivatives prior to their determination in environmental samples," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 93, pp. 335-342, 2012.
[58]D. Lv, Y. Liu, J. Zhou, K. Yang, Z. Lou, S. A. Baig, X. Xu, "Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb (II) and Cu (II) removal from aqueous solutions," Applied Surface Science, vol. 428, pp. 648-658, 2018.
[59]D. Juela, M. Vera, C. Cruzat, X. Alvarez, and E. Vanegas, "Adsorption properties of sugarcane bagasse and corn cob for the sulfamethoxazole removal in a fixed-bed column," Sustainable Environment Research, vol. 31, no. 1, pp. 1-14, 2021.
[60]B. C. FE W John Thomas, Adsorption technology and design. 1998
[61]M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)," Pure and Applied Chemistry, vol. 87, no. 9-10, pp. 1051-1069, 2015.
[62]M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)," Pure and applied chemistry, vol. 87, no. 9-10, pp. 1051-1069, 2015.
[63]A. A. Aryee, F. M. Mpatani, X. Zhang, A. N. Kani, E. Dovi, R. Han, Z. Li, L. Qu, "Iron (III) and iminodiacetic acid functionalized magnetic peanut husk for the removal of phosphate from solution: Characterization, kinetic and equilibrium studies," Journal of Cleaner Production, vol. 268, 2020.
[64]Y. Fu, J. Wu, H. Zhou, and G. Jin, "Removal of nickel(II) from aqueous solutions using iminodiacetic acid functionalized polyglycidyl methacrylate grafted-carbon fibers," Chinese Journal of Chemical Engineering, vol. 23, no. 6, pp. 919-923, 2015.
[65]C. Duan, T. Ma, J. Wang, and Y. Zhou, "Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review," Journal of Water Process Engineering, vol. 37, 2020.
[66]O. Kopsidas, "Scale up of adsorption in fixed-bed column systems," University of Piraeus: Pireas, Greece, 2016.
[67]Y. Li, A. Meas, S. Shan, R. Yang, and X. Gai, "Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol," Bioresour Technol, vol. 207, pp. 379-86, May 2016.
[68]R. M. HG Rodriguez, CA Kumari, Experimental Ecophysiology and Biochemistry of Trees and Shrubs. 2020.
[69]M. Zhao, J. Sun, M. A. Akhtar, S. Zhang, J. Wei, D. Xu, X. Hu, M. Gholizadeh, H. Zhang, "Investigation on co-gasification of N-rich fiberboard and glucose: Nitrogen evolution and changes in char properties," Journal of the Energy Institute, 2022.
[70]H. Zhan, X. Zhuang, Y. Song, J. Liu, S. Li, G. Chang, X. Yin, C. Wu, X. Wang, "A review on evolution of nitrogen-containing species during selective pyrolysis of waste wood-based panels," Fuel, vol. 253, pp. 1214-1228, 2019.
[71]S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen, and J. Wu, "Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA," Biosystems engineering, vol. 116, no. 4, pp. 420-426, 2013.
[72]谢新苹, 孟中磊, 蒋剑春, 孙康, 卢辛成, "磷酸活化桉木屑制备活性炭的影响因素及表征," 东北林业大学学报, no. 4, pp. 116-119, 2013.
[73]S. Yorgun and D. Yıldız, "Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4," Journal of the Taiwan Institute of Chemical Engineers, vol. 53, pp. 122-131, 2015.
[74]C. Branca, G. D'Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, "Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films," Polymer, vol. 99, pp. 614-622, 2016.
[75]H. Tounsadi, A. Khalidi, A. Machrouhi, M. Farnane, R. Elmoubarki, A. Elhalil, M. Sadiq, N. Barka, "Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using experimental design approach," Journal of Environmental Chemical Engineering, vol. 4, no. 4, pp. 4549-4564, 2016.
[76]G. Z. Kyzas, E. A. Deliyanni, and K. A. Matis, "Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 490, pp. 74-83, 2016.
[77]A. Szeląg-Sikora, M. Kędzierska-Matysek, A. Matwijczuk, M. Florek, J. Barłowska, A. Wolanciuk, A. Matwijczuk, E. Chruściel, R. Walkowiak, D. Karcz, B. Gładyszewska, "Application of FTIR spectroscopy for analysis of the quality of honey," BIO Web of Conferences, vol. 10, 2018.
[78]İ. Demiral, C. Samdan, and H. Demiral, "Enrichment of the surface functional groups of activated carbon by modification method," Surfaces and Interfaces, vol. 22, p. 100873, 2021.
[79]C. A. Ramirez-Herrera, I. Cruz-Cruz, I. H. Jimenez-Cedeno, O. Martinez-Romero, and A. Elias-Zuniga, "Influence of the Epoxy Resin Process Parameters on the Mechanical Properties of Produced Bidirectional [+/-45 degrees ] Carbon/Epoxy Woven Composites," Polymers (Basel), vol. 13, no. 8, Apr 14 2021.
[80]J. J. Ternero-Hidalgo, J. M. Rosas, J. Palomo, M. J. Valero-Romero, J. Rodríguez-Mirasol, and T. Cordero, "Functionalization of activated carbons by HNO3 treatment: Influence of phosphorus surface groups," Carbon, vol. 101, pp. 409-419, 2016.
[81]Y. Zhang, L. Zhu, Y. Wang, Z. Lou, W. Shan, Y. Xiong, Y. Fan, "Preparation of a biomass adsorbent for gallium(III) based on corn stalk modified by iminodiacetic acid," Journal of the Taiwan Institute of Chemical Engineers, vol. 91, pp. 291-298, 2018.
[82]Y. Yan, X. Ma, W. Cao, X. Zhang, J. Zhou, Q. Liu, G. Qian, "Identifying the reducing capacity of biomass derived hydrochar with different post-treatment methods," Science of The Total Environment, vol. 643, pp. 486-495, 2018.
[83]S. M. Waly, A. M. El-Wakil, W. M. A. El-Maaty, and F. S. Awad, "Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon," Journal of Saudi Chemical Society, vol. 25, no. 8, 2021.
[84]O. Oginni, K. Singh, G. Oporto, B. Dawson-Andoh, L. McDonald, and E. Sabolsky, "Effect of one-step and two-step H3PO4 activation on activated carbon characteristics," Bioresource Technology Reports, vol. 8, 2019.
[85]R. Xie, Y. Jin, Y. Chen, and W. Jiang, "The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon," Water Sci Technol, vol. 76, no. 11-12, pp. 3022-3034, Dec 2017.
[86]R. Gómez-Bombarelli, E. Calle, and J. Casado, "Mechanisms of lactone hydrolysis in neutral and alkaline conditions," The Journal of organic chemistry, vol. 78, no. 14, pp. 6868-6879, 2013.
[87]A. B. Botelho Junior, A. d. A. Vicente, D. C. R. Espinosa, and J. A. S. Tenório, "Recovery of metals by ion exchange process using chelating resin and sodium dithionite," Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4464-4469, 2019.
[88]Y. Wu, Y. Fan, M. Zhang, Z. Ming, S. Yang, A. Arkin, P. Fang, "Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems," Biochemical Engineering Journal, vol. 105, pp. 27-35, 2016.
[89]Y. Liu, R. Fu, Y. Sun, X. Zhou, S. A. Baig, and X. Xu, "Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions," Applied Surface Science, vol. 369, pp. 267-276, 2016.
[90]J. I. Lachowicz, G. R. Delpiano, D. Zanda, M, Piludu, E. Sanjust, M. Monduzzi, A. Salis, "Adsorption of Cu2+ and Zn2+ on SBA-15 mesoporous silica functionalized with triethylenetetramine chelating agent," Journal of Environmental Chemical Engineering, vol. 7, no. 4, 2019.
[91]M. Imran, K. Anwar, M. Akram, G. M. Shah, I. Ahmad, N. Samad Shah, Z. H. U. Khan, M. I. Rashid, M. N. Akhtar, S. Ahmad, M. Nawaz, R. J. Schotting, "Biosorption of Pb(II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies," Int J Phytoremediation, vol. 21, no. 8, pp. 777-789, 2019.
[92]A. Agarwal, U. Upadhyay, I. Sreedhar, S. A. Singh, and C. M. Patel, "A review on valorization of biomass in heavy metal removal from wastewater," Journal of Water Process Engineering, vol. 38, 2020.
[93]M. R. Razak, N. A. Yusof, M. J. Haron, N. Ibrahim, F. Mohammad, S. Kamaruzaman, H. A. Al-Lohedan, "Iminodiacetic acid modified kenaf fiber for waste water treatment," International Journal of Biological Macromolecules, vol. 112, pp. 754-760, Jun 2018.
[94]I. F. F. Neto, C. A. Sousa, M. S. C. A. Brito, A. M. Futuro, and H. M. V. M. Soares, "A simple and nearly-closed cycle process for recycling copper with high purity from end life printed circuit boards," Separation and Purification Technology, vol. 164, pp. 19-27, 2016.
[95]Z. Dong, Q. Wang, M. Huo, N. Zhang, B. Li, H. Li, Y. Xu, M. Chen, H. Hong, Y. Wang, "Mannose‐Modified Multi‐Walled Carbon Nanotubes as a Delivery Nanovector Optimizing the Antigen Presentation of Dendritic Cells," ChemistryOpen, vol. 8, no. 7, pp. 915-921, 2019.
[96]A. Mekki, "X-ray photoelectron spectroscopy of CeO2–Na2O–SiO2 glasses," Journal of electron spectroscopy and related phenomena, vol. 142, no. 1, pp. 75-81, 2005.
[97]L. D. Dias, F. Rodrigues, M. J. Calvete, S. A. Carabineiro, M. D. Scherer, A. R. Caires, J. G. Buijnsters, J. L. Figueiredo, V. S. Bagnato, M. M. Pereira, "Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts," Catalysts, vol. 10, no. 12, p. 1402, 2020.
[98]M. M. Islam, R. D. Tentu, M. A. Ali, and S. Basu, "Enhanced Visible‐Light‐Driven Activity of Sodium‐, Calcium‐and Aluminium‐Inserted g‐C3N4," ChemistrySelect, vol. 3, no. 40, pp. 11241-11250, 2018.
[99]N. T. Bui, H. Kang, S. J. Teat, G. M. Su, C. W. Pao, Y. S. Liu, E. W. Zaia, J. Guo, J. L. Chen, K. R. Meihaus, "A nature-inspired hydrogen-bonded supramolecular complex for selective copper ion removal from water," Nature communications, vol. 11, no. 1, pp. 1-12, 2020.
[100]A. A. Aryee, F. M. Mpatani, Y. Du, A. N. Kani, E. Dovi, R. Han, Z. Li, L. Qu, "Fe3O4 and iminodiacetic acid modified peanut husk as a novel adsorbent for the uptake of Cu (II) and Pb (II) in aqueous solution: Characterization, equilibrium and kinetic study," Environ Pollut, vol. 268, no. Pt A, p. 115729, Jan 1 2021.
[101]C. Liu, R. Bai, and L. Hong, "Diethylenetriamine-grafted poly (glycidyl methacrylate) adsorbent for effective copper ion adsorption," Journal of Colloid and Interface Science, vol. 303, no. 1, pp. 99-108, 2006.
[102]I. D. Perez, I. A. Anes, A. B. Botelho Junior, and D. C. R. Espinosa, "Comparative study of selective copper recovery techniques from nickel laterite leach waste towards a competitive sustainable extractive process," Cleaner Engineering and Technology, vol. 1, 2020.
[103]S. Batool, M. Idrees, M. I. Al-Wabel, M. Ahmad, K. Hina, H. Ullah, L. Cui, Q. Hussain, "Sorption of Cr(III) from aqueous media via naturally functionalized microporous biochar: Mechanistic study," Microchemical Journal, vol. 144, pp. 242-253, 2019, doi: 10.1016/j.microc.2018.09.012.
[104]M. Wądrzyk, P. Grzywacz, R. Janus, and M. Michalik, "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, vol. 179, pp. 248-261, 2021.
[105]C. Wang, W. Zhu, and X. Fan, "Char derived from sewage sludge of hydrothermal carbonization and supercritical water gasification: Comparison of the properties of two chars," Waste Management, vol. 123, pp. 88-96, 2021.
[106]F. Ronsse, S. Van Hecke, D. Dickinson, and W. Prins, "Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions," Gcb Bioenergy, vol. 5, no. 2, pp. 104-115, 2013.
[107]V. C. Dinh, C.-H. Hou, and T. N. Dao, "O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups," Chemosphere, p. 133622, 2022.
[108]Z. Liu, F.-S. Zhang, and J. Wu, "Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment," Fuel, vol. 89, no. 2, pp. 510-514, 2010.
[109]Y. Gokce and Z. Aktas, "Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol," Applied Surface Science, vol. 313, pp. 352-359, 2014.
[110]W. Suliman, J. B. Harsh, N. I. Abu-Lail, A.-M. Fortuna, I. Dallmeyer, and M. Garcia-Perez, "Modification of biochar surface by air oxidation: Role of pyrolysis temperature," Biomass and Bioenergy, vol. 85, pp. 1-11, 2016.
[111]H. Liu, C. Cheng, and H. Wu, "Sustainable utilization of wetland biomass for activated carbon production: A review on recent advances in modification and activation methods," Sci Total Environ, vol. 790, p. 148214, Oct 10 2021.
電子全文 電子全文(網際網路公開日期:20270803)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊