跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/20 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:夏源宏
研究生(外文):SAWADOGO, Wendwaoga Florent Davy
論文名稱:台灣公用事業規模定軸太陽能電力系統之傾斜角與方位角設計影響探討
論文名稱(外文):The Study of Effect of Tilt and Azimuth Design Angles on Utility-Scale Fixed Axis Photovoltaic Systems in Taiwan
指導教授:李約亨
指導教授(外文):LI, Yueh-Heng
口試委員:吳毓庭鍾光民張克勤黃朝偉
口試委員(外文):Wu, Yu TingChung, Kung MingChang, Keh ChinHaung, Chao Wei
口試日期:2022-01-18
學位類別:碩士
校院名稱:國立成功大學
系所名稱:能源工程國際碩博士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:103
中文關鍵詞:太陽能發電最佳傾斜角最佳方向角定軸公用事業規模太陽能發電系統台灣
外文關鍵詞:solar photovoltaicoptimal tilt angleoptimal azimuth anglefixed-axis utility-scale photovoltaic systemTaiwan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
為了解決氣候變遷與在2050年達成淨零碳排的願景,台灣在近十年內積極推動綠能,其中太陽能是重點發展的項目。對公用事業規模太陽能系統的,引起對該系統運作效率與增進效能方法的探討。
在此研究中,將在台灣取12個城市做為範例,探討傾斜角與方向角因素對於公用事業規模之定軸太陽能系統之影響。首先,根據目前已知的資訊,各縣市公用事業規模太陽能系統最務實的傾斜角如下:雲林、台南、高雄與嘉義最理想運作傾角,約落在10至12度之間;台中、恆春、屏東、新竹與苗栗,於10度左右的傾斜角具最佳的發電效率表現;而8度左右的傾斜角,適合如花蓮、宜蘭及台北等縣市。除此之外,每個縣市的太陽能系統傾斜角,需要匹配其所在縣市最優數值以獲得最大效益。於研究過程中,發現相同傾斜角的太陽能系統,設置在雲林與台北,對照比對其發電量,差距可達14.1%。
其次,若以發電量最高為出發點,探討所列台灣縣市中,最適合設置太陽能系統地點,雲林拔得頭籌、台南則居次、其他依序如下:高雄、恆春、嘉義、花蓮、新竹、苗栗、台中、宜蘭、台北,屏東位列最末位;總體而言,南部縣市設置太陽能系統的效益優於北部縣市。
再者,全南向系統(方向角為0度)設置雖能獲得最佳全年發電量,礙於現地地點與環境的既存限制,使得太陽能系統需偏轉模組方向角以配合現地條件,而偏轉方向角數值應限制在20度以內為佳;最後,在兩年的系統運轉預測數值中,周邊氣象站收集的全球太陽輻射數值分別上升7.22%與8.77%,使得兩年的發電量分別增加13.21%與21%;案例研究中斬獲比較性結果顯示,PVsyst所預測的第一年發電量相當準確,但往後幾年的預測數值會因天氣等條件,大幅影響系統表現,而提升預測難度。
Climate change and the ambition to reach net-zero emission by 2050 have pushed Taiwan to turn towards renewable energies in the last decade especially, Solar Photovoltaic systems. The rush towards the development of a Utility-Scale photovoltaic system has raised questions about their efficiency and the means to increase their performance.
In this study, we investigated mainly the optimal and practical Azimuth and Tilted angles on fixed axis Utility-Scale solar photovoltaic systems in twelve cities across Taiwan. First, our findings indicate that for fixed axis Utility-Scale solar photovoltaic systems in Taiwan, in terms of practical Tilt angle, Yunlin, Tainan, Kaoshiung, and Chiayi best perform between 10° and 12° inclination. Taichung, Hengchun, Pingtung, Hsinchu, and Miaoli have an optimal output at around a 10° Tilt angle. A Tilt angle inclination of around 8° is shown to be more suitable for cities such as Hualien, Yilan, and Taipei. Additionally, project Tilt angles should be adapted to their own city's optimal values. Our study has shown that a photovoltaic project in Yunlin and Taipei have a production performance difference up to 14.1% if Tilted on the same angle.
Second, in terms of best locations from the studied cities list to install PV system in Taiwan to harvest the most Energy, we have on the top of the list is Yunlin, followed by Tainan and the rest of the list respectively: Kaoshiung, Hengchun, Chiayi, Hualien, Hsinchu, Miaoli, Taichung, Yilan, Taipei, and at last Pingtung. In general, southern cities tend to perform better than northern cities. Third, a full south-oriented (Azimuth 0°) system offers the best performance for a year-long production. However, if the site location and orientation present some constraints that require deviation from full south, a maximum deviation of 20° from on the Azimuth angle is recommendable. Finally, the comparative results with the case study project indicate that the forecast done by PVsyst on the first-year production is quite accurate. However, the forecast over the following years is much less predictable as weather conditions such rain, humidity, clouds etc. can greatly influence the performance of the system. A production increase of 13.21% and 21% were observed in correlation with an increase of 7.22 % and 10.67% in global irradiance collected by the nearby weather station over the following two years of the system operation.
Abstract I
中文摘要 III
Acknowledgment V
Table of Contents VI
List of Tables IX
List of Figures XI
Nomenclature & Abbreviations XIII
Symbols XV
Chapter I: Introduction 1
1.1. Background and Context 1
1.2. Literature Review 7
1.3. Motivation and Research Contribution 10
1.4. Methodology 11
Chapter II: Photovoltaic Fundamental & PV Systems 16
2.1. Solar Energy 16
2.2. Photovoltaic Principle 17
2.3. Photovoltaic Cells 21
2.4. Photovoltaic System Components 26
2.5. Type of Photovoltaic Systems 30
Chapter III: Methodology 35
3.1. Numerical Simulation Software: PVsyst 35
3.2. Design Parameters of Photovoltaic Case study system 39
3.3. Theoretical Modeling Parameters of Photovoltaic Systems for the Study 47
Chapter IV: Results and Discussion 51
4.1. Validation: Case study results 51
4.1.1 Pitch Distance Impact of system performance 51
4.1.2 Forecast results in comparison with collected data 54
4.2. Performance Analysis: Optimal Azimuth Angle 58
4.3. Performance Analysis: Optimal Tilt Angle, with & without Shading Factor 66
4.3.1 Result 1: Classification of Studied Cities on Performance 66
4.3.2 Result 2: Optimal Tilt Angle at Ideal Layout Conditions (pitch 20 m) 69
4.3.3 Result 3: Optimal Tilt Angle at Practical Layout Conditions (pitch 1.47 m) 75
Chapter V: Conclusion 82
5.1. Conclusions 82
5.2. Future Work 85
References 86
Appendix 94
[1]M. R. Ritchie. (2020) "Energy". Published online at OurWorldInData.org. . Available: https://ourworldindata.org/energy' [Online Resource]
[2]K. Nguyen and M. Kakinaka, "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, vol. 132, pp. 1049-1057, 2019, doi: 10.1016/j.renene.2018.08.069.
[3]I. E. Agency, World energy outlook 2020. OECD Publishing, 2020.
[4](2020). Energy Statistical annual Reports, Energy Supply and Consumption Flowchart (2020). [Online] Available: https://www.moeaboe.gov.tw/ECW/english/content/ContentLink.aspx?menu_id=1540
[5]G. Energy, "Power generation in Taiwan in 2025 is estimated to be free from nuclear power," in Power Technology, ed, 2021.
[6]L. Haohui, V. Krishna, J. Leung, T. Reindl, and L. Zhao, "Field experience and performance analysis of floating PV technologies in the tropics," Progress in Photovoltaics: Research and Applications, vol. 26, 2018/06/01

[7]A. Sahu, N. Yadav, and K. Sudhakar, "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, vol. 66, pp. 815-824, 2016, doi: 10.1016/j.rser.2016.08.051.
[8]E. BELLINI, "Taiwan’s Wushantou Dam to host 13.7 MW floating PV array," ed. PV magazine, JUNE 2, 2021.
[9]C. W. Kuo, W. C. Chang, and K. C. Chang, "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, vol. 66, pp. 56-61, 2014, doi: 10.1016/j.renene.2013.11.072.
[10]K. C. Chang, C. T. Lin, and C. C. Chen, "Monitoring investigation of solar diffuse fraction in Taiwan," Optical and Quantum Electronics, vol. 50, no. 12, 2018, doi: 10.1007/s11082-018-1696-5.
[11]H. A. Kazem and M. T. Chaichan, "Effect of Humidity on Photovoltaic Performance Based on Experimental Study," International Journal of Applied Engineering Research, vol. 10, 2016/01/01.
[12]R. J. Mustafa, M. R. Gomaa, M. Al-Dhaifallah, and H. Rezk, "Environmental Impacts on the Performance of Solar Photovoltaic Systems," Sustainability, vol. 12, no. 2, 2020, doi: 10.3390/su12020608.
[13]B. Hashemi, S. Taheri, A.-M. Cretu, and E. Pouresmaeil, "Systematic photovoltaic system power losses calculation and modeling using computational intelligence techniques," Applied Energy, vol. 284, 2021, doi: 10.1016/j.apenergy.2020.116396.
[14]M. Dhimish and S. Silvestre, "Estimating the impact of azimuth-angle variations on photovoltaic annual energy production," Clean Energy, vol. 3, no. 1, pp. 47-58, 2019, doi: 10.1093/ce/zky022.
[15]M. Chinchilla, D. Santos-Martín, M. Carpintero-Rentería, and S. Lemon, "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, vol. 281, 2021, doi: 10.1016/j.apenergy.2020.116056.
[16]F. J. Liu and T. P. Chang, "Optimizing the Tilt Angle of Solar Collector under Clear Sky by Particle Swarm Optimization Method," Applied Science and Engineering, vol. 18, No 2, pp. 167-172, 2015, doi: 10.6180/jase.2015.18.2.09.
[17]C. C. Wei, "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, vol. 10, no. 10, 2017, doi: 10.3390/en10101660.
[18]Y. P. Chang, "Optimal the tilt angles for photovoltaic modules in Taiwan," International Journal of Electrical Power & Energy Systems, vol. 32, no. 9, pp. 956-964, 2010, doi: 10.1016/j.ijepes.2010.02.010.
[19]E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K.-H. Kim, "Solar energy: Potential and future prospects," Renewable and Sustainable Energy Reviews, vol. 82, pp. 894-900, 2018, doi: 10.1016/j.rser.2017.09.094.
[20]IEA. Solar Energy: Mapping the Road Ahead, IEA, Paris [Online] Available: https://www.iea.org/reports/solar-energy-mapping-the-road-ahead
[21]B. Marion, "A model for deriving the direct normal and diffuse horizontal irradiance from the global tilted irradiance," Solar Energy, vol. 122, pp. 1037-1046, 2015, doi: 10.1016/j.solener.2015.10.024.
[22]R. Perez, P. Ineichen, R. Seals, and J. Michalsky, "Modeling daylight availability and irradiance components from direct and global irradiance," Sol. Energy, vol. 44, pp. 271-289, 1990.
[23]A. Martinez Gracia, I. Arauzo, and J. Uche, "Chapter 5 - Solar energy availability," in Solar Hydrogen Production, F. Calise, M. D. D’Accadia, M. Santarelli, A. Lanzini, and D. Ferrero Eds.: Academic Press, 2019, pp. 113-149.
[24]M. Gul, Y. Kotak, T. Muneer, and S. Ivanova, "Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies," Energies, vol. 11, no. 11, 2018, doi: 10.3390/en11112881.
[25]T. C. R. Russell, R. Saive, A. Augusto, S. G. Bowden, and H. A. Atwater, "The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study," IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1611-1618, 2017, doi: 10.1109/jphotov.2017.2756068.
[26]FSEC. "The Florida Solar Energy Center: Solar Electricity Basics." http://www.fsec.ucf.edu/en/consumer/solar_Electricity/basics/cells_modules_arrays.htm (accessed.
[27]ASRMETA. "Solar Cells_their construction and working." https://www.asrmeta.com/solar-cells-their-construction-and-working/ (accessed 2021/12.
[28]M. Mirzaei and M. Z. Mohiabadi, "A comparative analysis of long-term field test of monocrystalline and polycrystalline PV power generation in semi-arid climate conditions," Energy for Sustainable Development, vol. 38, pp. 93-101, 2017, doi: 10.1016/j.esd.2017.01.002.
[29]A. Mishra, M. K. Fischer, and P. Bauerle, "Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules," Angew Chem Int Ed Engl, vol. 48, no. 14, pp. 2474-99, 2009, doi: 10.1002/anie.200804709.
[30]P. P. Kumavat, P. Sonar, and D. S. Dalal, "An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements," Renewable and Sustainable Energy Reviews, vol. 78, pp. 1262-1287, 2017, doi: 10.1016/j.rser.2017.05.011.
[31]S. Chunduri, "Solar Modules Employing Larger Wafer Formats Is A Hot Topic Among Manufacturers As They Promise Easy Power Gains," in TaiyangNews, ed: TaiyangNews, 2019.
[32]S. Electric, "<20161201-A-Quantitative-Comparison-of-Central-Inverters-and-String-Inverters-in-Utility-Scale-Solar-Systems-in-North-America-.pdf>," 2016.
[33]A. Energy. "Solar Photovoltaic System Components (Tutorials)." https://www.alternative-energy-tutorials.com/sitesearch?q=solar%20photovoltaic%20componenents (accessed 12, 2021).
[34]L. Späth, "Large-scale photovoltaics? Yes please, but not like this! Insights on different perspectives underlying the trade-off between land use and renewable electricity development," Energy Policy, vol. 122, pp. 429-437, 2018/11/01/ 2018, doi: https://doi.org/10.1016/j.enpol.2018.07.029.
[35]P. D. Silva, G. D. Branco, and D. A. Castelo, "Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts," Impact Assessment and Project Appraisal, vol. 36, no. 5, pp. 390-400, 2018/09/03 2018, doi: 10.1080/14615517.2018.1477498.
[36]A. E. Coşgun, "The potential of Agrivoltaic systems in TURKEY," Energy Reports, vol. 7, pp. 105-111, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.egyr.2021.06.017.
[37]A. M. Pringle, R. M. Handler, and J. M. Pearce, "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, vol. 80, pp. 572-584, 2017/12/01/ 2017, doi: https://doi.org/10.1016/j.rser.2017.05.191.
[38]K. C. Chang and C. T. Lin, "2021-氣象學報," 氣象學報, 2021.
[39]Study and simulation software for photovoltaic systems. (1994-2021). [Online]. Available: https://www.pvsyst.com/help/index.html?project_design.htm
[40]C. Terre. "The Floating Solar Expert." https://www.ciel-et-terre.net/ciel-et-terre-news/ (accessed 12/15, 2021).
[41]K. Brecl and M. Topič, "Self-shading losses of fixed free-standing PV arrays," Renewable Energy, vol. 36, no. 11, pp. 3211-3216, 2011, doi: 10.1016/j.renene.2011.03.011.
[42]D. C. Jordan and S. R. Kurtz, "Photovoltaic Degradation
Rates — An Analytical Review " NREL/JA-5200-51664, 2012.
[43]B. Aboagye, S. Gyamfi, E. A. Ofosu, and S. Djordjevic, "Degradation analysis of installed solar photovoltaic (PV) modules under outdoor conditions in Ghana," Energy Reports, vol. 7, pp. 6921-6931, 2021, doi: 10.1016/j.egyr.2021.10.046.
[44]T. Ishii and A. Masuda, "Annual degradation rates of recent crystalline silicon photovoltaic modules," Progress in Photovoltaics: Research and Applications, vol. 25, no. 12, pp. 953-967, 2017, doi: 10.1002/pip.2903.
[45]N. Gökmen, W. Hu, P. Hou, Z. Chen, D. Sera, and S. Spataru, "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, vol. 90, pp. 283-290, 2016/05/01/ 2016, doi: https://doi.org/10.1016/j.renene.2016.01.017.
[46]N. Meskhidze, L. A. Remer, S. Platnick, R. N. Juarez, A. M. Lichtenberger, and A. R. Aiyyer, "Exploring the differences in cloud
properties observed by the Terra and
Aqua MODIS sensors," Atmospheric Chemistry and Physics, 2009, doi: 10.5194/acp-9-3461-2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top