|
[ 1 ] C. Shu, Y. D. Zhu, Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder, International journal for numerical methods in fluids 38(5) (2002) 429-445. [ 2 ] D. Angeli, P. Levoni, G. Barozzi, Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder, International journal of heat and mass transfer 51(3-4) (2008) 553–565. [ 3 ] H.S. Yoon, M.Y. Ha, B.S. Kim, D.H. Yu, Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of 107, Phys. Fluids 21(4) (2009) 047101. [ 4 ] O. Reymond, D.B. Murray, T.S. O’Donovan, Natural convection heat transfer from two horizontal cylinders, Experimental Thermal and Fluid Science 32(8) (2008) 1702–1709. [ 5 ] S. Narayan, A.K. Singh, A. Srivastava, Interferometric study of natural convection heat transfer phenomena around array of heated cylinders, International Journal of Heat and Mass Transfer 109 (2017) 278-292. [ 6 ] G.S. Mun, Y.G. Park, H.S. Yoon, M. Kim, M.Y. Ha, Natural convection in a cold enclosure with four hot inner cylinders based on diamond arrays (Part-I: Effect of horizontal and vertical equal distance of inner cylinders), International journal of heat and mass transfer 111 (2017) 755–770. [ 7 ] J. R. Lai, Study of heat-transfer characteristics on the fin of four-tube plate finned-tube heat exchangers, National Cheng Kung University, Mechanical Engineering, Taiwan, 2011. [ 8 ] C. H. Lu, Effect of flow model on heat transfer characteristics of staggered plate fin and tube heat exchangers, National Cheng Kung University, Mechanical Engineering, Taiwan, 2013. [ 9 ] A. Mohammed, Natural convection heat transfer inside horizontal circular enclosure with triangular cylinder at different angles of inclinatoin, Journal of Thermal Engineering 7(1) (2021) 240-254. [ 10 ] M.N. Özisik, Heat Conduction, 2nd ed., Wiley, Chapter 14 (1993). [ 11 ] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995. [ 12 ] J.H Lin, C.K. Chen, Y.T. Yang, The inverse estimation of the thermal boundary behavior of a heated cylinder normal to a laminar air stream, International journal of heat and mass transfer 43(21) (2000) 3991-4001. [ 13 ] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tubeplate finned-tube heat exchangers, International journal of heat and mass transfer 48(13) (2005) 2697-2707. [ 14 ] H.T .Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, International journal of heat and mass transfer 49(17-18) (2006) 3034-3044. [ 15 ] M.S. Mon, U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, International journal of heat and mass transfer 47(8-9) (2004) 1953-1964. [ 16 ] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, International journal of heat and mass transfer 109 (2017) 378-392. [ 17 ] H.T. Chen, Y.L. Hsieh, Y.F. Lin, K.C. Liu, Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data, International Journal of Heat and Mass Transfer 127 (2018) 541-554. [ 18 ] H.T. Chen, H.Y. Chou, H.C. Tseng, J.R. Chang, Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data, International Journal of Heat and Mass Transfer 127 (2018) 483-496. [ 19 ] H.T. Chen Y.L. Chang, P.Y. Lin, Y.J. Chiu, J.R. Chang, Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters, International Journal of Heat and Mass Transfer 118 (2018) 931-947. [ 20 ] H.T. Chen, W.X. Ma, P.Y. Line, Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: experimental and numerical study, International Journal of Heat and Mass Transfer 147 (2020) 118948. [ 21 ] H.T. Chen, Y.S. Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, International Journal of Heat and Mass Transfer 100 (2016) 320-331. [ 22 ] X. Xu, G. Sun, Z. Yu, Y. Hu, L. Fan, and K. Cen, Numerical investigation of laminar natural convective heat transfer from a horizontal triangular cylinder to its concentric cylindrical enclosure. International Journal of Heat and Mass Transfer 52(13-14) (2009) 3176-3186. [ 23 ] X. Xu, Z. Yu, Y. Hu, L. Fan, and K. Cen, A numerical study of laminar natural convective heat transfer around a horizontal cylinder inside a concentric air-filled triangular enclosure, International Journal of Heat and Mass Transfer 53(1-3) (2010) 345-355. [ 24 ] Z. T. Yu, X. Xu, Y. C. Hu, L. W. Fan, and K. F. Cen, Transient natural convective heat transfer from a heated triangular cylinder to its air-filled coaxial cylindrical enclosure, International Journal of Heat and Mass Transfer 53(19-20) (2010) 4296-4303. [ 25 ] Z. T. Yu, X. Xu, Y. C. Hu, L. W. Fan, and K. F. Cen, Transient natural convective heat transfer of a low-Prandtl-number fluid inside a horizontal circular cylinder with an inner coaxial triangular cylinder, International Journal of Heat and Mass Transfer 53(23-24) (2010) 5102-5110. [ 26 ] X. Xu, Z. T. Yu, Y. C. Hu, L. W. Fan, and K. F. Cen, Transient natural convective heat transfer of a low-Prandtl-number fluid from a heated horizontal circular cylinder to its coaxial triangular enclosure, International Journal of Heat and Mass Transfer 55(4) (2012) 995-1003. [ 27 ] ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg., PA 15317, 2013. [ 28 ] Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings 28(2) (1998) 137-144. [ 29 ] L. Prandtl, 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 5(2) (1925) 136- 139. [ 30 ] B.E. Launder, D.B. Spalding, Mathematical Method of Turbulence, Academic, London, (1972) 3-51. [ 31 ] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory., Journal of Scientific Computing 1(1) (1986) 3-51. [ 32 ] S. Sarkar and B. Lakshmanan, Application of a Reynolds stress turbulence model to the compressible shear layer, AIAA Journal 29(5) (1991) 743-749. [ 33 ] B.E. Launder, D.B. Spalding, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics Eng. 3 (1974) 269-289. [ 34 ] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32(8) (1994) 1598-1605. [ 35 ] D.C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA Journal 26(11) (1988) 1299-1310. [ 36 ] M.N. Özışık, Heat Conduction. , Wiley, 1993. [ 37 ] V.S. Arpaci, S.H. Kao, and A. Selamet, Introduction to Heat Transfer, Prentice Hall , 1999.
|