跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮碧雲
研究生(外文):BICH-VAN NGUYEN
論文名稱:結合物理化學改質方法以提高農業剩餘資材產製的 生物炭吸附氨氮能力之研究
論文名稱(外文):Combined Physicochemical Modification to Enhance Ammonium Adsorption Capacity of Biochar Prepared from Agricultural Residues
指導教授:蔡勇斌蔡勇斌引用關係
指導教授(外文):YUNG-PIN TSAI
口試委員:蔡勇斌陳谷汎林耀東林坤儀楊智其
口試委員(外文):YUNG-PIN TSAI
口試日期:2022-07-18
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:72
中文關鍵詞:生物炭銨鹽茭白筍殼香蕉皮氧化球磨
外文關鍵詞:biocharammoniawater bamboo huskbanana peeloxidationball-milling
DOI:doi:10.6837/ncnu202200211
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在水和廢水中,高濃度的氨存在於農田中為常見的活性氮 (N) 形式,其毒性對農業永續性和人類健康構成巨大威脅,因此應予以去除。在此研究中,選用農業剩餘資材包含茭白筍殼和香蕉皮來製作生物炭,用於水環境中的氨處理。過氧化氫 (H2O2) 用於氧化生物炭材料,再結合球磨技術以提高氨的吸附能力。較低的熱解溫度和較長的過氧化氫氧化時間,有助於提升茭白筍殼和香蕉皮生物炭的氨去除效率。經球磨與氧化處理的茭白筍殼生物炭 (Ba-OW) 與香蕉皮生物炭 (Ba-OB) 的最大氨吸附量 (Qmax) 分別為11.64 mg/g和9.03 mg/g。氨吸附過程符合Langmuir等溫吸附模式,亦符合擬二階動力模式,相關係數高 (R2 > 0.93)。此外,改質的生物炭在廣泛的溫度、溶液pH、吸附劑用量範圍和共存正離子的存在下,具良好氨吸附容量潛力。本研究亦證實氧化處理的生物炭 (OBCs) 和球磨處理的生物炭 (Ba-OBCs) 在吸附氨氮後,均具有釋放氨氮能力,適合先吸附去除水中氨氮後,再回歸農田做為含N-K的緩速釋型肥料,以促進植物生長,並減少化肥使用。
n water and wastewater, high ammonium levels, a common form of reactive nitrogen (N) in farmland, pose a great threat to sustainable agriculture and human health. It should be eliminated due to its toxicity. In this study, the agricultural residues involving water bamboo husks and banana peels were utilized to produce biochar for ammonium treatment in the aqueous environment. Hydrogen peroxide (H2O2) was applied to produce oxidized materials and then combined with ball-milling technique to enhance ammonium adsorption capacity. The low pyrolysis temperature with a longer oxidation time was more favorable for the ammonium removal efficiency of water bamboo husks and banana peels feedstocks. The maximum ammonium capacity (Qmax) of Ba-OW and Ba-OB achieved were 11.64 mg/g and 9.03 mg/g, respectively. The ammonium adsorption process fitted well the Langmuir isotherm and the pseudo-second kinetic models with high correlation coefficiency (R2 > 0.93). Additionally, modified BCs showed the great potential of ammonium adsorption capacity under a wide range of temperatures, pH solutions, the dosage of adsorbents, and the presence of co-existing positive ions. The proven ability of ammonium release of OBCs and Ba-OBCs made them promising adsorbents to be promoted as N-K-laden slow-fertilizer for plant growth.
Table of Contents
Acknowledgments i
摘要 ii
Abstract iii
Table of Contents iv
List of Tables vii
List of Figures viii
List of Abbreviations x
CHAPTER 1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
1.3 Research Contents 2
1.4 Thesis Structure 3
CHAPTER 2. LITERATURE REVIEW 4
2.1 Ammonium Removal by Adsorbent Materials 4
2.2 Biochar Preparation Techniques 6
2.2.1 Biochar Production Technology 6
2.2.2 Biochar Characterization 6
2.2.3 Key Parameters for Producing Biochar Aiming to Ammonium Adsorption 7
2.2.4 Modification Methodologies 8
2.3 Factors Influencing Ammonium Adsorption in Wastewater 10
2.3.1 Initial Solution pH 10
2.3.2 Co-existing Ions 10
2.3.3 Ambient Temperature 10
2.4 Mechanisms of Ammonium Removal by Biochar 11
2.4.1 Surface Area 11
2.4.2 Ion Exchange 11
2.4.3 Surface Functional Groups 11
2.5 Biochar-Based Slow-Release Fertilizer Potential 12
CHAPTER 3. RESEARCH METHOD 14
3.1 Materials Preparation 14
3.1.1 Biomass Feedstock Preparation 14
3.1.2 Biochar Materials Preparation 14
3.1.3 Target Pollutants and Chemical Substances Preparation 16
3.2 Biochars Characteristics 16
3.2.1 Biochar Yield 16
3.2.2 pH 16
3.2.3 Determination of pHzpc 16
3.2.4 Physicochemical Analyses 16
3.3. Adsorption Experiments 17
3.3.1 Investigating the Optimal Parameters for Modifying BCs 17
3.3.2 Modeling Studies 19
3.3.3 Evaluating the Factors Affecting the Adsorption Capacity 23
3.4 Desorption Experiments 25
3.5 Seed Germination 25
3.6 Measurement and Analytical Methods 26
CHAPTER 4. RESULTS & DISCUSSIONS 27
4.1 Biochars Characteristics 27
4.1.1 Biochar Yield 27
4.1.2 pH of Biochars 27
4.1.3 pHzpc of Biochars 28
4.1.4 Physicochemical Analyses 29
4.2 Adsorption Experiments 36
4.2.1 Optimal Parameters for Modifying BCs 36
4.2.2 Modeling Studies 40
4.2.3 Factors Affecting the Adsorption Capacity 44
4.3 Desorption Experiments 47
4.4 Seed Germination 48
4.5 Cost analysis 51
CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 52
5.1 Conclusions 52
5.2 Recommendations 53
References 54
Appendix 62
Appendix 1.1. The yield of W and B at different temperatures. 62
Appendix 1.2. The pHzpc of different adsorbents. 63
Appendix 2.1. The ammonium adsorption capacity of PBCs at different temperatures. 65
Appendix 2.2. The ammonium adsorption capacity of OBCs at different temperatures. 65
Appendix 2.3. The ammonium adsorption capacity of OBCs at different oxidation time. 65
Appendix 2.4. The ammonium adsorption capacity of ball-milled PBCs and ball-milled OBCs. 65
Appendix 3.1. Adsorption isotherms of ammonium by OBCs and Ba-OBCs. 65
Appendix 3.2. Adsorption kinetics of ammonium by OBCs and Ba-OBCs. 68
Appendix 3.3. Adsorption thermodynamics of ammonium by OBCs and Ba-OBCs. 70
Appendix 3.4. The effect of pH solution on the ammonium adsorption capacity of OBCs and Ba-OBCs. 70
Appendix 3.5. The effect of dosage on the ammonium adsorption capacity of OBCs and Ba-OBCs. 71
Appendix 3.6. The effect of co-existing cations on the ammonium adsorption capacity of OBCs and Ba-OBCs. 71
Appendix 4.1. The ammonium desorption capacity of OBCs and Ba-OBCs. 72

Aboul-Enein, A. M., Salama, Z. A., Gaafar, A. A., & Aly, H. F. (2016). Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. 11.
Ahmad, Z., Gao, B., Mosa, A., Yu, H., Yin, X., Bashir, A., Ghoveisi, H., & Wang, S. (2018). Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production, 180, 437–449.
Alves, B. S. Q., Fernandes, L. A., & Southard, R. J. (2021). Biochar-cadmium retention and its effects after aging with Hydrogen Peroxide (H2O2). Heliyon, 7(12), e08476.
Angar, Y., Djelali, N.-E., & Kebbouche-Gana, S. (2017). Investigation of ammonium adsorption on Algerian natural bentonite. Environmental Science and Pollution Research, 24(12), 11078–11089.
Askeland, M., Clarke, B., & Paz-Ferreiro, J. (2019). Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams. PeerJ, 7, e6784.
Branca, C., & Blasi, C. D. (2015). A lumped kinetic model for banana peel combustion. Thermochimica Acta, 614, 68–75.
Britto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology, 159(6), 567–584.
Cai, Y., Qi, H., Liu, Y., & He, X. (2016). Sorption/Desorption Behavior and Mechanism of NH4+ by Biochar as a Nitrogen Fertilizer Sustained-Release Material. Journal of Agricultural and Food Chemistry, 64(24), 4958–4964.
Chandra, S., Medha, I., & Bhattacharya, J. (2020). Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium ions in soil for timely and controlled release. Science of The Total Environment, 712, 136337.
Chen, M., Wang, F., Zhang, D., Yi, W., & Liu, Y. (2021). Effects of acid modification on the structure and adsorption NH4+-N properties of biochar. Renewable Energy, 169, 1343–1350.
Cho, D.-W., Kwon, G., Yoon, K., Tsang, Y. F., Ok, Y. S., Kwon, E. E., & Song, H. (2017). Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium. Energy Conversion and Management, 145, 1–9.
Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., & He, Z. (2016). Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Science of The Total Environment, 562, 517–525.
Cui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2016). Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of The Total Environment, 539, 566–575.
Dai, L., Lu, Q., Zhou, H., Shen, F., Liu, Z., Zhu, W., & Huang, H. (2021). Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 420, 126547.
Deng, Y., Huang, S., Dong, C., Meng, Z., & Wang, X. (2020). Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresource Technology, 303, 122853.
El Sharkawi, H. M., Tojo, S., Chosa, T., Malhat, F. M., & Youssef, A. M. (2018). Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil. Biomass and Bioenergy, 117, 154–160.
Faheem, Du, J., Kim, S. H., Hassan, M. A., Irshad, S., & Bao, J. (2020). Application of biochar in advanced oxidation processes: Supportive, adsorptive, and catalytic role. Environmental Science and Pollution Research, 27(30), 37286–37312.
Fan, Q., Sun, J., Chu, L., Cui, L., Quan, G., Yan, J., Hussain, Q., & Iqbal, M. (2018). Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere, 207, 33–40.
Fan, R., Chen, C., Lin, J., Tzeng, J., Huang, C., Dong, C., & Huang, C. P. (2019). Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource Technology, 272, 465–472.
Fang, J., Zhan, L., Ok, Y. S., & Gao, B. (2018). Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15–21.
Fidel, R. B., Laird, D. A., & Spokas, K. A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8(1), 17627.
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.
Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE, 9(12), e113888.
Gao, F., Xue, Y., Deng, P., Cheng, X., & Yang, K. (2015). Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chemical Speciation & Bioavailability, 27(2), 92–97.
Gaouar Yadi, M., Benguella, B., Gaouar-Benyelles, N., & Tizaoui, K. (2016). Adsorption of ammonia from wastewater using low-cost bentonite/chitosan beads. Desalination and Water Treatment, 57(45), 21444–21454.
Gong, H., Tan, Z., Zhang, L., & Huang, Q. (2019). Preparation of biochar with high absorbability and its nutrient adsorption–desorption behaviour. Science of The Total Environment, 694, 133728.
Han, B., Butterly, C., Zhang, W., He, J., & Chen, D. (2021). Adsorbent materials for ammonium and ammonia removal: A review. Journal of Cleaner Production, 283, 124611.
Hou, J., Huang, L., Yang, Z., Zhao, Y., Deng, C., Chen, Y., & Li, X. (2016). Adsorption of ammonium on biochar prepared from giant reed. Environmental Science and Pollution Research, 23(19), 19107–19115.
Hsiao, V. K. S., Cheng, T.-Y., Chen, C.-F., Shiu, H., Yu, Y.-J., Tsai, C.-F., Lai, P.-C., Tsai, M.-C., Yang, C.-C., Chien, H.-Y., Chen, K.-F., & Tsai, Y.-P. (2020). Optimized LED-Integrated Agricultural Facilities for Adjusting the Growth of Water Bamboo (Zizania latifolia). Applied Sciences, 10(4), 1330.
Hsu, D., Lu, C., Pang, T., Wang, Y., & Wang, G. (2019). Adsorption of Ammonium Nitrogen from Aqueous Solution on Chemically Activated Biochar Prepared from Sorghum Distillers Grain. Applied Sciences, 9(23), 5249.
Hu, X., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., Zhang, Y., & Ma, C. (2020). Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Science of The Total Environment, 707, 135544.
Jasuja, H., Peterson, G. W., Decoste, J. B., Browe, M. A., & Walton, K. S. (2015). Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chemical Engineering Science, 124, 118–124.
Jellali, S., El-Bassi, L., Charabi, Y., Usman, M., Khiari, B., Al-Wardy, M., & Jeguirim, M. (2022). Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. Journal of Environmental Management, 305, 114368.
Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 44(4), 1247–1253.
Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of The Total Environment, 505, 102–112.
Kumar, M., Xiong, X., Wan, Z., Sun, Y., Tsang, D. C. W., Gupta, J., Gao, B., Cao, X., Tang, J., & Ok, Y. S. (2020). Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology, 312, 123613.
Li, J., Yang, S., Du, Z., Wang, R., Yuan, L., Wang, H., & Wu, Z. (2019). Quantitative analysis of ammonia adsorption in Ag/AgI-coated hollow waveguide by mid-infrared laser absorption spectroscopy. Optics and Lasers in Engineering, 121, 80–86.
Liu, H., Dong, Y., Liu, Y., & Wang, H. (2010). Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. Journal of Hazardous Materials, 178(1–3), 1132–1136.
Liu, Z., Xue, Y., Gao, F., Cheng, X., & Yang, K. (2016). Removal of ammonium from aqueous solutions using alkali-modified biochars. Chemical Speciation & Bioavailability, 28(1–4), 26–32.
Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63.
Meng, Q., Zhang, Y., Meng, D., Liu, X., Zhang, Z., Gao, P., Lin, A., & Hou, L. (2020). Removal of sulfadiazine from aqueous solution by in-situ activated biochar derived from cotton shell. Environmental Research, 191, 110104.
Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191–202.
Ndoung, O. C. N., Figueiredo, C. C. de, & Ramos, M. L. G. (2021). A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon, 7(12), e08473.
Nguyen, T. T., Chen, H.-H., To, T. H., Chang, Y.-C., Tsai, C.-K., Chen, K.-F., & Tsai, Y.-P. (2021a). Development of Biochars Derived from Water Bamboo (Zizania latifolia) Shoot Husks Using Pyrolysis and Ultrasound-Assisted Pyrolysis for the Treatment of Reactive Black 5 (RB5) in Wastewater. Water, 13(12), 1615.
Nguyen, V.-T., Vo, T.-D.-H., Tran, T., Nguyen, T.-N., Le, T.-N.-C., Bui, X.-T., & Bach, L.-G. (2021b). Biochar derived from the spent coffee ground for ammonium adsorption from aqueous solution. Case Studies in Chemical and Environmental Engineering, 4, 100141.
Qin, Y., Zhu, X., Su, Q., Anumah, A., Gao, B., Lyu, W., Zhou, X., Xing, Y., & Wang, B. (2020). Enhanced removal of ammonium from water by ball-milled biochar. Environmental Geochemistry and Health, 42(6), 1579–1587.
Quach, N. K. N., Yang, W.-D., Chung, Z.-J., & Tran, H. L. (2017). The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance. Advances in Materials Science and Engineering, 2017, 1–9.
Rezvani, M., Najafpour, G. D., Mohammadi, M., & Zare, H. (n.d.). Amperometric biosensor for detection of triglyceride tributyrin based on zero point charge of activated carbon. Turk J Biol, 10.
Seruga, P., Krzywonos, M., Pyżanowska, J., Urbanowska, A., Pawlak-Kruczek, H., & Niedźwiecki, Ł. (2019). Removal of Ammonia from the Municipal Waste Treatment Effluents using Natural Minerals. Molecules, 24(20), 3633. =
Shakoor, M. B., Ye, Z.-L., & Chen, S. (2021). Engineered biochars for recovering phosphate and ammonium from wastewater: A review. Science of The Total Environment, 779, 146240.
Shang, L., Xu, H., Huang, S., & Zhang, Y. (2018). Adsorption of Ammonium in Aqueous Solutions by the Modified Biochar and its Application as an Effective N-Fertilizer. Water, Air, & Soil Pollution, 229(10), 320.
Shih, Y.-F. (2007). Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Materials Science and Engineering: A, 445–446, 289–295.
Takaya, C. A., Fletcher, L. A., Singh, S., Anyikude, K. U., & Ross, A. B. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, 518–527.
Vaičiukynienė, D., Mikelionienė, A., Baltušnikas, A., Kantautas, A., & Radzevičius, A. (2020). Removal of ammonium ion from aqueous solutions by using unmodified and H2O2-modified zeolitic waste. Scientific Reports, 10(1), 352.
Vu, T. M., Trinh, V. T., Doan, D. P., Van, H. T., Nguyen, T. V., Vigneswaran, S., & Ngo, H. H. (2017). Removing ammonium from water using modified corncob-biochar. Science of The Total Environment, 579, 612–619.
Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126.
Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2016). Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 6(48), 41907–41913.
Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y., & Wang, H. (2022). Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167.
Wang, T., Li, G., Yang, K., Zhang, X., Wang, K., Cai, J., & Zheng, J. (2021). Enhanced ammonium removal on biochar from a new forestry waste by ultrasonic activation: Characteristics, mechanisms and evaluation. Science of The Total Environment, 778, 146295.
Wang, Z., Li, J., Zhang, G., Zhi, Y., Yang, D., Lai, X., & Ren, T. (2020). Characterization of Acid-Aged Biochar and Its Ammonium Adsorption in an Aqueous Solution. Materials, 13(10), 2270.
Xia, S., Xiao, H., Liu, M., Chen, Y., Yang, H., & Chen, H. (2018). Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technology, 270, 189–197.
Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D. C. W., Ok, Y. S., & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539.
Xie, Y., Wang, L., Li, H., Westholm, L. J., Carvalho, L., Thorin, E., Yu, Z., Yu, X., & Skreiberg, Ø. (2022). A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis, 161, 105405.
Xu, Y., Li, Y., Bao, T., Zheng, X., Chen, W., & Wang, J. (2017). A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chemistry, 221, 114–122.
Xue, S., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., Zhang, Y., & Ma, C. (2019). Food waste based biochars for ammonia nitrogen removal from aqueous solutions. Bioresource Technology, 292, 121927.
Yang, H. I., Lou, K., Rajapaksha, A. U., Ok, Y. S., Anyia, A. O., & Chang, S. X. (2018). Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environmental Science and Pollution Research, 25(26), 25638–25647.
Yang, W., Liu, Y., & Pan, J. (2021). Experimental and kinetic study on Hg0 removal by microwave/hydrogen peroxide modified seaweed-based porous biochars. Environmental Technology & Innovation, 22, 101411.
You, S., Ok, Y. S., Chen, S. S., Tsang, D. C. W., Kwon, E. E., Lee, J., & Wang, C.-H. (2017). A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 246, 242–253.
Zeghioud, H., Fryda, L., Djelal, H., Assadi, A., & Kane, A. (2022). A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering, 47, 102801.
Zeng, Z., Zhang, S., Li, T., Zhao, F., He, Z., Zhao, H., Yang, X., Wang, H., Zhao, J., & Rafiq, M. T. (2013). Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University SCIENCE B, 14(12), 1152–1161.
Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O., Parikh, S. J., & Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303.
Zhang, M., Sun, R., Song, G., Wu, L., Ye, H., Xu, L., Parikh, S. J., Nguyen, T., Khan, E., Vithanage, M., & Ok, Y. S. (2022). Enhanced removal of ammonium from water using sulfonated reed waste biochar-A lab-scale investigation. Environmental Pollution, 292, 118412.
Zhang, Y., Chen, P., Liu, S., Peng, P., Min, M., Cheng, Y., Anderson, E., Zhou, N., Fan, L., Liu, C., Chen, G., Liu, Y., Lei, H., Li, B., & Ruan, R. (2017). Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology, 230, 143–151.
Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A. R., Chen, H., Hu, X., & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresource Technology, 337, 125432.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊