|
Aboul-Enein, A. M., Salama, Z. A., Gaafar, A. A., & Aly, H. F. (2016). Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. 11. Ahmad, Z., Gao, B., Mosa, A., Yu, H., Yin, X., Bashir, A., Ghoveisi, H., & Wang, S. (2018). Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production, 180, 437–449. Alves, B. S. Q., Fernandes, L. A., & Southard, R. J. (2021). Biochar-cadmium retention and its effects after aging with Hydrogen Peroxide (H2O2). Heliyon, 7(12), e08476. Angar, Y., Djelali, N.-E., & Kebbouche-Gana, S. (2017). Investigation of ammonium adsorption on Algerian natural bentonite. Environmental Science and Pollution Research, 24(12), 11078–11089. Askeland, M., Clarke, B., & Paz-Ferreiro, J. (2019). Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams. PeerJ, 7, e6784. Branca, C., & Blasi, C. D. (2015). A lumped kinetic model for banana peel combustion. Thermochimica Acta, 614, 68–75. Britto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology, 159(6), 567–584. Cai, Y., Qi, H., Liu, Y., & He, X. (2016). Sorption/Desorption Behavior and Mechanism of NH4+ by Biochar as a Nitrogen Fertilizer Sustained-Release Material. Journal of Agricultural and Food Chemistry, 64(24), 4958–4964. Chandra, S., Medha, I., & Bhattacharya, J. (2020). Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium ions in soil for timely and controlled release. Science of The Total Environment, 712, 136337. Chen, M., Wang, F., Zhang, D., Yi, W., & Liu, Y. (2021). Effects of acid modification on the structure and adsorption NH4+-N properties of biochar. Renewable Energy, 169, 1343–1350. Cho, D.-W., Kwon, G., Yoon, K., Tsang, Y. F., Ok, Y. S., Kwon, E. E., & Song, H. (2017). Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium. Energy Conversion and Management, 145, 1–9. Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., & He, Z. (2016). Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Science of The Total Environment, 562, 517–525. Cui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2016). Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of The Total Environment, 539, 566–575. Dai, L., Lu, Q., Zhou, H., Shen, F., Liu, Z., Zhu, W., & Huang, H. (2021). Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 420, 126547. Deng, Y., Huang, S., Dong, C., Meng, Z., & Wang, X. (2020). Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresource Technology, 303, 122853. El Sharkawi, H. M., Tojo, S., Chosa, T., Malhat, F. M., & Youssef, A. M. (2018). Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil. Biomass and Bioenergy, 117, 154–160. Faheem, Du, J., Kim, S. H., Hassan, M. A., Irshad, S., & Bao, J. (2020). Application of biochar in advanced oxidation processes: Supportive, adsorptive, and catalytic role. Environmental Science and Pollution Research, 27(30), 37286–37312. Fan, Q., Sun, J., Chu, L., Cui, L., Quan, G., Yan, J., Hussain, Q., & Iqbal, M. (2018). Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere, 207, 33–40. Fan, R., Chen, C., Lin, J., Tzeng, J., Huang, C., Dong, C., & Huang, C. P. (2019). Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource Technology, 272, 465–472. Fang, J., Zhan, L., Ok, Y. S., & Gao, B. (2018). Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15–21. Fidel, R. B., Laird, D. A., & Spokas, K. A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8(1), 17627. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE, 9(12), e113888. Gao, F., Xue, Y., Deng, P., Cheng, X., & Yang, K. (2015). Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chemical Speciation & Bioavailability, 27(2), 92–97. Gaouar Yadi, M., Benguella, B., Gaouar-Benyelles, N., & Tizaoui, K. (2016). Adsorption of ammonia from wastewater using low-cost bentonite/chitosan beads. Desalination and Water Treatment, 57(45), 21444–21454. Gong, H., Tan, Z., Zhang, L., & Huang, Q. (2019). Preparation of biochar with high absorbability and its nutrient adsorption–desorption behaviour. Science of The Total Environment, 694, 133728. Han, B., Butterly, C., Zhang, W., He, J., & Chen, D. (2021). Adsorbent materials for ammonium and ammonia removal: A review. Journal of Cleaner Production, 283, 124611. Hou, J., Huang, L., Yang, Z., Zhao, Y., Deng, C., Chen, Y., & Li, X. (2016). Adsorption of ammonium on biochar prepared from giant reed. Environmental Science and Pollution Research, 23(19), 19107–19115. Hsiao, V. K. S., Cheng, T.-Y., Chen, C.-F., Shiu, H., Yu, Y.-J., Tsai, C.-F., Lai, P.-C., Tsai, M.-C., Yang, C.-C., Chien, H.-Y., Chen, K.-F., & Tsai, Y.-P. (2020). Optimized LED-Integrated Agricultural Facilities for Adjusting the Growth of Water Bamboo (Zizania latifolia). Applied Sciences, 10(4), 1330. Hsu, D., Lu, C., Pang, T., Wang, Y., & Wang, G. (2019). Adsorption of Ammonium Nitrogen from Aqueous Solution on Chemically Activated Biochar Prepared from Sorghum Distillers Grain. Applied Sciences, 9(23), 5249. Hu, X., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., Zhang, Y., & Ma, C. (2020). Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Science of The Total Environment, 707, 135544. Jasuja, H., Peterson, G. W., Decoste, J. B., Browe, M. A., & Walton, K. S. (2015). Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chemical Engineering Science, 124, 118–124. Jellali, S., El-Bassi, L., Charabi, Y., Usman, M., Khiari, B., Al-Wardy, M., & Jeguirim, M. (2022). Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. Journal of Environmental Management, 305, 114368. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 44(4), 1247–1253. Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., & Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of The Total Environment, 505, 102–112. Kumar, M., Xiong, X., Wan, Z., Sun, Y., Tsang, D. C. W., Gupta, J., Gao, B., Cao, X., Tang, J., & Ok, Y. S. (2020). Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology, 312, 123613. Li, J., Yang, S., Du, Z., Wang, R., Yuan, L., Wang, H., & Wu, Z. (2019). Quantitative analysis of ammonia adsorption in Ag/AgI-coated hollow waveguide by mid-infrared laser absorption spectroscopy. Optics and Lasers in Engineering, 121, 80–86. Liu, H., Dong, Y., Liu, Y., & Wang, H. (2010). Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. Journal of Hazardous Materials, 178(1–3), 1132–1136. Liu, Z., Xue, Y., Gao, F., Cheng, X., & Yang, K. (2016). Removal of ammonium from aqueous solutions using alkali-modified biochars. Chemical Speciation & Bioavailability, 28(1–4), 26–32. Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63. Meng, Q., Zhang, Y., Meng, D., Liu, X., Zhang, Z., Gao, P., Lin, A., & Hou, L. (2020). Removal of sulfadiazine from aqueous solution by in-situ activated biochar derived from cotton shell. Environmental Research, 191, 110104. Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191–202. Ndoung, O. C. N., Figueiredo, C. C. de, & Ramos, M. L. G. (2021). A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon, 7(12), e08473. Nguyen, T. T., Chen, H.-H., To, T. H., Chang, Y.-C., Tsai, C.-K., Chen, K.-F., & Tsai, Y.-P. (2021a). Development of Biochars Derived from Water Bamboo (Zizania latifolia) Shoot Husks Using Pyrolysis and Ultrasound-Assisted Pyrolysis for the Treatment of Reactive Black 5 (RB5) in Wastewater. Water, 13(12), 1615. Nguyen, V.-T., Vo, T.-D.-H., Tran, T., Nguyen, T.-N., Le, T.-N.-C., Bui, X.-T., & Bach, L.-G. (2021b). Biochar derived from the spent coffee ground for ammonium adsorption from aqueous solution. Case Studies in Chemical and Environmental Engineering, 4, 100141. Qin, Y., Zhu, X., Su, Q., Anumah, A., Gao, B., Lyu, W., Zhou, X., Xing, Y., & Wang, B. (2020). Enhanced removal of ammonium from water by ball-milled biochar. Environmental Geochemistry and Health, 42(6), 1579–1587. Quach, N. K. N., Yang, W.-D., Chung, Z.-J., & Tran, H. L. (2017). The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance. Advances in Materials Science and Engineering, 2017, 1–9. Rezvani, M., Najafpour, G. D., Mohammadi, M., & Zare, H. (n.d.). Amperometric biosensor for detection of triglyceride tributyrin based on zero point charge of activated carbon. Turk J Biol, 10. Seruga, P., Krzywonos, M., Pyżanowska, J., Urbanowska, A., Pawlak-Kruczek, H., & Niedźwiecki, Ł. (2019). Removal of Ammonia from the Municipal Waste Treatment Effluents using Natural Minerals. Molecules, 24(20), 3633. = Shakoor, M. B., Ye, Z.-L., & Chen, S. (2021). Engineered biochars for recovering phosphate and ammonium from wastewater: A review. Science of The Total Environment, 779, 146240. Shang, L., Xu, H., Huang, S., & Zhang, Y. (2018). Adsorption of Ammonium in Aqueous Solutions by the Modified Biochar and its Application as an Effective N-Fertilizer. Water, Air, & Soil Pollution, 229(10), 320. Shih, Y.-F. (2007). Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Materials Science and Engineering: A, 445–446, 289–295. Takaya, C. A., Fletcher, L. A., Singh, S., Anyikude, K. U., & Ross, A. B. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, 518–527. Vaičiukynienė, D., Mikelionienė, A., Baltušnikas, A., Kantautas, A., & Radzevičius, A. (2020). Removal of ammonium ion from aqueous solutions by using unmodified and H2O2-modified zeolitic waste. Scientific Reports, 10(1), 352. Vu, T. M., Trinh, V. T., Doan, D. P., Van, H. T., Nguyen, T. V., Vigneswaran, S., & Ngo, H. H. (2017). Removing ammonium from water using modified corncob-biochar. Science of The Total Environment, 579, 612–619. Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126. Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2016). Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 6(48), 41907–41913. Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y., & Wang, H. (2022). Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167. Wang, T., Li, G., Yang, K., Zhang, X., Wang, K., Cai, J., & Zheng, J. (2021). Enhanced ammonium removal on biochar from a new forestry waste by ultrasonic activation: Characteristics, mechanisms and evaluation. Science of The Total Environment, 778, 146295. Wang, Z., Li, J., Zhang, G., Zhi, Y., Yang, D., Lai, X., & Ren, T. (2020). Characterization of Acid-Aged Biochar and Its Ammonium Adsorption in an Aqueous Solution. Materials, 13(10), 2270. Xia, S., Xiao, H., Liu, M., Chen, Y., Yang, H., & Chen, H. (2018). Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technology, 270, 189–197. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D. C. W., Ok, Y. S., & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539. Xie, Y., Wang, L., Li, H., Westholm, L. J., Carvalho, L., Thorin, E., Yu, Z., Yu, X., & Skreiberg, Ø. (2022). A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis, 161, 105405. Xu, Y., Li, Y., Bao, T., Zheng, X., Chen, W., & Wang, J. (2017). A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chemistry, 221, 114–122. Xue, S., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., Zhang, Y., & Ma, C. (2019). Food waste based biochars for ammonia nitrogen removal from aqueous solutions. Bioresource Technology, 292, 121927. Yang, H. I., Lou, K., Rajapaksha, A. U., Ok, Y. S., Anyia, A. O., & Chang, S. X. (2018). Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environmental Science and Pollution Research, 25(26), 25638–25647. Yang, W., Liu, Y., & Pan, J. (2021). Experimental and kinetic study on Hg0 removal by microwave/hydrogen peroxide modified seaweed-based porous biochars. Environmental Technology & Innovation, 22, 101411. You, S., Ok, Y. S., Chen, S. S., Tsang, D. C. W., Kwon, E. E., Lee, J., & Wang, C.-H. (2017). A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 246, 242–253. Zeghioud, H., Fryda, L., Djelal, H., Assadi, A., & Kane, A. (2022). A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering, 47, 102801. Zeng, Z., Zhang, S., Li, T., Zhao, F., He, Z., Zhao, H., Yang, X., Wang, H., Zhao, J., & Rafiq, M. T. (2013). Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. Journal of Zhejiang University SCIENCE B, 14(12), 1152–1161. Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O., Parikh, S. J., & Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303. Zhang, M., Sun, R., Song, G., Wu, L., Ye, H., Xu, L., Parikh, S. J., Nguyen, T., Khan, E., Vithanage, M., & Ok, Y. S. (2022). Enhanced removal of ammonium from water using sulfonated reed waste biochar-A lab-scale investigation. Environmental Pollution, 292, 118412. Zhang, Y., Chen, P., Liu, S., Peng, P., Min, M., Cheng, Y., Anderson, E., Zhou, N., Fan, L., Liu, C., Chen, G., Liu, Y., Lei, H., Li, B., & Ruan, R. (2017). Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology, 230, 143–151. Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A. R., Chen, H., Hu, X., & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresource Technology, 337, 125432.
|