|
[1]D. Shamiryan, T. Abell, F. Iacopi, K. Maex, Low-k dielectric materials, Materials Today 7 (2004) 36. [2]劉柏村, 低介電常數材料再多層導體連線技術整合應用, 電子月刊 3 (2002) 124. [3]W.T. Tseng, Y.T. Hsieh, C.F. Lin, CMP of fluorinated silicon dioxide:Is it necessary and feasible, Solid State Technology 40 (1997) 61. [4]M.P. Petkov, Low-k interlevel dielectrics technology, Materials Today 5 (2003) 1. [5]D. Parmanik, Integrating dielectrics into sub-half-micron multilevel metallization circuits, Solid State Technology 9 (1995) 69. [6]B.D. Hatton, K. Landskron, W.J. Hunks, M.R. Bennett, D. Shukaris, D.D. Perovic, G.A. Ozin, Materials chemistry for low-k materials, Materials Today 9 (2006) 22. [7]P. Verdonck, V. Samara, A. Goodyear, A. Ferchichi, E.V. Besien, M. R. Baklanov, N. Braithwaite, Influence of the ion bombardment of O2 plasmas on low-k materials, Thin Solid Films 520 (2011) 464. [8]Q.Y. Han, B. White, I.L. Berry, C. Waldfried, O. Escorcia, Activated He:H2 strip of photoresist over porous low-k materials, Solid State Phenom 341 (2005) 103. [9]K. Lionti, W. Volksen, T. Magbitang, M. Darnon, G. Dubois, Toward Successful Integration of Porous Low-k Materials: Strategies Addressing Plasma Damage, ECS J. Solid State Sci. Technol. 4(1) (2015) N3071. [10]M.R. Baklanov, J.F. DeMarneffe, D. Shamiryan, A.M. Urbanowicz, H. Shi, T.V. Rakhimova, H. Huang, P. S. Ho, Plasma processing of low-k dielectrics, J. Appl. Phys. 113 (2013) 041101-1. [11]R.J.O.M. Hoofman, G.J.A.M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M. R. Baklanov, Z. Tokei, G.P. Beyer, Challenges in the implementation of low-k dielectrics in the back-end of line, Microelectronic Engineering 80 (2005) 337. [12]H.C. Tsai, Y.S. Chang, S.Y. Chang, Effect of plasma treatments on interface adhesion between SiOCH ultra-low-k film and SiCN etch stop layer, Microelectronic Engineering 85 (2008) 1658. [13]C.C. Yang, S. Cohen, T. Shaw, P.C. Wang, T. Nogami, D. Edelstein, Characterization of Ultrathin-Cu/Ru(Ta)/TaN Liner Stack for Copper Interconnects, IEEE Electron Device Lett. 31 (2010) 722. [14]J.W. Pyun, W.C. Baek, J. Im, P.S. Ho, L. Smith, K. Neuman, K.P. feifer, Effect of barrier process on electromigration reliability of Cu/porous low-???? interconnects, J. Appl. Phys. 100 (2006) 023532. [15]K.L. Fang, B.Y. Tsui, Metal drift induced electrical instability of porous low dielectric constant film, J. Appl. Phys. 93 (2003) 5546. [16]M. He , T.M. Lu, Metal-Dielectric Interfaces in Giga scale Electronics (Springer, Berlin) Springer Series in Materials Science 157,1st edn ed. (2012). [17]S.P. Murarka, I.V. Verner, R.J. Gutmann, Copper - Fundamental Mechanisms for Microelectronic Applications, Wiley Inter-science (2000) 247. [18]K. Barmak, A. Gungor, C. Cabral Jr., J.M.E. Harper, Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity, J. Appl. Phys. 94(3) (2003) 1605. [19]T. Suwwan de Felipe, S.P. Murarka, S. Bedell, W.A. Lanford, Capacitance–voltage, current–voltage, and thermal stability of copper alloyed with aluminium or magnesium, Thin Solid Films 335(1–2) (1998) 49. [20]P.I. Wang, S.P. Murarka, G.R. Yang, T.M. Lu, Evolution of the Cu-Al Alloy/ SiO2 Interfaces during Bias Temperature Stressing, J. Electrochem. Soc. 148 (2001) G78. [21]R. Nandan, S.P. Murarka, A. Pant, C. Shepard, W.A. Lanford, Stability of sputter deposited Al-Cu bilayers on SiO2, MRS Online Proceedings Library 260 (1991) 929. [22]T. Suwwan de Felipe, S.P. Murarka, S. Bedell, W.A. Lanford, Bias-temperature stability of the Cu(Mg)/SiO2/p-Si metal-oxide-semiconductor capacitors, J. Vac, Sci. Technol. B 15(6) (1997) 1987. [23]W. Lee, H. Cho, B. Cho, H.J. Yang, J. Kim, Y.S. Kim, W.G. Jung, H. Kwon, J. Lee, P.J. Reucroft, C. Lee, E. Lee, J. Lee, Thermal stability enhancement of Cu interconnects by employing a self-aligned MgO layer, J. Appl. Phys. 40 (2001) 2408. [24]M.J. Frederick and G. Ramanath, Kinetics of interfacial reaction in Cu-Mg alloy films on SiO2, J. Appl. Phys. 95(1) (2004) 363. [25]M.J. Frederick, G. Ramanath, Interfacial phase formation in Cu-Mg alloy films on SiO2, J. Appl. Phys. 95(6) (2004) 3202. [26]J. Koike, M. Wada, Self-forming diffusion barrier layer in Cu-Mn alloy metallization, Appl. Phys. Lett. 87(4) (2005) 041911. [27]J. Iijima, Y. Fujii, K. Neishi, J. Koike, Resistivity reduction by external oxidation of Cu-Mn alloy films for semiconductor interconnect application, J. Vac. Sci. Technol. B 27(4) (2009) 1963. [28]J. Koike, M. Haneda, J. Iijima, M. Wada, Cu alloy metallization for self-forming barrier process, In IRPS , p. 161 (2006) . [29]M. Ueki, M. Hiroi, N. Ikarashi, T. Onodera, N. Furutake, N. Inoue, Y. Hayashi, Effects of Ti addition on via reliability in Cu dual damascene Cu dual damascene interconnects, IEEE Trans. Electron Devices 51(11) (2004) 1883. [30]S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, M. Murakami, Formation of Ti diffusion barrier layers in Thin Cu(Ti) alloy films, J. Electron. Mater. 34(5) (2005) 592. [31]H. Xiao, Introduction to Semiconductor Manufacturing Technology,USA Ed Edition 2001 [32]C. Domingo, E. Loste, J. Fraile, Grafting of trialkoxysilane on the surface of nanoparticles by conventional wet alcoholic and supercritical carbon dioxide deposition methods, Journal of Supercritical Fluids 37(1) (2006) 72. [33]Z. Liu, Q. Wang, X. Liu, Effects of amino-terminated self-assembled monolayers on nucleation and growth of chemical vapor-deposited copper films, Thin Solid Films 517(2) (2008) 635. [34]A. Sellers et al., Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers, J. Am. Chem. Soc. 115 (1993) 9389. [35]Y.M. Zhou, M.Z. He, Z. Xie, Diffusion barrier performance of novel Ti/TaN double layers for Cu metallization, Appl. Surf. Sci. 315 (2014) 353. [36]陳松德和陳錦山, 自組裝單層技術在先進銅金屬化製程的應用發展, 真空科技 33 (2020) 40. [37]A. Maestre Caro, Y. Travaly, G. Maes, G. Borghs, S. Armini, Enabling Cu-Cu connection in (dual) damascene interconnects by selective deposition of two different SAM molecules, IEEE, International Conference on Interconnect Technology (2011) 1. [38]L. Hou, J. Derakhshandeh, S. Armini, C. Gerets, I.D. Preter, K.J. Rebibis, A. Miller, I.D. Wolf, E. Beyne, SAMs (self-assembled monolayers) passivation of cobalt microbumps for 3D stacking of Si chips, Advanced Metallization Conference (2016). [39]A. Brady-Boyda, R. O’Connora, S. Arminib, V. Selvarajua, G. Hughesa, J. Bogan, On the use of (3-trimethoxysilylpropyl) diethylenetriamine self-assembled monolayers as seed layers for the growth of Mn based copper diffusion barrier layers, Applied Surface Science 427 (2018) 260. [40]劉傳璽和陳進來, 半導體元件物理與製程理論與實務, 第三章 (2011) 77. [41]鄭義榮,李志延和彭維凡, 淺談半導體內連接導線可靠度工程技術, 真空科技 33 (2020) 33. [42]M.J. Frederick, R. Goswami, G. Ramanath, Sequence of Mg segregation, grain growth, and interfacial MgO formation in Cu–Mg alloy films on SiO2 during vacuum annealing, J. Appl. Phys. 93 (2003) 5966. [43]C. Byrne, B. Brennan, J. Bogan, G. Hughes, A.P. McCoy, In Situ XPS Chemical Analysis of MnSiO3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures, ACS Appl. Mater. Interfaces 8 (2016) 2470. [44]Y.L. Cheng, H.C. Huang, C.Y. Lee, G.S. Chen, J.S. Fang, Comparison of Cu and Co Integration with Porous Low-k SiOCH Dielectrics, Thin Solid Films 704 (2020) 138010. [45]L. Zhao, H. Volders, M. Baklanov, Z. Tokei, M. Pantouvaki, C.J. Wilson, E.V. Besien, G.P. Beyer, C. Claeys, Study of metal barrier deposition-induced damage to porous low-k materials, Microelectronic Engineering 88 (2011) 3030. [46]M. Hosseini, D. Ando, Y. Sutou, J. Koike, Co and CoTix for contact plug and barrier layer in integrated circuits, Microelectronic Engineering 189 (2018) 78. [47]L. Zhao, M. Pantouvaki, K. Croes, Z. Tokei, Y. Barbarin, C. J. Wilson, M.R. Baklanov, G.P. Beyer, C. Claeys, Appl. Phys. Lett. 99 (2011) 222110. [48]B. Li, T.D. Sullivan, T.C. Lee, D. Badami, Reliability challenges for copper interconnects, Microelectronics Reliability 44 (2004) 365. [49]Y.L. Cheng, B.H Lin, S.W. Huang, Effect of O2 plasma treatment on physical, electrical, and reliability characteristics of low dielectric constant materials, Thin Solid Films 572 (2014) 44. [50]J. Shoeb, M.J. Kushner, Damage by radicals and photons during plasma cleaning of porous low-k SiOCH. II. Water uptake and change in dielectric constant, Journal of Vacuum Science & Technology A 30 (2012) 041304. [51]P.J. Launer, Infrared Analysis of Organosilicon Compounds, Silicon Compounds: Silanes & Silicones, 3 (2013) 175. [52]X.X. Zhang, J.N. Myers, Q. Lin, D. Bielefeld, Z. Chen, Probing the molecular structures of plasma-damaged and surface-repaired low-k dielectrics, Phys. Chem. Chem. Phys. 17 (2015) 26130. [53]M.R. Baklanov, J.F. de Marneffe, D. Shamiryan, A.M. Urbanowicz, H. Shi, T.V. Rakhimova, H. Huang, P.S. Ho, Plasma processing of low-k dielectrics, J. Appl. Phys. 113 (2013) 041101-1. [54]A. Grill, Plasma enhanced chemical vapor deposited SiCOH dielectrics: from low-k to extreme low-k interconnect materials, J. Appl. Phys. 93 (2003) 1785. [55]H. Shi, H. Huang, J. Bao, J. Liu, P.S. Ho, Role of ions, photons, and radicals in inducing plasma damage to ultra low-k dielectrics, J. Vac. Sci. Technol. B 30 (2012) 011206-1. [56]J.R. Lloyd, E. Liniger, T.M. Shaw, Simple model for time-dependent dielectric breakdown in inter- and intralevel low-k dielectrics, J. Appl. Phys. 98 (2005) 084109. [57]J.W. McPherson, Time dependent dielectric breakdown physics, Models revisited, Microelectronics Reliability 52 (2012) 1753. [58]M. Hosseini, D. Ando, Y. Sutou, J. Koike, Co and CoTix for contact plug and barrier layer in integrated circuits, Microelectronic. Engineering 189 (2018) 78. [59]M. Hosseini, J. Koike, Amorphous CoTix as a liner/diffusion barrier material for advanced copper metallization, J. Alloys Compd. 721 (2017) 134. [60]I. Fisher, M. Eizenberg, Copper ion diffusion in porous and nonporous SiO2-based dielectrics using bias thermal stress and thermal stress tests, Thin Solid Films 516 (2008) 4111.
|