跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳慶哲
研究生(外文):Ching-Che Chen
論文名稱:金(111)電化學界面聚噻吩以及含噻吩官能基分子的吸附及反應
論文名稱(外文):Gold(111) Electrochemical Interface Adsorption and Reaction of Polythiophene and Molecules Containing Thiophene Functional Groups
指導教授:姚學麟
指導教授(外文):Shueh-Lin Yau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:111
中文關鍵詞:循環伏安法掃描隧道顯微鏡三噻吩自組裝
外文關鍵詞:CVSTMterthiopheneself-assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
噻吩及其衍生物可廣泛用於製作光電材料及元件,這些分子在金電極上的空
間結構和吸附位向會影響兩者之間的電荷傳輸,進而影響到發光二極體、有機
薄膜電晶體(OTFTs)的性能。同時,有機相或水相中通過陽極氧化可製備聚噻
吩,此材料已被廣泛的應用於光電的研究,我們利用循環伏安法和掃描式電子
穿隧顯微鏡,來研究噻吩衍生物在金(111)電極上的吸附結構與氧化聚合。
金(111)電極上吸附的三噻吩(TT)的結果,顯示 TT 分子與金載體之間
的相互作用、電位、陰離子對 TT 吸附結構和氧化的影響。在硫酸中,電位往
正移動後, TT 分子和硫酸氫根陰離子的覆蓋率增加。STM 顯示在 0.5 V 時產
生(19  6) - TT 的結構,但其二維結構及其吸附位向會隨著電位而改變。相比
之下,在過氯酸中,STM 顯示無序的 TT 結構,這種對比也顯現於 CV 結果,
由此推論 TT 與硫酸氫根有吸引的作用力。STM 也顯示 TT 單體在金(111)電極
上的氧化聚合,電解液的 pH 值對 TT 氧化聚合反應有重要的影響。在 pH5 硫
酸鹽中,可以產生較長(~200 Å)的聚噻吩分子鍊,呈現直線或曲線狀,這和分
子鏈中噻吩的反式和順式構型有關。在 pH 1 的硫酸中,聚噻吩只有幾十埃。
在 0.1 M 過氯酸和硫酸中,DNT-Ph 分子形成有序的吸附分子膜。電位對
DNT-Ph 的吸附結構有極大影響。有序 DNT-Ph 結構僅在-0.1 和 0.4 V(Ag/AgCl)
之間,在金的重排相上觀察到。在-0.15 V, DNT-Ph 從金電極上脫附。在正電
位,金表面逐漸變成 1  1,有序的 DNT-Ph 結構被破壞,分子變得更加緊密並
重新排列。DNT-Ph 主要以其分子平面平行於金電極表面的方式吸附,STM 圖
像中揭示了 DNT-Ph 分子結構的細節,連接噻吩的單鍵,因旋轉產生了 DNTPh 吸附分子的兩種幾何異構物。
為更進一步了解分子結構對吸附的影響,STM 也用來研究 Ph(DTP)2 分子,
發現在過氯酸和硫酸中,重排以及 1X1 相都有整齊的吸附結構,在重排線上的
吸附比在 1X1 上快速且緊密,在硫酸中發現 Ph(DTP)2 在負電位,會於重排線上
產生二層分子結構。
Thiophene and its derivatives have been important constituents in the study of
organic semiconductors and solar cell research. Their spatial structures and adsorption
configuration can affect the charge transport between molecules and gold electrode,
which is an important process in the operation of light-emitting diodes, organic thinfilm transistors (OTFTs), etc. Polythiophenes have been prepared by anodization in
organic or aqueous phases containing thiophenes or oligothiophenes. Cyclic
voltammetry (CV) and scanning tunneling microscopy (STM) were used to study the
adsorption and polymerization of thiophene and its derivatives on gold (111)
electrode.
First, the adsorption of terthiophene (TT) on the Au (111) electrode was
investigated as a function of potential and anion coadsorption. In H2SO4, we obtained
molecular resolution STM images to show that the pre-deposited TT layer became
more compact with more positive potential. Judged from the STM appearance of TT
admolecule and intermolecular spacing, TT molecule lay horizontally. In contrast, in
perchloric acid, TT admolecules were poorly ordered. This contrast also manifested in
the CV results, showing multiple sharp peaks in H2SO4, but featureless in HClO4.
STM also showed the oxidative polymerization of TT monomers on Au(111)
electrodes, producing ribbon-like oligothiophenes with molecular sizes varying
between 1 and 20 nm in pH 1 and 5 sulfate media. The oligothiophenes could be
linear or curved, which suggests the possible trans and cis configurations of
thiophenes in the molecular chains. High pH value appeared to benefit the formation
of oligothiophenes.
In 0.1 M H2SO4 and HClO4, DNT-Ph molecule was adsorbed in highly ordered
arrays on the reconstructed Au(111). Potential control affected greatly the adsorption
structure of DNT-Ph, as ordered DNT-Ph structures were only observed between −0.1
and 0.4 V. DNT-Ph was desorbed at -0.15 V, whereas the ordered DNT-Ph structures
were destroyed, as Au(111) surface became (1  1) at positive potential. DNT-Ph was
mainly adsorbed with its molecular plane parallel to the surface of the gold electrode.
High resolution STM imaging revealed details in the molecular conformations of
DNT-Ph, as two geometric isomers resulting from rotating the single bond connecting
the thiophene were distinguished by the STM.
In 0.1 M perchloric acid and sulfuric acid, the adsorption of Ph(DTP)2 molecule on
Au(111) electrode was also examined by using in situ STM. Ordered molecular
adlayers were found on the reconstructed and (1  1) phases of the Au(111) electrode
in a wide potential region. The spatial structure of Ph(DTP)2 was formed faster and
more compact on the reconstructed Au(111) than (1  1) phase in sulfuric acid at
negative potential. Local bilayer structure of was observed on the reconstructed lines.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 XII
第一章 緒論 1
1-1 有機薄膜電晶體介紹 1
1-1-1有機薄膜電晶體導論 1
1-1-2有機半導體的特性 1
1-1-3有機薄膜應用 2
1-2 聚噻吩(Polythiophene)簡介 2
1-3 電化學方法合成聚噻吩之研究 3
1-4 分子自組裝 4
1-5研究動機 5
第二章 實驗部分 9
2-1 化學藥品 9
2-1-1 有機分子 9
2-2 實驗用氣體 9
2-3 金屬線材 10
2-4 實驗儀器 10
2-4-1 循環伏安儀 (Cyclic Voltammetry, CV) 10
2-4-2 掃描式穿隧電子顯微鏡 (Scanning Tunneling Microscope,STM) 10
2-4-3 研磨機 (Grinder Polisher) 11
2-4-4 超音波震盪器 (Ultrasonic Vibrator) 11
2-5 實驗步驟 14
2-5-1 金(111)、(100)CV單晶電極製備[14] 14
2-5-2 分子膜的製備 14
2-5-3 循環伏安法(CV)的前處理 15
2-5-4 金(111)STM 電極製備 15
2-5-5 電化學掃描式穿隧電子顯微鏡(EC-STM)的前處理 15
2-5-6 STM 探針製備 16
第三章 探討三噻吩在金(111)電極上的吸附情形 18
3-1 電位控制三噻吩(Terthiophene,TT)在硫酸下吸附結構 18
3-1-1 TT分子順反異構物 18
3-1-2 10μM terthiophene修飾於金(111)之CV圖 18
3-1-3 1mM terthiophene修飾於金(111)之CV圖 19
3-1-4 10μM terthiophene修飾於金(111)之STM圖 23
3-1-5 1mM terthiophene修飾於金(111)之STM圖 30
3-1-6 TT在不同濃度硫酸鹽介質中的氧化聚合作用CV圖 37
3-1-7 TT在不同濃度硫酸鹽介質中的氧化聚合作用STM圖 39
3-2 電位控制三噻吩(Terthiophene,TT)在過氯酸下吸附結構 47
3-2-1 10μM terthiophene修飾於金(111)之CV圖 47
3-2-2 10μM terthiophene修飾於金(111)之STM圖 49
第四章 探討DNT-Ph在金(111)電極上的吸附情形 51
4-1電位控制DNT-Ph在不同酸下的吸附 51
4-1-1 10µM DNT-Ph 在不同酸下修飾於金(111)之CV圖 51
4-1-2 DNT-Ph單晶結構與順反異構物 55
4-1-3 10µM DNT-Ph在0.1M過氯酸下修飾於金(111)之STM圖 57
4-1-4電位控制下DNT-Ph在金(111)上吸附的空間結構 58
4-1-5 10µM DNT-Ph在0.1M硫酸下修飾於金(111)之STM圖 64
4-1-6 10µM DNT-Ph在0.1M鹽酸下修飾於金(111)之STM圖 66
第五章 探討Ph(DTP)2在金(111)電極上的吸附情形 69
5-1電位控制Ph(DTP)2在不同酸下的吸附 69
5-1-1 10µM Ph(DTP)2 在不同酸下修飾於金(111)之CV圖 69
5-1-3 10µM Ph(DTP)2 在過氯酸下修飾於金(111)之STM圖 73
5-1-4 10µM Ph(DTP)2 在硫酸下修飾於金(111)之STM圖 80
第六章 結論 83
第七章 參考文獻 85
第八章 補充資料 90
8-1 電位控制 DNT-Ph 在過氯酸下修飾於金(100) 90
8-1-1 10µM DNT-Ph 在過氯酸下修飾於金(100)之CV圖 90
8-1-2 10µM DNT-Ph在過氯酸下修飾於金(100)之STM圖 92
1. Afraj, S.N., et al., Heteroalkyl-Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport. Advanced Functional Materials. n/a(n/a): p. 2200880.
2. Afraj, S.N., et al., 2,3-Diphenylthieno[3,4-b]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. ACS Energy Letters, 2022. 7(6): p. 2118-2127.
3. Boné, T.G., et al., Demonstrating the Impact of the Adsorbate Orientation on the Charge Transfer at Organic–Metal Interfaces. The Journal of Physical Chemistry C, 2021. 125(17): p. 9129-9137.
4. Ahmad, S., et al., Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids. Nanoscale, 2011. 3(1): p. 251-257.
5. Camarada, M.B., et al., Oxidation potential of thiophene oligomers: Theoretical and experimental approach. Journal of Polymer Science Part B: Polymer Physics, 2011. 49(24): p. 1723-1733.
6. Kaloni, T.P., et al., Polythiophene: From Fundamental Perspectives to Applications. Chemistry of Materials, 2017. 29(24): p. 10248-10283.
7. Chaı̂net, E. and M. Billon, In situ study of polypyrrole morphology by STM: effect of the doping state. Journal of Electroanalytical Chemistry, 1998. 451(1): p. 273-277.
8. Bai, S., et al., Variations in Surface Morphologies, Properties, and Electrochemical Responses to Nitro-Analyte by Controlled Electropolymerization of Thiophene Derivatives. ACS Applied Materials & Interfaces, 2018. 10(13): p. 11319-11327.
9. Bazzaoui, E.A., S. Aeiyach, and P.C. Lacaze, Low potential electropolymerization of thiophene in aqueous perchloric acid. Journal of Electroanalytical Chemistry, 1994. 364(1): p. 63-69.
10. Chen, S., et al., In situ STM study of the adsorption and electropolymerization of o-, m-, and p-ethylaniline molecules on Au(111) electrode. Physical Chemistry Chemical Physics, 2010. 12(32): p. 9276-9284.
11. Alévêque, O., E. Levillain, and L. Sanguinet, Spectroelectrochemistry on electroactive self-assembled monolayers: Cyclic voltammetry coupled to spectrophotometry. Electrochemistry Communications, 2015. 51: p. 108-112.
12. Chakrabarty, R., P.S. Mukherjee, and P.J. Stang, Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chemical reviews, 2011. 111(11): p. 6810-6918.
13. Chia, A.S.-c. and R.F. Trimble, ACID-BASE PROPERTIES OF SOME PYRAZINES1. The Journal of Physical Chemistry, 1961. 65(5): p. 863-866.
14. Bohnen, K.P. and D.M. Kolb, Charge- versus adsorbate-induced lifting of the Au(100)-(hex) reconstruction in an electrochemical environment. Surface Science, 1998. 407: p. L629-L632.
15. Baker, T., E. Kaxiras, and C. Friend, Insights from Theory on the Relationship Between Surface Reactivity and Gold Atom Release. Topics in Catalysis, 2010. 53: p. 365-377.
16. Hamelin, A., Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. Journal of Electroanalytical Chemistry, 1996. 407(1): p. 1-11.
17. Kakudate, T., et al., Electronic Structures of Quaterthiophene and Septithiophene on Cu(111): Spatial Distribution of Adsorption-Induced States Studied by STM and DFT Calculation. The Journal of Physical Chemistry C, 2016. 120(12): p. 6681-6688.
18. Ester, D.F., et al., Heterocycle Effects on the Liquid Crystallinity of Terthiophene Analogues. Materials, 2019. 12(14): p. 2314.
19. Ferraris, J.P. and M.D. Newton, Electrochemical and optical properties of thiophene-alkylheteroaromatic copolymers. Polymer, 1992. 33(2): p. 391-397.
20. Chen, S. and S. Yau, Self-Organized Electropolymerization of Aniline on Au (111) Electrode in Hydrochloric Acid. Journal of The Electrochemical Society, 2014. 161(10): p. H612-H618.
21. Flores, M., et al., Adsorption of 2-thiophene curcuminoid molecules on a Au(111) surface. Applied Surface Science, 2018. 427: p. 620-625.
22. Gesquière, A., et al., Molecular Organization of Bis-urea Substituted Thiophene Derivatives at the Liquid/Solid Interface Studied by Scanning Tunneling Microscopy. Langmuir, 2000. 16: p. 10385–10391.
23. Koslowski, B., et al., Terthiophene on Au(111): A scanning tunneling microscopy and spectroscopy study. Beilstein J Nanotechnol, 2011. 2: p. 561-568.
24. Patrone, L., J. Soullier, and P. Martin, Role of S–Au labile bonding in stochastic switching of molecular conductance studied by STM. physica status solidi (b), 2010. 247(8): p. 1867-1870.
25. Ito, E., et al., Comparative Study of Tetrahydrothiophene and Thiophene Self-Assembled Monolayers on Au(111): Structure and Molecular Orientation. Bulletin of the Korean Chemical Society, 2009. 30(8): p. 1755-1759.
26. Lefèvre, X., et al., Influence of Molecular Organization on the Electrical Characteristics of π-Conjugated Self-Assembled Monolayers. The Journal of Physical Chemistry C, 2015. 119(10): p. 5703-5713.
27. Vercelli, B., G. Zotti, and A. Berlin, Star-Shaped and Linear Terthiophene-thiol Self-assembled Monolayers as Scaffolds for Gold Nanoparticles. Chemistry of Materials, 2007. 19(3): p. 443-452.
28. Magnussen, O.M., Ordered Anion Adlayers on Metal Electrode Surfaces. Chemical Reviews, 2002. 102(3): p. 679-726.
29. Kuo, C.-Y., et al., Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties. Chemical Physics, 2016. 481: p. 191-197.
30. Liao, C.-C. and S. Yau, The Effects of Potential and pH on the Adsorption of Guanine on the Au(111) Electrode. Langmuir, 2022. 38(8): p. 2495-2501.
31. Liu, L., et al., Conformation modification of terthiophene during the on-surface synthesis of pure polythiophene. Nanoscale, 2020. 12(35): p. 18096-18105.
32. Lapitan, L.D.S., B.J.V. Tongol, and S.-L. Yau, Molecular Assembly and Electropolymerization of 3,4-Ethylenedioxythiophene on Au(111) Single Crystal Electrode as Probed by In Situ Electrochemical STM in 0.10 M HClO4. Langmuir, 2010. 26(13): p. 10771-10777.
33. Lapitan, L.D.S., B.J.V. Tongol, and S.-L. Yau, In situ scanning tunneling microscopy imaging of electropolymerized poly(3,4-ethylenedioxythiophene) on an iodine-modified Au(111) single crystal electrode. Electrochimica Acta, 2012. 62: p. 433-440.
34. Mena-Osteritz, E., et al., STM study on the self-assembly of oligothiophene-based organic semiconductors. Beilstein Journal of Nanotechnology, 2011. 2: p. 802-808.
35. Nyffenegger, R.M. and R.M. Penner, Nanometer-Scale Electropolymerization of Aniline Using the Scanning Tunneling Microscope. The Journal of Physical Chemistry, 1996. 100(42): p. 17041-17049.
36. Tanaka, K., et al., A study of the electropolymerization of thiophene. Synthetic Metals, 1988. 24(3): p. 203-215.
37. Madry, B., et al., Electrochemical polymerization of pyrrole on Au(111) in sulphuric acid and sodium hexafluoroaluminate solutions monitored by electrochemical scanning tunneling microscopy. Journal of Electroanalytical Chemistry, 2017. 786: p. 154-163.
38. Liu, Z., et al., Electronic Decoupling of Organic Layers by a Self-Assembled Supramolecular Network on Au(111). J Phys Chem Lett, 2019. 10(15): p. 4297-4302.
39. Vezzoli, A., et al., Soft versus hard junction formation for α-terthiophene molecular wires and their charge transfer complexes. The Journal of Chemical Physics, 2017. 146(9): p. 092307.
40. Liedberg, B., et al., Self-Assembly of α-Functionalized Terthiophenes on Gold. The Journal of Physical Chemistry B, 1997. 101(31): p. 5951-5962.
41. Krömer, J., et al., Synthesis of the First Fully α-Conjugated Macrocyclic Oligothiophenes: Cyclo[n]thiophenes with Tunable Cavities in the Nanometer Regime. Angewandte Chemie International Edition, 2000. 39(19): p. 3481-3486.
42. Hsu, Y., C. Wu, and S. Yau, A STM view of the reorientation of cytosine adsorbed on the Au(111) – (1 × 1) electrode in sulfuric and perchloric acids. Electrochimica Acta, 2021. 390: p. 138871-138878.
43. Hsu, Y., et al., In situ STM imaging of fused thienothiopene molecules adsorbed on Au(111) electrode. Langmuir, 2010. 26(16): p. 13353-13358.
44. Di Nuzzo, D., et al., How intermolecular geometrical disorder affects the molecular doping of donor–acceptor copolymers. Nature Communications, 2015. 6(1): p. 6460.
45. Fuchs, F., et al., On the Photo-Induced Charge-Carrier Generation within Monolayers of Self-Assembled Organic Donor–Acceptor Dyads. Advanced Materials, 2014. 26(37): p. 6416-6422.
46. Li, J., et al., The first thieno[3,4-b]pyrazine based small molecular acceptor with a linear A2–A1–D–A1–A2 skeleton for fullerene-free organic solar cells with a high Voc of 1.05 V. Chemical Communications, 2018. 54(76): p. 10770-10773.
47. Wu, C., et al., Potential-selective fate of 2D chiral crystallization on an electrode surface. Chemical Communications, 2019. 55(68): p. 10116-10119.
48. Gao, W., et al., Chlorine adsorption on Au(111): chlorine overlayer or surface chloride? Journal of the American Chemical Society, 2008. 130 11: p. 3560-3565.
49. Cuesta, A., M. Kleinert, and D. Kolb, The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: An in situ STM study. Physical Chemistry Chemical Physics, 2000. 2: p. 5684-5690.
50. Gao, X., A. Hamelin, and M.J. Weaver, Elucidating complex surface reconstructions with atomic-resolution scanning tunneling microscopy: Au(100)-aqueous electrochemical interface. Physical Review B, 1992. 46(11): p. 7096-7102.
51. Garcia, J.L., B.J.V. Tongol, and S.-L. Yau, Dynamic self-assembly and electropolymerization processes of 3,4-ethylenedioxythiophene on Au(100) single crystal electrode as probed by in situ scanning tunneling microscopy. Electrochimica Acta, 2012. 71: p. 302-309.
52. Kolb, D.M. and J. Schneider, Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and Au(110)-(1 × 2). Electrochimica Acta, 1986. 31: p. 929-936.
53. Trembułowicz, A., A. Sabik, and M. Grodzicki, Au(100) as a Template for Pentacene Monolayer. Molecules, 2021. 26(8): p. 2393.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊