跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 17:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韻竹
研究生(外文):Yun-Zhu Chen
論文名稱:水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
論文名稱(外文):Analysis for key amino acid of OsHSP16.9A, a rice small heat shock protein
指導教授:葉靖輝
指導教授(外文):Ching-Hui Yeh
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:64
中文關鍵詞:熱休克蛋白質熱逆境熱休克蛋白質101
外文關鍵詞:HSPssHSPsHSP101
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來全球暖化對於作物產量造成嚴重威脅,水稻是世界上重要的糧食作物,如何幫助水稻抵抗惡劣環境以提升作物產量實為現在重要的議題。小分子量熱休克蛋白質(Small heat shock proteins; sHSPs)是植物體內最豐富的一群熱休克蛋白質,其可在熱逆境下降低不正常的蛋白質聚集。實驗室先前發現過量表現OsHSP16.9A水稻轉殖株種子(OsHSP16.9A–OE)較野生型水稻(WT)具更高耐熱性,亦發現當OsHSP16.9A第74個胺基酸從Glutamate (Glu)突變成Aspartate(Asp)時,其與OsHSP101結合的能力就會大幅下降。據此推論,OsHSP16.A的第74個胺基酸對於與OsHSP101形成交互作用十分重要。為了進一步了解它們的特性,我們建構OsHSP16.9A第74個胺基酸Glutamate (Glu;E)為Aspartate (Asp;D)之水稻轉殖株 (OsHSP16.9AE74D)。從種子、幼苗耐熱性試驗結果發現, OsHSP16.9A-E74D水稻轉植株在種子及幼苗階段,其耐熱性皆低於OsHSP16.9A–OE,大致與WT相近。此外,我們觀察熱逆境(46℃, 110 min;48℃, 110 min)與低溫逆境(4℃, 3– 14 days)處理後幼苗的電解質滲漏度(Ion leakage),結果發現OsHSP16.9A-E74D轉殖株對高溫及低溫的細胞膜耐受性均較OsHSP16.9A–OE 轉殖株低,綜上所述,我們的結果顯示OsHSP16.9A– OsHSP101間的交互作用在OsHSP16.9A之熱保護機制中扮演重要角色。
In recent years, global warming has posed a serious threat to crop yields. Rice is an important food crop in the world. How to help rice resist harsh environments to improve crop yields is an important issue now. Small heat shock proteins (sHSPs) are the most abundant group of heat shock proteins in plants, which can reduce abnormal protein aggregation under thermal stress. We previously found that OsHSP16.9A overexpressing rice transgenic seeds (OsHSP16.9A–OE) had higher heat tolerance than wild-type rice (WT), and also found that when the 74th amino acid of OsHSP16.9A was mutated from Glutamate (Glu) into Aspartate (Asp), its ability to bind to OsHSP101 was greatly reduced. According to this inference, the 74th amino acid of OsHSP16.A is very important for the interaction with OsHSP101. To further understand their properties, we constructed a rice transgenic line (OsHSP16.9AE74D–OE) in which the 74th amino acid Glutamate (Glu; E) of OsHSP16.9A was Aspartate (Asp; D). Seed and seedling heat tolerance results showed that the heat tolerance of OsHSP16.9AE74D–OE rice transgenic plants was lower than OsHSP16.9A-OE at the seed and seedling stage, and was roughly similar to WT. In addition, we observed the electrolyte leakage (Ion leakage) of seedlings treated under thermal stress (46°C, 110 min; 48°C, 110 min) and low-temperature stress (4°C, 3– 14 days), and found that OsHSP16.9AE74D-OE cell membrane tolerance of transgenic lines to high temperature and low temperature is lower than that of OsHSP16.9A–OE transgenic lines. In conclusion, our results show that the interaction between OsHSP16.9A–OsHSP101 is involved in the thermal protection mechanism of OsHSP16.9A and plays an important role in it.
摘要 i
Abstract ii
目錄 iii
縮寫對照表 vi
序論 1
材料與方法 8
結果 22
OsHSP16.9AE74D-OE轉植株篩選之mRNA與蛋白質表現情形 22
轉殖株生長情形 23
轉植株耐熱性分析 23
轉殖株冷熱逆境抗性分析 24
熱逆境 24
冷逆境 25
在蛋白質層面上,OsHSP101在 WT、OsHSP16.9A-OE和OsHSP16.9AE74D-OE種子的表現情形 25
討論 27
OsHSP16.9A-E74D種子成熟及幼苗階段的逆境反應 27
OsHSP16.9A-E74D轉殖株在in vivo狀態下加熱後OsHSP101的累積情形 28
參考文獻 31
圖表 37
圖一、OsHSP16.9A及其他sHSP胺基酸比對相似性 37
圖二、OsHSP16.9A-E74D-OE轉殖株水稻中OsHSP16.9A-E74D的表現情形 38
圖三、分析OsHSP16.9A-E74D-OE轉殖株水稻之OsHSP16.9A 蛋白質表現量 39
圖四、OsHSP16.9A-E74D-OE轉殖株之植物生長情形 40
圖五、種子耐熱性分析 41
圖六、幼苗耐熱性分析 42
圖七、轉殖株熱逆境抗性分析 43
圖八、轉殖株冷逆境抗性分析 44
圖九、觀察在 i n vivo 的情況下轉殖株種子之 OsHSP101表現情形 46
圖十、OsHSP16.9A-E74D 和 OsHSP101在高溫逆境中的交互作用之模型 47
附錄 48
李易諠. (2006). 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/7n8m46
黃信傑. (2020). 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/5ay88v
劉依欣. (2011). 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/q4r2x5
鄭榮儀. (2016). 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/7qnc9d
Adnan, H., Zhang, Z., Park, H. J., Tailor, C., Che, C., Kamani, M., Spitalny, G., Binnington, B., & Lingwood, C. (2016). Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases. PLoS One, 11(12), e0166948. https://doi.org/10.1371/journal.pone.0166948
Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot, 63(10), 3523-3543. https://doi.org/10.1093/jxb/ers100
Boston, R. S., Viitanen, P. V., & Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Mol Biol, 32(1-2), 191-222. https://doi.org/10.1007/bf00039383
Boyer, J. S. (1982). Plant productivity and environment. Science, 218(4571), 443-448.
Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3), 351-366.
Campbell, J. L., Klueva, N. Y., Zheng, H. G., Nieto-Sotelo, J., Ho, T. D., & Nguyen, H. T. (2001). Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA(1). Biochim Biophys Acta, 1517(2), 270-277. https://doi.org/10.1016/s0167-4781(00)00292-x
Chen, J., Feige, M. J., Franzmann, T. M., Bepperling, A., & Buchner, J. (2010). Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization. J Mol Biol, 398(1), 122-131. https://doi.org/10.1016/j.jmb.2010.02.022
Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci, 12(10), 444-451. https://doi.org/10.1016/j.tplants.2007.07.002
Clarke, S. M., Mur, L. A., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J, 38(3), 432-447. https://doi.org/10.1111/j.1365-313X.2004.02054.x
Cyr, D. M., & Ramos, C. H. (2015). Specification of Hsp70 function by Type I and Type II Hsp40. Subcell Biochem, 78, 91-102. https://doi.org/10.1007/978-3-319-11731-7_4
Danquah, A., De Zélicourt, A., Colcombet, J., & Hirt, H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology advances, 32(1), 40-52.
de Jong, W. W., Caspers, G. J., & Leunissen, J. A. (1998). Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol, 22(3-4), 151-162. https://doi.org/10.1016/s0141-8130(98)00013-0
de Jong, W. W., Leunissen, J. A., & Voorter, C. E. (1993). Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol, 10(1), 103-126. https://doi.org/10.1093/oxfordjournals.molbev.a039992
Doyle, S. M., & Wickner, S. (2009). Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci, 34(1), 40-48. https://doi.org/10.1016/j.tibs.2008.09.010
Eisenberg-Domovich, Y., Kloppstech, K., & Ohad, I. (1994). Reversible membrane association of heat-shock protein 22 in Chlamydomonas reinhardtii during heat shock and recovery. Eur J Biochem, 222(3), 1041-1046. https://doi.org/10.1111/j.1432-1033.1994.tb18956.x
Farrell, T., Fox, K., Williams, R., & Fukai, S. (2006). Genotypic variation for cold tolerance during reproductive development in rice: screening with cold air and cold water. Field Crops Research, 98(2-3), 178-194.
Fu, X., Jiao, W., & Chang, Z. (2006). Phylogenetic and biochemical studies reveal a potential evolutionary origin of small heat shock proteins of animals from bacterial class A. J Mol Evol, 62(3), 257-266. https://doi.org/10.1007/s00239-005-0076-5
Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94(1), 73-82. https://doi.org/10.1016/s0092-8674(00)81223-4
Guan, J. C., Jinn, T. L., Yeh, C. H., Feng, S. P., Chen, Y. M., & Lin, C. Y. (2004). Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol, 56(5), 795-809. https://doi.org/10.1007/s11103-004-5182-z
Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far? Life sciences, 86(11-12), 377-384.
Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far? Life Sci, 86(11-12), 377-384. https://doi.org/10.1016/j.lfs.2009.12.015
Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295(5561), 1852-1858.
Haslbeck, M., & Vierling, E. (2015). A first line of stress defense: small heat shock proteins and their function in protein homeostasis. Journal of molecular biology, 427(7), 1537-1548.
Hilton, G. R., Lioe, H., Stengel, F., Baldwin, A. J., & Benesch, J. L. (2013). Small heat-shock proteins: paramedics of the cell. Top Curr Chem, 328, 69-98. https://doi.org/10.1007/128_2012_324
Horwitz, J. (1992). Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A, 89(21), 10449-10453. https://doi.org/10.1073/pnas.89.21.10449
Hsieh, M. H., Chen, J. T., Jinn, T. L., Chen, Y. M., & Lin, C. Y. (1992). A class of soybean low molecular weight heat shock proteins : immunological study and quantitation. Plant Physiol, 99(4), 1279-1284. https://doi.org/10.1104/pp.99.4.1279
Hu, W., Hu, G., & Han, B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176(4), 583-590.
Imin, N., Kerim, T., Rolfe, B. G., & Weinman, J. J. (2004). Effect of early cold stress on the maturation of rice anthers. Proteomics, 4(7), 1873-1882. https://doi.org/10.1002/pmic.200300738
Jeon, J., & Kim, J. (2013). Arabidopsis response Regulator1 and Arabidopsis histidine phosphotransfer Protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol, 161(1), 408-424. https://doi.org/10.1104/pp.112.207621
Ju, Y., Tian, H., Zhang, R., Zuo, L., Jin, G., Xu, Q., Ding, X., Li, X., & Chu, Z. (2017). Overexpression of OsHSP18. 0-CI enhances resistance to bacterial leaf streak in rice. Rice, 10(1), 12.
Keeler, S. J., Boettger, C. M., Haynes, J. G., Kuches, K. A., Johnson, M. M., Thureen, D. L., Keeler, C. L., Jr., & Kitto, S. L. (2000). Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol, 123(3), 1121-1132. https://doi.org/10.1104/pp.123.3.1121
Löw, D., Brändle, K., Nover, L., & Forreiter, C. (2000). Cytosolic heat-stress proteins Hsp17. 7 class I and Hsp17. 3 class II of tomato act as molecular chaperones in vivo. Planta, 211(4), 575-582.
Lee, G. J., & Vierling, E. (2000). A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol, 122(1), 189-198. https://doi.org/10.1104/pp.122.1.189
Lee, U., Wie, C., Escobar, M., Williams, B., Hong, S.-W., & Vierling, E. (2005). Genetic Analysis Reveals Domain Interactions of Arabidopsis Hsp100/ClpB and Cooperation with the Small Heat Shock Protein Chaperone System. The Plant Cell, 17(2), 559-571. https://doi.org/10.1105/tpc.104.027540
Lee, Y. R., Nagao, R. T., & Key, J. L. (1994). A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell, 6(12), 1889-1897. https://doi.org/10.1105/tpc.6.12.1889
Leroux, M. R., Melki, R., Gordon, B., Batelier, G., & Candido, E. P. M. (1997). Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. Journal of Biological Chemistry, 272(39), 24646-24656.
Mason, R. E., Mondal, S., Beecher, F. W., Pacheco, A., Jampala, B., Ibrahim, A. M. H., & Hays, D. B. (2010). QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 174(3), 423-436. https://doi.org/10.1007/s10681-010-0151-x
McDonald, E. T., Bortolus, M., Koteiche, H. A., & McHaourab, H. S. (2012). Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry, 51(6), 1257-1268. https://doi.org/10.1021/bi2017624
Mchaourab, H. S., Godar, J. A., & Stewart, P. L. (2009). Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry, 48(18), 3828-3837.
McLoughlin, F., Basha, E., Fowler, M. E., Kim, M., Bordowitz, J., Katiyar-Agarwal, S., & Vierling, E. (2016). Class I and II small heat shock proteins together with HSP101 protect protein translation factors during heat stress. Plant physiology, 172(2), 1221-1236.
McLoughlin, F., Basha, E., Fowler, M. E., Kim, M., Bordowitz, J., Katiyar-Agarwal, S., & Vierling, E. (2016). Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress. Plant Physiol, 172(2), 1221-1236. https://doi.org/10.1104/pp.16.00536
McLoughlin, F., Kim, M., Marshall, R. S., Vierstra, R. D., & Vierling, E. (2019). HSP101 Interacts with the Proteasome and Promotes the Clearance of Ubiquitylated Protein Aggregates. Plant Physiol, 180(4), 1829-1847. https://doi.org/10.1104/pp.19.00263
Nakamoto, H., & Vígh, L. (2007). The small heat shock proteins and their clients. Cell Mol Life Sci, 64(3), 294-306. https://doi.org/10.1007/s00018-006-6321-2
Nieto-Sotelo, J., Martínez, L. M., Ponce, G., Cassab, G. I., Alagón, A., Meeley, R. B., Ribaut, J. M., & Yang, R. (2002). Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell, 14(7), 1621-1633. https://doi.org/10.1105/tpc.010487
Nover, L., Scharf, K., & Neumann, D. (1983). Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Molecular and cellular biology, 3(9), 1648-1655.
Parsell, D. A., Kowal, A. S., Singer, M. A., & Lindquist, S. (1994). Protein disaggregation mediated by heat-shock protein Hsp104. Nature, 372(6505), 475-478. https://doi.org/10.1038/372475a0
Parsell, D. A., Kowal, A. S., Singer, M. A., & Lindquist, S. (1994). Protein disaggregation mediated by heat-shock protein Hspl04. Nature, 372(6505), 475-478. https://doi.org/10.1038/372475a0
Parsell, D. A., Taulien, J., & Lindquist, S. (1993). The role of heat-shock proteins in thermotolerance. Philos Trans R Soc Lond B Biol Sci, 339(1289), 279-285; discussion 285-276. https://doi.org/10.1098/rstb.1993.0026
Prändl, R., Hinderhofer, K., Eggers-Schumacher, G., & Schöffl, F. (1998). HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet, 258(3), 269-278. https://doi.org/10.1007/s004380050731
Queitsch, C., Hong, S. W., Vierling, E., & Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12(4), 479-492. https://doi.org/10.1105/tpc.12.4.479
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 134(4), 1683-1696. https://doi.org/10.1104/pp.103.033431
Roberts, E. H. (1988). Temperature and seed germination. Symp Soc Exp Biol, 42, 109-132.
Santhanagopalan, I., Degiacomi, M. T., Shepherd, D. A., Hochberg, G. K., Benesch, J. L., & Vierling, E. (2018). It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. Journal of Biological Chemistry, 293(51), 19511-19521.
Santhanagopalan, I., Degiacomi, M. T., Shepherd, D. A., Hochberg, G. K. A., Benesch, J. L. P., & Vierling, E. (2018). It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. J Biol Chem, 293(51), 19511-19521. https://doi.org/10.1074/jbc.RA118.005421
Sarkar, N. K., Kotak, S., Agarwal, M., Kim, Y. K., & Grover, A. (2019). Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings. Planta, 251(1), 26. https://doi.org/10.1007/s00425-019-03318-9
Sato, Y., Masuta, Y., Saito, K., Murayama, S., & Ozawa, K. (2011). Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep, 30(3), 399-406. https://doi.org/10.1007/s00299-010-0985-7
Schirmer, E. C., Lindquist, S., & Vierling, E. (1994). An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell, 6(12), 1899-1909. https://doi.org/10.1105/tpc.6.12.1899
Singh, G., Sarkar, N. K., & Grover, A. (2021). Hsp70, sHsps and ubiquitin proteins modulate HsfA6a-mediated Hsp101 transcript expression in rice (Oryza sativa L.). Physiol Plant, 173(4), 2055-2067. https://doi.org/10.1111/ppl.13552
Sánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Glob Chang Biol, 20(2), 408-417. https://doi.org/10.1111/gcb.12389
Su, P. H., & Li, H. M. (2010). Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell, 22(5), 1516-1531. https://doi.org/10.1105/tpc.109.071415
Timperio, A. M., Egidi, M. G., & Zolla, L. (2008). Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of proteomics, 71(4), 391-411.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199-223. https://doi.org/https://doi.org/10.1016/j.envexpbot.2007.05.011
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 9(5), 244-252. https://doi.org/10.1016/j.tplants.2004.03.006
Waters, E. R., Lee, G. J., & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47(3), 325-338.
Wells, D. R., Tanguay, R. L., Le, H., & Gallie, D. R. (1998). HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev, 12(20), 3236-3251. https://doi.org/10.1101/gad.12.20.3236
Yeh, C. H., Chen, Y. M., & Lin, C. Y. (2002). Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol, 128(2), 661-668. https://doi.org/10.1104/pp.010594
Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J. M., Seki, M., Todaka, D., Osakabe, Y., Sakuma, Y., Schöffl, F., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics, 286(5-6), 321-332. https://doi.org/10.1007/s00438-011-0647-7
Zhu, J.-K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324.
Zolkiewski, M. (1999). ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem, 274(40), 28083-28086. https://doi.org/10.1074/jbc.274.40.28083
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top