|
參考文獻 1. Kandasamy, P., et al., Amino acid transporters revisited: New views in health and disease. Trends in Biochemical Sciences, 2018. 43(10): p. 752-789. 2. Craik, D.J., et al., The Future of Peptide-based Drugs. Chemical Biology & Drug Design, 2013. 81(1): p. 136-147. 3. Seo, M.D., et al., Antimicrobial Peptides for Therapeutic Applications: A Review. Molecules, 2012. 17(10): p. 12276-12286. 4. Bechara, C. and S. Sagan, Cell-penetrating peptides: 20 years later, where do we stand? Febs Letters, 2013. 587(12): p. 1693-1702. 5. Wang, W.Z. and Z.Y. Hu, Targeting Peptide-Based Probes for Molecular Imaging and Diagnosis. Advanced Materials, 2019. 31(45). 6. Lundberg, P. and U. Langel, A brief introduction to cell-penetrating peptides. Journal of Molecular Recognition, 2003. 16(5): p. 227-233. 7. Midoux, P. and M. Monsigny, Efficient gene transfer by histidylated polylysine pDNA complexes. Bioconjugate Chemistry, 1999. 10(3): p. 406-411. 8. Robbins, J., et al., Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell, 1991. 64(3): p. 615-23. 9. Lee, A.C., et al., A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int J Mol Sci, 2019. 20(10). 10. Zhang, W., et al., Peptide-based nanomaterials for gene therapy. Nanoscale Advances, 2021. 3(2): p. 302-310. 11. Rastogi, S., et al., Peptide-based therapeutics: quality specifications, regulatory considerations, and prospects. Drug Discov Today, 2019. 24(1): p. 148-162. 12. Boohaker, R.J., et al., The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem, 2012. 19(22): p. 3794-804. 13. Dehsorkhi, A., V. Castelletto, and I.W. Hamley, Self-assembling amphiphilic peptides. J Pept Sci, 2014. 20(7): p. 453-67. 14. Hos, B.J., et al., Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Front Immunol, 2018. 9: p. 884. 15. Handford, B.O., et al., Amino acids and peptides. IX. Synthesis of a tetrapeptide sequence (A13-A16) of glucagon. J Org Chem, 1967. 32(4): p. 1243-6. 16. Pedersen, S.L., et al., Microwave heating in solid-phase peptide synthesis. Chemical Society Reviews, 2012. 41(5): p. 1826-1844. 17. Behrendt, R., P. White, and J. Offer, Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science, 2016. 22(1): p. 4-27. 18. Isidro-Llobet, A., M. Alvarez, and F. Albericio, Amino Acid-Protecting Groups. Chemical Reviews, 2009. 109(6): p. 2455-2504. 19. Harris, P.W.R. and M.A. Brimble, A Comparison of Boc and Fmoc SPPS Strategies for the Preparation of C-Terminal Peptide alpha-Thiolesters: NY-ESO-1 (39)Cys-(68)Ala-COSR. Biopolymers, 2013. 100(4): p. 356-365. 20. Ruoslahti, E. and B. Obrink, Common principles in cell adhesion. Experimental Cell Research, 1996. 227(1): p. 1-11. 21. Hynes, R.O., Integrins: Bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673-687. 22. von der Mark, K., et al., Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell and Tissue Research, 2010. 339(1): p. 131-153. 23. Aota, S., T. Nagai, and K.M. Yamada, Characterization of Regions of Fibronectin Besides the Arginine-Glycine-Aspartic Acid Sequence Required for Adhesive Function of the Cell-Binding Domain Using Site-Directed Mutagenesis. Journal of Biological Chemistry, 1991. 266(24): p. 15938-15943. 24. Garanger, E., D. Boturyn, and P. Dumy, Tumor targeting with RGD peptide Ligands-Design of new molecular conjugates for Imaging and therapy of cancers. Anti-Cancer Agents in Medicinal Chemistry, 2007. 7(5): p. 552-558. 25. Chen, K. and X.Y. Chen, Integrin Targeted Delivery of Chemotherapeutics. Theranostics, 2011. 1: p. 189-200. 26. Warren, D.S., et al., The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel. Journal of Chemical Education, 2017. 94(11): p. 1772-1779. 27. Berger, J., et al., Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 35-52. 28. Berger, J., et al., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 19-34. 29. Shin, J., P.V. Braun, and W. Lee, Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensors and Actuators B-Chemical, 2010. 150(1): p. 183-190. 30. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 2015. 6(2): p. 105-121. 31. Hamidi, M., A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1638-1649. 32. Chen, X., et al., Enzymatic and chemoenzymatic approaches to synthesis of sugar based polymer and hydrogels. Carbohydrate Polymers, 1995. 28(1): p. 15-21. 33. Wang, F., et al., Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomaterialia, 2010. 6(6): p. 1978-1991. 34. Stamatialis, D.F., et al., Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science, 2008. 308(1-2): p. 1-34. 35. Tabata, Y., Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 2009. 6: p. S311-S324. 36. Bajpai, S.K., Swelling studies on hydrogel networks - A review. Journal of Scientific & Industrial Research, 2001. 60(6): p. 451-462. 37. Mathur, A.M., S.K. Moorjani, and A.B. Scranton, Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1996. C36(2): p. 405-430. 38. Colilla, M., I. Izquierdo-Barba, and M. Vallet-Regi, The Role of Zwitterionic Materials in the Fight against Proteins and Bacteria. Medicines (Basel), 2018. 5(4). 39. Blackman, L.D., et al., An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chemical Society Reviews, 2019. 48(3): p. 757-770. 40. Ishihara, K., et al., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999. 20(17): p. 1553-1559. 41. Iwasaki, Y., et al., Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. Journal of Biomedical Materials Research, 2000. 52(4): p. 701-708. 42. Ishihara, K., et al., Improvement of Blood Compatibility on Cellulose Dialysis Membrane .2. Blood Compatibility of Phospholipid Polymer Grafted Cellulose Membrane. Biomaterials, 1992. 13(4): p. 235-239. 43. Asif, S., et al., Validation of an MPC Polymer Coating to Attenuate Surface-Induced Crosstalk between the Complement and Coagulation Systems in Whole Blood in In Vitro and In Vivo Models. Macromolecular Bioscience, 2019. 19(5). 44. Goda, T. and K. Ishihara, Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices, 2006. 3(2): p. 167-174. 45. Feng, C., et al., Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chemical Society Reviews, 2011. 40(3): p. 1282-1295. 46. Cui, Z., et al., Molecular engineering of antimicrobial peptide (AMP)-polymer conjugates. Biomater Sci, 2021. 9(15): p. 5069-5091. 47. Zhao, M.Z., et al., An "In Vivo Self-assembly" Strategy for Constructing Superstructures for Biomedical Applications. Chinese Journal of Polymer Science, 2018. 36(10): p. 1103-1113. 48. Pawbake, A.S., et al., Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications. Acs Applied Materials & Interfaces, 2016. 8(5): p. 3359-3365. 49. Hartlieb, M., et al., Stimuli-responsive membrane activity of cyclic-peptide-polymer conjugates. Chemical Science, 2019. 10(21): p. 5476-5483. 50. Kricheldorf, H.R., Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angewandte Chemie-International Edition, 2006. 45(35): p. 5752-5784. 51. Messina, M.S., et al., Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Progress in Polymer Science, 2020. 100. 52. Sun, H., et al., Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies. Bioconjugate Chemistry, 2019. 30(7): p. 1889-1904. 53. Hamley, I.W., PEG-peptide conjugates. Biomacromolecules, 2014. 15(5): p. 1543-59. 54. Chen, R.T., et al., Surface "click" chemistry on brominated plasma polymer thin films. Langmuir, 2010. 26(5): p. 3388-93. 55. Pisoni, R.L., et al., A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis. J Cell Biol, 1990. 110(2): p. 327-35. 56. Tzokova, N., et al., The effect of PEO length on the self-assembly of poly(ethylene oxide)-tetrapeptide conjugates prepared by "Click" chemistry. Langmuir, 2009. 25(18): p. 11082-9. 57. Brzezinska, K.R. and T.J. Deming, Synthesis of AB diblock copolymers by atom-transfer radical polymerization (ATRP) and living polymerization of alpha-amino acid-N-carboxyanhydrides. Macromol Biosci, 2004. 4(6): p. 566-9. 58. Shu, J.Y., B. Panganiban, and T. Xu, Peptide-polymer conjugates: from fundamental science to application. Annu Rev Phys Chem, 2013. 64: p. 631-57. 59. Zhu, J., et al., Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. Molecules, 2018. 23(12). 60. Jangamreddy, J.R., et al., Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater, 2018. 69: p. 120-130. 61. Li, L., J. Wu, and C. Gao, Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment. Colloids Surf B Biointerfaces, 2011. 85(1): p. 12-8. 62. Kim, S., S. Wan Kim, and Y.H. Bae, Synthesis, bioactivity and specificity of glucagon-like peptide-1 (7-37)/polymer conjugate to isolated rat islets. Biomaterials, 2005. 26(17): p. 3597-606. 63. Abdelhamid, M.A.A. and S.P. Pack, Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomaterialia, 2021. 120: p. 38-56. 64. Agarwal, R. and A.J. Garcia, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Advanced Drug Delivery Reviews, 2015. 94: p. 53-62. 65. Kirkpatrick, C.J., et al., Experimental approaches to study vascularization in tissue engineering and biomaterial applications. Journal of Materials Science-Materials in Medicine, 2003. 14(8): p. 677-681. 66. Ranade, S.V., R.E. Richard, and M.N. Helmus, Styrenic block copolymers for biomaterial and drug delivery applications. Acta Biomaterialia, 2005. 1(1): p. 137-144. 67. Ma, P.X., Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews, 2008. 60(2): p. 184-198. 68. Taraballi, F., et al., Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Advanced Healthcare Materials, 2018. 7(17). 69. Chen, F.M. and X.H. Liu, Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 2016. 53: p. 86-168. 70. Webber, M.J., J.A. Kessler, and S.I. Stupp, Emerging peptide nanomedicine to regenerate tissues and organs. Journal of Internal Medicine, 2010. 267(1): p. 71-88. 71. Hosoyama, K., et al., Peptide-Based Functional Biomaterials for Soft-Tissue Repair. Frontiers in Bioengineering and Biotechnology, 2019. 7. 72. Nagaoka, S., et al., Method for a convenient and efficient synthesis of amino acid acrylic monomers with zwitterionic structure. Synthetic Communications, 2005. 35(19): p. 2529-2534. 73. Li, W.Y., et al., The 9-Fluorenylmethoxycarbonyl (Fmoc) Group in Chemical Peptide Synthesis - Its Past, Present, and Future. Australian Journal of Chemistry, 2020. 73(4): p. 271-276. 74. Nowick, J.S., et al., Fmoc*: A more soluble analog of the 9-fluorenylmethoxycarbonyl protecting group. Abstracts of Papers of the American Chemical Society, 2000. 219: p. U113-U113. 75. Yang, W., et al., The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012. 33(32): p. 7945-7951. 76. Majors, R.E., Thin-Layer Chromatography - a Survey of the Experts. Lc Gc-Magazine of Separation Science, 1990. 8(10): p. 760-&. 77. Dev, S.B. and L. Walters, Fourier-Transform Infrared-Spectroscopy for the Characterization of a Model Peptide - DNA Interaction. Biopolymers, 1990. 29(1): p. 289-299. 78. Stevens, J.S., et al., Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surface and Interface Analysis, 2013. 45(8): p. 1238-1246. 79. Biau, D.J., In Brief: Standard Deviation and Standard Error. Clinical Orthopaedics and Related Research, 2011. 469(9): p. 2661-2664. 80. Bacsa, B., et al., Solid-phase synthesis of difficult peptide sequences at elevated temperatures: A critical comparison of microwave and conventional heating technologies. Journal of Organic Chemistry, 2008. 73(19): p. 7532-7542. 81. Leiros, H.K.S., et al., Trypsin specificity as elucidated by LIE calculations, X-ray structures, and association constant measurements. Protein Science, 2004. 13(4): p. 1056-1070. 82. Adak, A., et al., Biodegradable Neuro-Compatible Peptide Hydrogel Promotes Neurite Outgrowth, Shows Significant Neuroprotection, and Delivers Anti-Alzheimer Drug. ACS Appl Mater Interfaces, 2017. 9(6): p. 5067-5076. 83. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10. 84. Levental, I., P.C. Georges, and P.A. Janmey, Soft biological materials and their impact on cell function. Soft Matter, 2007. 3(3): p. 299-306. 85. Goda, T., Y. Goto, and K. Ishihara, Cell-penetrating macromolecules: direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells. Biomaterials, 2010. 31(8): p. 2380-7.
|