跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 14:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:栢榮生
研究生(外文):Jung-Sheng Po
論文名稱:應用主題及書目網絡分析法探討量子運算研究趨勢
論文名稱(外文):Application of Topic and Bibliometric Network Analysis for Quantum Computing Literature
指導教授:沈建文沈建文引用關係
指導教授(外文):Chien-Wen Shen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:企業管理學系在職專班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:64
中文關鍵詞:量子運算文字採礦主題分析共現字分析共被引分析書目耦合
外文關鍵詞:Quantum computingText miningTopic analysisCo-occurrenceCo-citationBibliographic coupling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
量子運算研究近年已定位是影響人類未來的前瞻技術之一,量子運算將帶動各項產業重大轉變,無論是國防、太空、先進材料、生技醫藥、數位金融與資訊科技等。本研究期望運用主題分析法了解量子運算研究的主題趨勢發展,以及書目網絡分析法探討研究文獻之間的網絡關係。蒐集從2000年到2021年間Web of Science 的資料庫文獻。結果顯示文獻數量從2016年以後到2021之間增幅超過一倍,美國與中國的發表數量是主要貢獻來源,研究領域以物理類為主。主題分析法對蒐集的文獻進行文字採礦,具有快速處理巨量資料與減少人為判斷的優點,篩選出的七個主題為:量子相位與系統模型、演算法改良與最佳化、量子邏輯閘與量子位元、自旋特性與交互作用、量子態與量測方法、實現與應用、和問題解決方案。書目網絡分析從作者關鍵詞共現字分析、文獻共被引分析與書目耦合的三種計量方式,整理出文獻間彼此脈絡關係,所收斂的集群議題與主題分析可相互參考。主題與網絡分析法在量子物理態、硬體技術和演算法均呈現相同熱門趨勢,但拓樸量子的集群在網絡分析法的結果,無論從共被引分析或書目耦合均出現一個集中卻偏離主集群網絡的現象。運用文字採礦的主題分析法可快速挖掘出文獻間的主題趨勢,搭配書目網絡分析的結果,具有不同分析法的觀點、面向及相對多元的剖析,可呈現過往的研究概況,並提供後續研究人員更聚焦與快速掌握量子運算研究主題的發展方向。

關鍵字: 量子運算、文字採礦、主題分析、共現字分析、共被引分析、書目耦合
Abstract
Quantum computing research has been positioned as one of the forward-looking technologies. It will drive major changes in various industries: national defense, space, advanced materials, biotechnology and medicine, digital finance, and information technology. This study expects to understand the topic and research networks through the topic analysis and bibliometric network analysis for quantum computing. Data were collected from the Web of Science database from 2000 to 2021. The results showed that the number of documents had grown and doubled from 2016 to 2021. The United States and China were the main contributors to scholarly output. The primary research field was dominated by physics. The topic analysis uses the text mining technique, which has the advantage of fast computation and objective evaluation. The seven topics were identified: quantum phase and system, algorithm and optimization, quantum gate and qubit, spin and interactions, quantum states and measurement, implementations and applications, and problem solutions. Bibliometric network analysis is adopted to understand the articles’ relationship through the perspectives of co-occurrence, co-citation, and bibliographic coupling. Topic and network analysis showed similar topics in quantum states, hardware technologies, and algorithms. Besides, network analysis found the specific topological quantum topic by co-citation and bibliographic coupling. The analysis results of this study can help researchers understand quantum computing development more comprehensively with related important references.

Keywords: Quantum computing, Text mining, Topic analysis, Co-occurrence, Co-citation, Bibliographic coupling
目錄
摘要 i
Abstract ii
目錄 iii
表目錄 iv
圖目錄 v
第一章 緒論 1
1.1研究背景與動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 量子運算與技術發展 4
2.2 量子運算相關文獻研究 10
第三章研究方法 13
3.1 資料來源與整理 13
3.2 敘述性與趨勢分析 14
3.3 主題分析 16
3.4 網絡分析 21
第四章 研究結果 24
4.1 敘述性統計與趨勢分析 24
4.2 文字主題分析 27
4.3 網絡分析 39
第五章 結論 48
參考文獻 50
參考文獻
王志洋、陳啟東(2021)。量子世代產學佈局。科學人,237,32-37頁。
田倩飛、唐川、王立娜(2020)。国际量子计算战略布局比较分析。世界科技研究与发展,42(1),38-46頁。
朱梓忠(2022)。從零開始的量子力學:從骰子遊戲到生死未卜的貓,你非深究不可的神祕理論。台灣,崧燁文化。
科技產業資訊室(2021)。主要16國家量子科技政策 預算超過246億美元。
取自https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=17799
張元翔(2020)。量子電腦與量子計算|IBM Q Experience實作,。台灣,碁峰出版社。
馮紐曼(2021)。電腦與人腦: 現代電腦架構之父馮紐曼的腦科學講義,廖晨堯譯。台灣,貓頭鷹出版社。
蔡明月、沈東玫(2012). Building a knowledge map on the subject of information society. Journal of Library and Information Science, 38(1), 15-42.
Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Esteve, D., Gisin, N., Glaser, S. J., & Jelezko, F. (2018). The quantum technologies roadmap: a European community view. New Journal of Physics, 20(8), 080201.
Alam, N., & Alam, M. (2020). The Trend of Different Parameters for Designing Integrated Circuits from 1973 to 2019 and Linked to Moore’s Law. Aust. J. Eng. Innov. Technol, 2(2), 16-23.
Albright, R. (2004). Taming Text with the SVD. SAS Institute Inc.
Allen, D., Sherwin, M., & Stanley, C. (2005). Optically detected measurement of the ground-state population of an ensemble of neutral donors in GaAs. Physical Review B, 72(3), 035302.
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G., & Buell, D. A. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510.
Bae, G., Bae, D.-I., Kang, M., Hwang, S., Kim, S., Seo, B., Kwon, T., Lee, T., Moon, C., & Choi, Y. (2018). 3nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications. 2018 IEEE International Electron Devices Meeting (IEDM),
Berman, G., Kamenev, D., & Tsifrinovich, V. (2004). Minimization of nonresonant effects in a scalable Ising spin quantum computer. International Journal of Quantum Information, 2(03), 379-392.
Bimberg, D., Grundmann, M., & Ledentsov, N. N. (1999). Quantum dot heterostructures. John Wiley & Sons.
Blamire, M. (2006). Multiple-barrier and nanoscale superconducting devices. Superconductor Science and Technology, 19(3), S132.
Braginsky, V. B., Braginskiĭ, V. B., & Khalili, F. Y. (1995). Quantum measurement. Cambridge University Press.
Bruzewicz, C. D., Chiaverini, J., McConnell, R., & Sage, J. M. (2019). Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6(2), 021314.
Cai, G., & Qiu, D. (2018). Optimal separation in exact query complexities for Simon's problem. Journal of Computer and System Sciences, 97, 83-93.
Calderbank, M. (2007). The rsa cryptosystem: history, algorithm, primes. Chicago: math. uchicago. edu.
Castelvecchi, D. (2017). Quantum computers ready to leap out of the lab in 2017. Nature, 541(7635).
Chen, X. H., & Wang, X. J. (2018). Topological orders and quantum phase transitions in a One-Dimensional extended quantum compass model. ACTA PHYSICA SINICA, 67(19).
Childs, A. M., Landahl, A. J., & Parrilo, P. A. (2007). Quantum algorithms for the ordered search problem via semidefinite programming. Physical Review A, 75(3), 032335.
Childs, A. M., & Van Dam, W. (2010). Quantum algorithms for algebraic problems. Reviews of Modern Physics, 82(1), 1.
Cordier, B. A., Sawaya, N. P., Guerreschi, G. G., & McWeeney, S. K. (2021). Biology and medicine in the landscape of quantum advantages. arXiv preprint arXiv:2112.00760.
Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818), 97-117.
Dhawan, S. M., Gupta, B. M., & Bhusan, S. (2018). Global Publications Output in Quantum Computing Research: A Scientometric Assessment during 2007-16. Emerging Science Journal, 2(4).
Dorner, U., Demkowicz-Dobrzanski, R., Smith, B. J., Lundeen, J. S., Wasilewski, W., Banaszek, K., & Walmsley, I. A. (2009). Optimal quantum phase estimation. Physical Review Letters, 102(4), 040403.
Dowling, J. P., & Milburn, G. J. (2003). Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1809), 1655-1674.
Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor.Phys.,, 21, 467-488.
Fujii, K., & Morimae, T. (2012). Computational power and correlation in a quantum computational tensor network. Physical Review A, 85(3), 032338.
Godfrey, M. D. (1993). Introduction to "The First Draft Report on the EDVAC" by John von Neumann. IEEE Annals of the History of Computing 15(4), 27-75.
Greenbaum, D. (2015). Introduction to quantum gate set tomography. arXiv preprint arXiv:1509.02921.
Groenland, K., Witteveen, F., Schoutens, K., & Gerritsma, R. (2020). Signal processing techniques for efficient compilation of controlled rotations in trapped ions. New Journal of Physics, 22(6), 063006.
Gyongyosi, L., & Imre, S. (2019). A survey on quantum computing technology. Computer Science Review, 31, 51-71.
Hayashi, M., Ishizaka, S., Kawachi, A., Kimura, G., & Ogawa, T. (2014). Introduction to Quantum Information Science. Springer.
Hey, T. (1999). Quantum computing: an introduction. Computing & Control Engineering Journal, 10(3), 105-112.
Hill, S. B., Faradzhev, N. S., Tarrio, C., Lucatorto, T. B., Madey, T., Yakshinskiy, B., Loginova, E., & Yulin, S. (2008). Accelerated lifetime metrology of EUV multilayer mirrors in hydrocarbon environments. Emerging Lithographic Technologies XII, 692117
Häffner, H., Roos, C. F., & Blatt, R. (2008). Quantum computing with trapped ions. Physics reports, 469(4), 155-203.
Hu, K., Zhou, Z., Wei, Y.-W., Li, C.-K., & Feng, J. (2018). Bond ordering and phase transitions in Na 2 IrO 3 under high pressure. Physical Review B, 98(10), 100103.
Huang, W., Yang, C., Chan, K., Tanttu, T., Hensen, B., Leon, R., Fogarty, M., Hwang, J., Hudson, F., & Itoh, K. M. (2019). Fidelity benchmarks for two-qubit gates in silicon. Nature, 569(7757), 532-536.
Jiang, D.-H., Xu, Y.-L., & Xu, G.-B. (2019). Arbitrary quantum signature based on local indistinguishability of orthogonal product states. International Journal of Theoretical Physics, 58(3), 1036-1045.
Kapit, E. (2018). Error-transparent quantum gates for small logical qubit architectures. Physical Review Letters, 120(5), 050503.
Kienzler, D., Lo, H.-Y., Keitch, B., De Clercq, L., Leupold, F., Lindenfelser, F., Marinelli, M., Negnevitsky, V., & Home, J. (2015). Quantum harmonic oscillator state synthesis by reservoir engineering. Science, 347(6217), 53-56.
Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1), 2-30.
Kliesch, M., & Roth, I. (2021). Theory of quantum system certification. PRX Quantum, 2(1), 010201.
Kupczynski, M. (2006). Seventy years of the EPR paradox. AIP Conference Proceedings,
Lang, N., & Büchler, H. P. (2015). Exploring quantum phases by driven dissipation. Physical Review A, 92(1), 012128.
Latorre, J., & Riera, A. (2009). A short review on entanglement in quantum spin systems. Journal of Physics a: Mathematical and Theoretical, 42(50), 504002.
Li, H., Liu, L., Lan, C., Wang, C., & Guo, H. (2020). Lattice-based privacy-preserving and forward-secure cloud storage public auditing scheme. IEEE Access, 8, 86797-86809.
Lopes, P. L., Quito, V. L., Han, B., & Teo, J. C. (2019). Non-Abelian twist to integer quantum Hall states. Physical Review B, 100(8), 085116.
Ma, C., & Jiang, M. (2019). Practical lattice-based multisignature schemes for blockchains. IEEE Access, 7, 179765-179778.
Mao, J. Y., Zhou, L., Zhu, X., Zhou, Y., & Han, S. T. (2019). Photonic memristor for future computing: a perspective. Advanced Optical Materials, 7(22), 1900766.
Mourik, V., Zuo, K., Frolov, S. M., Plissard, S., Bakkers, E. P., & Kouwenhoven, L. P. (2012). Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336(6084), 1003-1007.
Moylett, D. J., Linden, N., & Montanaro, A. (2017). Quantum speedup of the traveling-salesman problem for bounded-degree graphs. Physical Review A, 95(3), 032323.
Nayak, C., Simon, S. H., Stern, A., Freedman, M., & Sarma, S. D. (2008). Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3), 1083.
Nielsen, M. A., & Chuang, I. L. (2002). Quantum computation and quantum information. American Journal of Physics, 70, 588.
O'brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695.
Orús, R., Mugel, S., & Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4, 100028.
Pednault, E., Gunnels, J. A., Nannicini, G., Horesh, L., & Wisnieff, R. (2019). Leveraging secondary storage to simulate deep 54-qubit sycamore circuits. arXiv preprint arXiv:1910.09534.
Peters, H. P., & Van Raan, A. F. (1993). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23-45.
Piggott, A. Y., Lu, J., Lagoudakis, K. G., Petykiewicz, J., Babinec, T. M., & Vučković, J. (2015). Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nature Photonics, 9(6), 374-377.
Pirati, A., Peeters, R., Smith, D., Lok, S., van Noordenburg, M., van Es, R., Verhoeven, E., Meijer, H., Minnaert, A., & van der Horst, J.-W. (2016). EUV lithography performance for manufacturing: status and outlook. Extreme Ultraviolet (EUV) Lithography VII, 9776, 78-92.
Popa, I., Gaebel, T., Neumann, P., Jelezko, F., & Wrachtrup, J. (2006). Spin polarization in single spin experiments on defects in diamond. Israel Journal of Chemistry, 46(4), 393-398.
Rice, J. E., Gujarati, T. P., Motta, M., Takeshita, T. Y., Lee, E., Latone, J. A., & Garcia, J. M. (2021). Quantum computation of dominant products in lithium–sulfur batteries. The Journal of Chemical Physics, 154(13), 134115.
Riste, D., Dukalski, M., Watson, C., De Lange, G., Tiggelman, M., Blanter, Y. M., Lehnert, K. W., Schouten, R., & DiCarlo, L. (2013). Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature, 502(7471), 350-354.
Rubin, M. H. (2000). Entanglement and state preparation. Physical Review A, 61(2), 022311.
Ruskov, R., & Tahan, C. (2021). Modulated longitudinal gates on encoded spin qubits via curvature couplings to a superconducting cavity. Physical Review B, 103(3), 035301.
Safari, A., & Ghavifekr, A. A. (2021). Quantum Neural Networks (QNN) Application in Weather Prediction of Smart Grids. 2021 11th Smart Grid Conference (SGC)
Scheidsteger, T., Haunschild, R., Bornmann, L., & Ettl, C. (2021). Bibliometric analysis in the field of quantum technology. Quantum Reports, 3(3), 549-575.
Schlamminger, S., Haddad, D., Seifert, F., Chao, L. S., Newell, D. B., Liu, R., Steiner, R. L., & Pratt, J. R. (2014). Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology. Metrologia, 51(2), S15.
Silverstone, J. W., Wang, J., Bonneau, D., Sibson, P., Santagati, R., Erven, C., O'Brien, J., & Thompson, M. (2016). Silicon quantum photonics. 2016 International Conference on Optical MEMS and Nanophotonics (OMN)
Steane, A. (1998). Quantum computing. Reports on Progress in Physics, 61(2), 117.
Stern, A., & Lindner, N. H. (2013). Topological quantum computation—from basic concepts to first experiments. Science, 339(6124), 1179-1184.
Strubell, E. (2011). An introduction to quantum algorithms. COS498 Chawathe Spring, 13, 19.
Sun, B., Guo, T., Zhou, G., Ranjan, S., Jiao, Y., Wei, L., Zhou, Y. N., & Wu, Y. A. (2021). Synaptic devices based neuromorphic computing applications in artificial intelligence. Materials Today Physics, 18, 100393.
Tischler, J. R., Bradley, M. S., Zhang, Q., Atay, T., Nurmikko, A., & Bulović, V. (2007). Solid state cavity QED: Strong coupling in organic thin films. Organic Electronics, 8(2-3), 94-113.
Trew, R. (2002). SiC and GaN transistors-is there one winner for microwave power applications? Proceedings of the IEEE, 90(6), 1032-1047.
Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.
Van Eck, N. J., & Waltman, L. (2007). Bibliometric mapping of the computational intelligence field. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(05), 625-645.
Wang, J., Shen, L., & Zhou, W. (2021). A bibliometric analysis of quantum computing literature: mapping and evidences from scopus. Technology Analysis & Strategic Management, 33(11), 1347-1363.
Wang, Y., & Zhu, L. (2017). Research and implementation of SVD in machine learning. 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)
Weinberg, B. H. (1974). Bibliographic coupling: A review. Information Storage and Retrieval, 10(5-6), 189-196.
Weinstein, Y. S., Pravia, M., Fortunato, E., Lloyd, S., & Cory, D. G. (2001). Implementation of the quantum Fourier transform. Physical Review Letters, 86(9), 1889.
Wellmann, P. J. (2017). Power electronic semiconductor materials for automotive and energy saving applications–SiC, GaN, Ga2O3, and diamond. Zeitschrift für Anorganische und Allgemeine Chemie, 643(21), 1312-1322.
Witzel, W., & Sarma, S. D. (2007). Nuclear spins as quantum memory in semiconductor nanostructures. Physical Review B, 76(4), 045218.
Xu, W. T., Zhang, Q., & Zhang, G. M. (2020). Tensor network approach to phase transitions of a non-Abelian topological phase. Physical Review Letters, 124(13), 130603.
Ying, Z., Feng, C., Zhao, Z., Dhar, S., Dalir, H., Gu, J., Cheng, Y., Soref, R., Pan, D. Z., & Chen, R. T. (2020). Electronic-photonic arithmetic logic unit for high-speed computing. Nature Communications, 11(1), 1-9.
Zhang, S. (2020). Review of modern field effect transistor technologies for scaling. Journal of Physics: Conference Series
Zhao, N., Guo, X., & Wu, T. (2021). Multicast-based N-party remote-state preparation of arbitrary Greenberger-Horne-Zeilinger–class states. Physical Review A, 104(6), 062616.
Zhu, M.-Z., & Ye, L. (2014). Efficient distributed controlled Z gate without ancilla single-photons via cross-phase modulation. JOSA B, 31(3), 405-411.
Zitt, M., Bassecoulard, E., & Okubo, Y. (2000). Shadows of the past in international cooperation: Collaboration profiles of the top five producers of science. Scientometrics, 47(3), 627-657.
Zwanenburg, F. A., Dzurak, A. S., Morello, A., Simmons, M. Y., Hollenberg, L. C., Klimeck, G., Rogge, S., Coppersmith, S. N., & Eriksson, M. A. (2013). Silicon quantum electronics. Reviews of Modern Physics, 85(3), 961.
電子全文 電子全文(網際網路公開日期:20250831)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊