跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱澄音
研究生(外文):Cheng-Yin Chu
論文名稱(外文):Earthquake-induced Normal Modes of Free Oscillation of the Earth Observed in GNSS Networks
指導教授:趙丰趙丰引用關係
指導教授(外文):Benjamin F. Chao
學位類別:博士
校院名稱:國立中央大學
系所名稱:地球科學學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:55
中文關鍵詞:地球自由震盪東北大地震疊加方法正交模態全球導航衛星系統
外文關鍵詞:Free OscillationNormal modesTohoku EarthquakeGNSSGPSstacking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
我們在連續 GPS 3-D 位移觀測中找尋-由 2011 年 Mw 9.0 東北大地震所激發的地球自由振盪。一項前人研究展示了這種偵測的可行性,我們在這裡進行更全面、更詳細的研究。我們使用的GPS數據來自三個獨立觀測網:(i) 日本 GEONET 觀測網,約 1000 個測站; (ii) 美國西部 PBO 觀測網,約 600 個測站; (iii) 覆蓋全球的 IGS 觀測網,約 140 個台站;以 30 秒採樣率求解並解算出 21 小時長的記錄。我們使用了多記錄疊加方法:降低噪聲方差的頻率域功率譜疊加,以及提高目標模態信噪比和抑制非目標模態的時間域疊加。我們發現最佳序列估計 (OSE) 的時間域疊加方法是最有效的,它對於頻譜中的自由震盪正交模態,清楚地顯示出高靈敏度和可偵測性。在近場的GEONET,所有激發模態都處於反節點 (anti-nodes),低於 5 mHz 的所有 spheroidal fundamental modes (0S9 – 0S43) 和部分 lower-degree overtones 以及大多數的 lower-degree toroidal fundamental modes 都在 PREM 模型特徵頻率上出現顯著的譜峰(peak)。 PBO 看到的譜峰強度較弱(遠場且通常不為反節點),但仍然可以清楚地識別fundamental modes的頻譜譜峰。全球 IGS 網由於其測站分布稀疏和測站數量少,較弱地偵測了這些模態。因此,我們的研究展示 GPS 確實記錄了微小的地震信號,可以通過多記錄疊加方法揭示之,這可能有助於研究激發normal modes的震源機制。
We search in the continuous GPS 3-D displacement data for the signals of the normal modes of Earth’s free oscillation that were excited by the 2011 Mw 9.0 Tohoku earthquake. A previous study has reported such a detection; we here conduct a more comprehensive and detailed study. We use GPS data from three separate networks: (i) about 1000 stations from the Japan GEONET; (ii) about 600 stations from the western USA PBO; and (iii) about 140 stations of the global IGS, and solve and form records of 21 hours long at 30-second sampling rate. We conduct various multiple-record stacking methods: the frequency-domain power spectrum stacking that reduces the variance of the noises, and the time-domain stackings that boost the SNR of target modes and suppressing the non-target modes. We find the time-domain stacking method of optimal sequence estimation (OSE) to be the most effective, which show clearly high sensitivity and detectability of the modes in the spectrum. For the near-field GEONET where all excited modes have anti-nodes, all the spheroidal fundamental modes 0S9 – 0S43 below 5 mHz and some of the lower-degree overtones as well as most of the low-degree toroidal fundamental modes show up as prominent spectral peaks against the PREM model eigenfrequencies. The PBO sees less strong (being far-field and generally off-antinodes) but still clearly identifiable spectral peaks of the fundamental modes. The global IGS network data detect barely a handful of these modes because of its sparsity and small numbers of stations. We thus demonstrate that GPS does actually record the tiny seismic signals that can be revealed by means of multiple-record stacking methods, potentially useful for studying earthquake source mechanisms exciting the normal modes.
Table of Contents
ABSTRACT ............................I
TABLE OF CONTENTS ...................... III
LIST OF FIG.S ................................ V
I. INTRODUCTION................................. 1
II. DATA ....................................... 3
III. DATA STACKING TECHNIQUES ..................... 5
3.1 FREQUENCY-DOMAIN STACKING ..................... 5
3.2 TIME-DOMAIN STACKING ..................... 6
IV. RESULTS ........................... 9
4.1 FREQUENCY-DOMAIN STACKING ........................... 9
4.2 TIME-DOMAIN STACKING ........................ 12
V. DISCUSSION AND CONCLUSIONS .................. 20
REFERENCES ............................ 23
APPENDIXES ........................ 26
APPENDIX 1: THE SHS SPECTRA ........................ 26
APPENDIX 2: THE IGS SPECTRA ............................. 28
APPENDIX 3: THE PBO SPECTRA ......................... 29
APPENDIX 4: DATA STACK ............................ 32
APPENDIX 5: SEARCH FOR SPHEROIDAL OVERTONES BY SHS ..... 33
APPENDIX 6: SEARCH FOR TOROIDAL OVERTONES BY SHS ...... 37 APPENDIX 7: SEARCH FOR OVERTONES BY OSE ............... 39 APPENDIX 8: VELOCITY SPECTRA ....................... 43
References

Agnew DC, Berger J, Farrell WE, Gilbert JF, Masters G., Miller D. (1986) Project IDA: A decade in review, Eos Trans. AGU, 67:203–212, doi:10.1029/EO067i016p00203.
Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J. Geod. 84: 327–337, http://dx.doi.org/10.1007/s00190-010-0371-9.
Bogiatzis P., Ishii M (2014) Moment tensor of the 2011 Tohoku-Oki earthquake from Earth's free oscillations. Bull. Seismol. Soc. Am. 104, 875-884, doi:10.1785/0120130243.
Buland, R, Berger, J., and Gilbert, F. (1979) Observations from the IDA network of attenuation and splitting during a recent earthquake. Nature, 277, 358-362.
Buland R. Gilbert F. (1978) Improved resolution of complex eigenfrequencies in analytically continued seismic spectra, Geophys. J. Int., 52, 457-470.
Bullen KE, Bolt BA (1985) An Introduction to the Theory of Seismology (4th ed.), Cambridge University Press, New York.
Chao BF, Ding H (2014) Spherical harmonic stacking for the singlets of Earth’s normal modes of free oscillation, Geophys. Res. Lett., 41, doi: 10.1002/2014GL060700.
Chao BF, Liau JR (2019) Gravity Changes Due to Large Earthquakes Detected in GRACE Satellite Data via Empirical Orthogonal Function Analysis, J. Geophys. Res., doi: 10.1029/2018JB016862.
Courtier N, Ducarme B, Goodkind J, Hinderer J, Imanishi Y, Seama N, Sun H, Merriam J, Bengert B, Smylie D. E. (2000) Global superconducting gravimeter observations and the search for the translational modes of the inner core, Phys. Earth Planet. Int., 117, 3–20.
Ding H., Chao BF (2015a) Data stacking methods for isolation of normal-mode singlets of Earth's free oscillation: Extensions, comparisons, and applications, J. Geophys. Res. Solid Earth, 120, 5034–5050, doi:10.1002/2015JB012025.
Ding H, Chao BF (2015b) Detecting harmonic signals in a noisy time-series: the z domain Autoregressive (AR-z) spectrum, Geophys. J. Int. 201, 1287-1296.
Ding H, Chao BF (2017) Solid pole tide in global GPS and superconducting gravimeter observations: signal retrieval and inference for mantle anelasticity, Earth Planet. Sc. Lett., doi:10.1016/j.epsl.2016.11.039.
Ding H, Shen WB (2013) Search for the Slichter modes based on a new method: optimal sequence estimation, J. Geophys. Res., 118, doi:10.1002/jgrb.50344
Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model, Phys. Earth Planet. Int., 25, 297–356.
Gilbert F. Dziewonski AM (1975) An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc., 278A, 187-269.
Kanamori H, Anderson DL (1975) Amplitude of the Earth's free oscillations and long-period characteristics of the earthquake source, J. Geophys. Res., 80(8), 1075–1078, doi:10.1029/JB080i008p01075.
Larson KM, Boden P. Gomberg J. (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300, 1421–1424.
Lentas K, Ferreira AMG, Clévédé E, Roch J, (2014) Source models of great earthquakes from ultra low-frequency normal mode data, Phys. Earth Planet. Int., 233, 41-67, https://doi.org/10.1016/j.pepi.2014.05.011
Masters G, Park J Gilbert F (1983) Observations of coupled spheroidal and toroidal modes, J. Geophys. Res., 88, 10285–10298.
Masters G., Widmer R (1995) Free Oscillations: Frequencies and Attenuations, in Global Earth Physics: A Handbook of Physical Constants, ed. Thomas J. Ahrens, Amer. Geophys. U., Washington DC.
Mitsui Y, Heki K (2012) Observation of Earth's free oscillation by dense GPS array: After the 2011 Tohoku megathrust earthquake, Nature Sci. Rep., 2: 931, doi:10.1038/srep00931.
Munk W, Hasselmann K (1964) Super-resolution of tides, in Studies on Oceanography, Hidaka Memorial Volume, Tokyo, 339-344.
Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature 475, 373–376, https://doi.org/10.1038/nature10227
Park J, et al. (2005) Earth’s free Oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science 308(5725):1139–1144. doi:10.1126/science.1112305
Park J, Amoruso A, Crescentini L, Boschi E (2008) Long-period toroidal earth free oscillations from the great Sumatra–Andaman earthquake observed by paired laser extensometers in Gran Sasso, Italy. Geophys. J. Int. 173, 887–905.
Phinney RA, Burridge R (1973) Representation of the Elastic - Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics, Geophys. J. R. astr. Soc., 34, 451-487, 1973, doi: 10.1111/j.1365, 246X.1973.tb02407.x.
Smylie DE, Hinderer J, Richter B, Ducarme B (1993) The product spectra of gravity and barometric pressure in Europe, Phys. Earth Planet. Interior, 80, 135-157.
Yan R, Woith H, Wang RJ, Zhang Y (2016) Earth's free oscillations excited by the 2011 Tohoku Mw 9.0 earthquake detected with a groundwater level array in mainland China, Geophysical Journal International, 206, , 1457–1466, https://doi.org/10.1093/gji/ggw213
Yuan L, Chao BF (2012) Analysis of tidal signals in surface displacement measured by a dense continuous GPS array, Earth Planet. Sc. Lett., 255-261, doi: 10.1016/j.epsl.2012.08.03.
Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102: 5005–5017, http://dx.doi.org/10.1029/96JB03860.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊