跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林孟威
研究生(外文):Meng-Wei Lin
論文名稱:超音波與磁場複合輔助遮罩式電化學加工微孔陣列之研究
論文名稱(外文):A Study on Ultrasonic combined Magnetic Field assisted Through-Mask Electrochemical Machining of Micro-hole Arrays
指導教授:崔海平
指導教授(外文):Hai-Ping Tsui
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:120
中文關鍵詞:遮罩式電化學加工微孔陣列超音波輔助振動磁場輔助
外文關鍵詞:Through mask Electrochemical MachiningMicro Hole ArrayUltrasonic Assisted VibrationMagnetic Field Assisted
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
當採用陣列電極進行電化學加工微孔陣列時,因具有無法同時旋轉多個電極及無法於電極內設計流道,導致電解液供給不良,造成加工精度不良或無法加工之情形。為了克服前述各項困難點,本論文採用超音波與磁場複合輔助進行遮罩式電化學加工微孔陣列之研究,利用磁場與超音波振動輔助一體式刀具電極對SUS 304不銹鋼試片進行遮罩式電化學加工微孔陣列,並探討超音波功率等級、工作電壓、脈衝休止時間及刀具電極進給速率等不同加工參數對平均對角線長、對角線長全距及微孔入出口之錐角等各種加工特性之影響。
實驗結果顯示,使用超音波輔助振動刀具電極會造成電解液產生快速的壓力變化,形成泵吸作用與空蝕作用,而添加磁場會與電場相互作用產生勞倫茲力,上述這些輔助方式會促使加工間隙中的電解液更新,快速排除加工區域中的反應熱及不導電之深褐色金屬氧化物,進而提升加工能力及材料移除率並降低微孔陣列之平均對角線長。當使用超音波與磁場複合輔助時,相較於單純超音波輔助或磁場輔助,可以得到較佳的平均對角線及表面品質。當採用實驗參數組合為超音波功率等級Level 8(Amplitude:1.30 μm )、工作電壓16 V、脈衝休止時間70 μs及刀具電極進給速率7 μm/s時,可得到最佳平均對角線長546 μm,以及較小的對角線長全距25 μm,並能改善微孔入出口之錐角。
During the electrochemical machining(ECM) of the micro-hole array by using array electrodes, the poor processing accuracy or inability of the process resulted from the problems of the poor supply of electrolyte which are resulted from the inability to rotate multiple electrodes at the same time and the inability to design a flow channel in the electrodes. To overcome these difficulties, ultrasonic vibration and magnetic field were adapted to assist through-mask electrochemical machining of the micro-hole array in this study. The one-piece array electrode assisted by ultrasonic vibration and a magnetic field was used to produce a micro-hole array on SUS 304 in the ECM process. Discussions follow on the influences of the various processing characteristics, such as average diagonal length, diagonal length range, inlet taper angle, and outlet taper angle, which resulted from the various processing parameters, including ultrasonic power level, working voltage, pulse off time, and electrode feed rate.

The experimental results have shown that the ultrasonic vibration-assisted electrodes quickly changed the pressure of the electrolyte, producing a pumping effect and a cavitation effect, and the interaction between the magnetic field and the electric field generated a Lorentz force. These auxiliary methods promoted the renewal of the electrolyte into the machining gap, which quickly excludes the reaction heat and the non-conductive dark brown metal oxide in the processing area, thereby improving the processing ability and material removal rate and reducing the average diagonal length of the micro-hole array. When ultrasonic and magnetic field assistances were applied simultaneously, better average diagonal and surface qualities were obtained compared with the ultrasonic assistance or magnetic field assistance independently. The experimental parameter combination, including ultrasonic power level 8 (amplitude: 1.30 μm), working voltage 16 V, pulse off time 70 μs, and tool electrode feed rate 7 μm/s, resulted in a minimum average diagonal length of 546 μm and the smallest diagonal length range of 25 μm while improving the inlet and outlet taper angles of the micro-holes.
摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
1-3 文獻回顧 5
1-4 論文架構 12
第二章 實驗基礎原理 13
2-1 電化學加工基礎理論 13
2-1-1 電化學反應機制 13
2-1-2 法拉第電解定律(Faraday’s Laws of Electrolysis) 14
2-1-3 電化學加工速率 15
2-1-4 平衡間隙 16
2-1-5 歐姆定律(Ohm’s Law) 16
2-1-6 電極電位-金屬與溶液界面雙電層理論(Electrical Double Layer Theory) 17
2-1-7 陽極極化曲線及其特徵 18
2-1-8 電流密度與電流效率 20
2-1-9 脈衝占空比 21
2-2-1 泵吸作用(Pumping Effect) 22
2-2-2 空蝕作用(Cavitation) 23
2-2-3 超音波振動電極之運動分析 23
2-3氣泡影響電化學加工之理論(氣泡與導電度關係理論) 26
2-3-1 體積分率(Volume Fraction) 26
2-3-2 導電度(Electrical Conductivity) 26
2-4磁場理論 28
2-4-1 右手開掌定則 28
2-4-2 勞倫茲力(Lorentz’s force) 28
第三章 實驗設備與材料 31
3-1 實驗簡介 31
3-2 實驗設備 32
3-2-1 電化學加工機 32
3-2-2 去離子水系統 34
3-2-3 電子天平 35
3-2-4 電磁式加熱攪拌器 36
3-2-5 線切割放電加工機 36
3-2-6 超音波主軸與發振器 37
3-2-7 超音波振幅量刀器 37
3-2-8 直流脈衝電源供應器 38
3-2-9 示波器 38
3-2-10 超音波洗淨機 39
3-2-11 顯微影像量測系統 39
3-2-12 立體電子顯微鏡 40
3-2-13 磁通密度計 40
3-2-14 精密試片切割機 41
3-2-15 金相研磨拋光機 41
3-2-16 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 42
3-3 實驗材料 43
3-3-1 不鏽鋼試片 43
3-3-2 一體式陣列刀具電極 44
3-3-3 釹鐵硼磁鐵 45
3-3-4 電解液 46
3-4 實驗流程與方法 47
3-4-1 電解液調配 48
3-4-2 試片準備 48
3-4-3 刀具電極製作 48
3-4-4 超音波振幅量測 49
3-4-5 磁通密度量測 50
3-4-6 實驗架設參數設定 51
3-4-7 實驗結果量測與觀察 52
3-4-7-1 微孔量測 52
3-4-7-2 平均對角線長(Average Diagonal Length) 53
3-4-7-3對角線長全距(Diagonal Length Range) 53
3-4-7-4幾何特徵觀察 54
第四章 結果與討論 56
4-1 CFD加工區域流場方向分析 56
4-2 傳統遮罩式電化學加工微孔陣列之結果 58
4-3 不同輔助加工(超音波、磁場、超音波與磁場複合)對遮罩式電化學加工微孔陣列之影響 60
4-4直接側面噴流及後方兩側補充電解液對遮罩式電化學加工微孔陣列之影響 64
4-5 超音波功率等級對遮罩式電化學加工微孔陣列之影響 68
4-6 工作電壓對遮罩式電化學加工微孔陣列之影響 75
4-7 脈衝休止時間對遮罩式電化學加工微孔陣列之影響 82
4-8 刀具電極進給速率對遮罩式電化學加工微孔陣列之影響 88
第五章 結論 94
未來展望 96
參考文獻 97
[1] J.F.Wilson, Practice and theory of electrochemical machining, 1971.
[2] K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilva, Micro and Nano Machining by Electro-Physical and Chemical Processes, CIRP Ann. 55 (2006) 643–666.
[3] R. Schuster, V. Kirchner, P. Allongue, ELectrochemical Micromachining, Science. 289 (2000) 98–101.
[4] B. Bhattacharyya, J. Munda, M. Malapati, Advancement in electrochemical micro-machining, Int. J. Mach. Tools Manuf. 44 (2004) 1577–1589.
[5] B. Bhattacharyya, B. Doloi, P.S. Sridhar, Electrochemical micro-machining: new possibilities for micro-manufacturing, J. Mater. Process. Technol. 113 (2001) 301–305.
[6] 朱樹敏, 電化學加工技術, 化學工業出版社, 北京, 2006.
[7] W. Chen, F. Han, J. Wang, Influence of pulse waveform on machining accuracy in electrochemical machining, Int. J. Adv. Manuf. Technol. 96 (2018) 1367–1375.
[8] T. Koyano, A. Hosokawa, T. Furumoto, Analysis of electrochemical machining process with ultrashort pulses considering stray inductance of pulse power supply, J. Adv. Mech. Des. Syst. Manuf. 12 (2018) JAMDSM0098–JAMDSM0098.
[9] M.S. Hewidy, S.J. Ebeid, K.P. Rajurkar, M.F. El-Safti, Electrochemical machining under orbital motion conditions, J. Mater. Process. Technol. 109 (2001) 339–346.
[10] X. Jiang, J. Liu, D. Zhu, M. Wang, N. Qu, Research on Stagger Coupling Mode of Pulse Duration and Tool Vibration in Electrochemical Machining, Appl. Sci. 8 (2018) 1296.
[11] H. El-Hofy, Vibration-assisted electrochemical machining: a review, Int. J. Adv. Manuf. Technol. 105 (2019) 579–593.
[12] H.-P. Tsui, J.-C. Hung, J.-C. You, B.-H. Yan, Improvement of Electrochemical Microdrilling Accuracy Using Helical Tool, Mater. Manuf. Process. 23 (2008) 499–505.
[13] B.H. Kim, B.J. Park, C.N. Chu, Fabrication of multiple electrodes by reverse EDM and their application in micro ECM, J. Micromechanics Microengineering. 16 (2006) 843.
[14] F.-T. Weng, M.-G. Her, Study of the Batch Production of Micro Parts Using the EDM Process, Int. J. Adv. Manuf. Technol. 19 (2002) 266–270.
[15] M.S. Park, C.N. Chu, Micro-electrochemical machining using multiple tool electrodes, J. Micromechanics Microengineering. 17 (2007) 1451–1457.
[16] 沈哲墉, 超音波輔助電化學加工微孔陣列之研究, 國立中央大學, 2020.
[17] I. Mogi, Electrochemical studies in steady high magnetic fields, Phys. B Condens. Matter. 216 (1996) 396–398.
[18] A. Ruszaj, M. Zybura, R. Żurek, G. Skrabalak, Some aspects of the electrochemical machining process supported by electrode ultrasonic vibrations optimization, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 217 (2003) 1365–1371.
[19] Z. Fan, T. Wang, L. Zhong, The mechanism of improving machining accuracy of ECM by magnetic field, J. Mater. Process. Technol. 149 (2004) 409–413.
[20] H. Hocheng, P.S. Kao, S.C. Lin, Development of the eroded opening during electrochemical boring of hole, Int. J. Adv. Manuf. Technol. 25 (2005) 1105–1112.
[21] B.J. Park, B.H. Kim, C.N. Chu, The Effects of Tool Electrode Size on Characteristics of Micro Electrochemical Machining, CIRP Ann. 55 (2006) 197–200.
[22] 洪智育, 微電化學深孔加工之研究與分析, 國立中央大學, 2006.
[23] P.S. Pa, Design of effective plate-shape electrode in ultrasonic electrochemical finishing, Int. J. Adv. Manuf. Technol. 34 (2007) 70–78.
[24] B.J. Ma, Z.J. Fan, D.J. Stephenson, Influence of Magnetic Field Distribution on ECM Process, Key Eng. Mater. 339 (2007) 50–58.
[25] 崔海平, 電化學結合電泳精密拋光不銹鋼之研究, 國立中央大學, 2008.
[26] 尤俊欽, 結合電化學與電泳沉積之微孔複合加工研究, 國立中央大學, 2008.
[27] M.H. Wang, D. Zhu, Fabrication of multiple electrodes and their application for micro-holes array in ECM, Int. J. Adv. Manuf. Technol. 41 (2009) 42–47.
[28] P.S. Pa, Super finishing with ultrasonic and magnetic assistance in electrochemical micro-machining, Electrochimica Acta. 54 (2009) 6022–6027.
[29] 楊曜光, 磁場輔助微電化學銑削加工特性之研究, 國立中央大學, 2009.
[30] 林聖育, 磁場輔助微電化學鑽孔加工特性之研究, 國立中央大學, 2011.
[31] S. Skoczypiec, Research on ultrasonically assisted electrochemical machining process, Int. J. Adv. Manuf. Technol. 52 (2011) 565–574.
[32] J.L. Jia, Z.J. Fan, Research on Higher Frequency, Short Pulses and Assisted Magnetic Field Electrochemical Machining, Adv. Mater. Res. 189–193 (2011) 3162–3165.
[33] L. Tang, W.M. Gan, Experiment and simulation study on concentrated magnetic field-assisted ECM S-03 special stainless steel complex cavity, Int J Adv Manuf Technol. 72 (2014) 685–692.
[34] 洪偉誌, 微結構電化學加工底部R角之改善策略分析與實做研究, 國立中央大學, 2014.
[35] G. Skrabalak, A. Stwora, Electrochemical, Electrodischarge and Electrochemical-discharge Hole Drilling and Surface Structuring Using Batch Electrodes, Procedia CIRP. 42 (2016) 766–771.
[36] D. Baczyzmalski, F. Karnbach, X. Yang, G. Mutschke, M. Uhlemann, K. Eckert, C. Cierpka, On the Electrolyte Convection around a Hydrogen Bubble Evolving at a Microelectrode under the Influence of a Magnetic Field, J. Electrochem. Soc. 163 (2016) E248.
[37] S. Ayyappan, K. Sivakumar, M. Kalaimathi, Electrochemical machining of 20MnCr5 alloy steel with magnetic flux assisted vibrating tool, J. Mech. Eng. Sci. 231 (2016) 1956–1965.
[38] S. Skoczypiec, Discussion of ultrashort voltage pulses electrochemical micromachining: a review, Int. J. Adv. Manuf. Technol. 87 (2016) 177–187.
[39] L. Long, M.A. Baoji, W. Ruifeng, D. Lingqi, The coupled effect of magnetic field, electric field, and electrolyte motion on the material removal amount in electrochemical machining, Int. J. Adv. Manuf. Technol. 91 (2017) 2995–3006.
[40] Li Long, M.A. Baoji, Effect of magnetic field on anodic dissolution in electrochemical machining, Int. J. Adv. Manuf. Technol. 94 (2018) 1177–1187.
[41] Curtis Bradley, Johnson Samuel, Controlled Phase Interactions Between Pulsed Electric Fields, Ultrasonic Motion, and Magnetic Fields in an Anodic Dissolution Cell, J. Manuf. Sci. Eng. 140 (2018).
[42] K. Egashira, A. Hayashi, Y. Hirai, K. Yamaguchi, M. Ota, Drilling of microholes using electrochemical machining, Precis. Eng. 54 (2018) 338–343.
[43] 孔祥桓, 利用灰色關聯分析法探究遮罩式電化學穿孔之最佳化參數, 國立中央大學, 2018.
[44] H. Li, Study of the Hole-Formation Process with Different Mask Diameters via Through-Mask Electrochemical Machining, Int. J. Electrochem. Sci. (2018) 3006–3022.
[45] Sachin R. Peruri, Phaneendra Kiran Chaganti, A review of magnetic‑assisted machining processes, J. Braz. Soc. Mech. Sci. Eng. 41 (2019) 1–17.
[46] Lilong, M. Baoji, P. Cheng, K. Yun, P. Yin, Effect of magnetic field on the electrochemical machining localization, Int. J. Adv. Manuf. Technol. 102 (2019) 949–956.
[47] J. Arab, P. Adhale, D.K. Mishra, P. Dixit, Micro array hole formation in glass using electrochemical discharge machining, Procedia Manuf. 34 (2019) 349–354.
[48] 郭家誠, 超音波輔助微電化學鑽孔鎳基合金加工研究, 國立中央大學, 2019.
[49] V. Gatard, J. Deseure, M. Chatenet, Use of magnetic fields in electrochemistry: A selected review, Curr. Opin. Electrochem. 23 (2020) 96–105.
[50] School of Mechatronics Engineering, Xi’an Technological University, Xi’an 710021, China, C. Zhang, Effects of a Magnetic Field on the Machining Accuracy for the Electrochemical Drilling of Micro Holes, Int. J. Electrochem. Sci. (2020) 1148–1159.
[51] H. Zou, X. Yue, H. Luo, B. Liu, S. Zhang, Electrochemical micromachining of micro hole using micro drill with non-conductive mask on the machined surface, Journal of Manufacturing Processes. 59 (2020) 366–377.
[52] College of Mechanical Engineering, Yangzhou University, Yangzhou, China, G. Yongcheng, Experimental Study on Ultrasonic Assisted Electrochemical Micro-Machining of Micro-Dimple Array Structure, Int. J. Electrochem. Sci. (2021) 150692.
[53] L. Xu, J. Wang, C. Zhao, Electrochemical Micromachining Using Real Pulse Signals, J. Electrochem. Soc. 168 (2021) 083504.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top