跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 11:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊鎧丞
研究生(外文):Yang,Kai-Cheng
論文名稱:應用共裂解技術轉換工程塑膠為能源之可行性研究
論文名稱(外文):Feasibility of Engineering-Plastics converted to Energy by Co-Pyrolysis
指導教授:江康鈺江康鈺引用關係
指導教授(外文):Jiang,Kang-Yu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:217
中文關鍵詞:聚碳酸酯熱塑性聚氨酯熱裂解共同裂解
外文關鍵詞:Polycarbonate(PC)Thermoplastic polyurethane(TPU)PyrolysisCo-pyrolysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用固定床熱裂解反應系統,探討聚碳酸酯(Polycarbonate, PC)及熱塑性聚氨酯(Thermoplastic polyurethane, TPU)共同熱裂解轉換為能源之可行性及其產物分佈特性。實驗條件除控制溫度介於550~650 ℃外,並以650 ℃溫度條件下,分別控制摻混比1:3、1:1 與3:1。研究同時利用熱重分析技術,進一步分析試驗材料之熱反應動力參數,及評估不同試驗材料之協同效應。
根據熱重分析之結果顯示,PC 及TPU 之反應活化能分別為402.42 kJ/mol 及125.23 kJ/mol,當PC 與TPU 摻混進行共裂解反應時,PC 之反應活化能隨TPU添加而有降低之現象,其中PC 與TPU 以1:1 為混合條件,其反應活化能約為124.92 kJ/mol,亦即PC 與TPU 摻混後,逐漸趨向於TPU 之熱反應特性。此外,根據摻混後PC 與TPU 之質量損失變化率可知,當PC:TPU=1:1 時,熱分解反應過程產生協同效應,因此,反應活化能亦隨著摻混兩種試驗材料後,呈現降低之趨勢。
裂解反應溫度對PC 及TPU 裂解之產物分佈影響並不顯著,其中裂解溫度控制在650 ℃時,主要之共裂解產物為氣相產物,約占68%至80%之間,其中以PC與TPU 摻混比1:1 條件為例,其產物分佈特性分別為68.8%之氣相、24.4%之液相及6.8%之固相產物。進一步分析液相產物之種類與特性,前述24.4%之液相產物中,主要為23.54%之重質油及0.87%之輕質油。另以液相產物之氧/碳莫耳比(O/C 比)進行油品老化發生潛勢之評估,結果顯示PC 與TPU 以1:1 摻混進行共同裂解,輕質油產物之氧/碳莫耳比,可降低至0.07,亦即共同裂解可有效降低輕質油品之老化現象發生潛勢。液相產物之物種分析結果顯示,PC 及TPU 裂解產生之重質油,隨裂解溫度550 ℃增加至650 ℃時,主要物種由芳香族化合物轉換為含氧化合物;而輕質油之物種,則均以含氧化合物為主。當進行PC 與TPU 共同裂解反應時,不論摻混比例之改變,重質油之含氧化合物產率明顯增加,而輕質油中芳香族化合物產率,亦呈現增加之趨勢。
根據能源密度分析結果顯示,PC 及TPU 裂解產物之能源分布特性,主要為氣相產物,且總能量密度隨裂解溫度增加而增加。以裂解溫度650℃為例,PC 及TPU 裂解產物之總能源密度分別為0.30 及1.37,亦即TPU 之熱裂解轉換能源之利用效率較佳。當共同裂解反應條件為1:1 時,其總能源密度約為0.86,亦能有效達到能源轉換應用之目的。整體而言,本研究成果已初步建立PC 及TPU 共同裂解之熱反應動力、產物分佈及物種特性,同時亦評估裂解產物之總能源密度,未來若能進一步放大規模試驗,並分析裂解產物特性及其能源效益,將有助於後續推動PC 與TPU 共同裂解技術之發展與應用。
This research aims to evaluate the energy conversion efficiency and pyrolytic products partitioning characteristics in co-pyrolysis of Polycarbonate (PC) and
Thermoplastic polyurethane (TPU) using a fixed-bed reactor with controlling the temperature at 550-650℃ and blending ratio of 1:3, 1:1, and 3:1 at 650℃. The thermogravimetric analysis technology was also used to analyze the tested materials’ thermal reaction kinetic parameters and evaluate the synergistic effect between the tested materials.
According to the thermogravimetric analysis results, the reaction activation energies of PC and TPU were 402.42 kJ/mol and 125.23 kJ/mol, respectively. The reaction activation energy of PC decreased with the TPU blending ratio increasing in co-pyrolysis. In the case of PC:TPU=1:1, the reaction activation energy was approximately 124.92 kJ/mol. It implied that the thermal reaction characteristics of coblending of PC and TPU have tended to TPU thermal reaction characteristics. In addition, according to the results of mass loss rate in co-pyrolysis of PC and TPU, the
synergistic effect occurred during the thermal decomposition reaction process as coblending of 50% PC and 50% TPU. Therefore, the reaction activation energy showed a
decreasing trend with the co-blending of the tested materials.
The pyrolysis temperature does not significantly affect the partitioning of PC and TPU pyrolytic products. When pyrolysis temperature is controlled at 650 °C, the gasphase
pyrolytic product was the majority and ranged between 68% and 80%. In the case of co-blending 50% PC and 50% TPU, the pyrolytic product partitioning percentage was approximately 68.8% of the gas phase, 24.4% of the liquid phase, and 6.8% of the solid phase, respectively. Meanwhile, 24.4% of the liquid-phase product consisted of 23.54% of the heavy fraction oil and 0.87% of the light fraction oil. According to the Oxygen-to-Carbon molar ratio (O/C ratio) in the liquid-phase product, the O/C ratio of the light-fraction oil could decrease to 0.07 during the co-pyrolysis of the PC and TPU process. It implied that the pyrolytic oil aging could be migrated by co-blending PC and TPU. The heavy fraction oil speciation derived from PC and TPU was aromatics compounds by pyrolysis. However, the oxygenated hydrocarbon compounds became dominant as the pyrolysis temperature increased from 550℃ to 650℃. The dominant
speciation of the light fraction oil was oxygenated hydrocarbon compounds pyrolyzed between the temperature of 550℃ and 650℃. In the case of the co-pyrolysis of PC and
TPU with different blending ratios, the yields of oxygenated hydrocarbon compounds in the heavy fraction oil and aromatics compounds in the light fraction oil both increased
significantly.
Based on the energy density analysis results, the gas-phase pyrolytic product mainly contributed to the energy production in the co-pyrolysis of PC and TPU. The total energy density of all pyrolytic products increases with the pyrolysis temperature increasing. In the case of pyrolysis temperature of 650 ℃, the total energy density of pyrolytic
products in pyrolysis of PC and TPU were 0.30 and 1.37, respectively. It implied that TPU could provide a good energy conversion efficiency. Besides, in the case of 50%
PC and 50% TPU blending conditions, the total energy density of all pyrolytic products was approximately 0.86. It also could effectively achieve the energy conversion application. In summary, the results of this research have preliminarily
established the thermal reaction kinetics, pyrolytic product partitioning, and speciation in co-pyrolysis of PC and TPU. The total energy density of the pyrolytic products was
also successfully evaluated. To further successfully perform the scale-up test and assess the pyrolytic product characteristics and their energy benefits in the future, it will help promote the development and application of the co-pyrolysis technology of PC and TPU.
摘要 ................................................................................................................................. i
Abstract .......................................................................................................................... iii
致謝 .............................................................................................................................. vii
目錄 ............................................................................................................................... ix
表目錄 ........................................................................................................................... xi
圖目錄 ......................................................................................................................... xiii
第一章 前言 ................................................................................................................... 1
第二章 文獻回顧 ........................................................................................................... 5
2-1塑膠使用及處理現況 ....................................................................................... 5
2-2 PC塑膠之特性及處理技術 ............................................................................. 9
2-3 TPU塑膠之特性及處理技術 ......................................................................... 10
2-4熱裂解技術 ..................................................................................................... 11
2-4-1影響熱裂解之條件-溫度 ..................................................................... 16
2-4-2影響熱裂解之條件-反應器 ................................................................. 20
2-4-4影響熱裂解之條件-催化劑 ................................................................. 23
2-4-4影響熱裂解之條件-共裂解 ................................................................. 24
第三章 研究材料與方法 ............................................................................................. 29
3-1研究材料 ......................................................................................................... 29
3-2研究方法 ......................................................................................................... 30
3-2-1研究設備與操作條件 ........................................................................... 30
3-2-2熱裂解試驗操作步驟 ........................................................................... 31
3-2-3原料之動力學分析 ............................................................................... 31
3-3分析項目與方法 ............................................................................................. 35
3-3-1塑膠原料 ............................................................................................... 35
3-3-2熱裂解產物 ........................................................................................... 37
第四章 結果與討論 ..................................................................................................... 45
4-1材料之基本特性 ............................................................................................. 45
4-2 PC及TPU原料之熱反應動力特性分析 ...................................................... 46
4-2-1熱重分析及氣相物種官能基分析 ....................................................... 46
4-2-3反應活性與活化能分析 ....................................................................... 61
4-3產物產量之分析結果 ..................................................................................... 72
4-3-1產物之質量平衡 ................................................................................... 72
4-4產物特性之分析結果 ..................................................................................... 86
4-4-1固體產物之特性分析 ........................................................................... 86
4-4-2液體產物之特性分析 ........................................................................... 87
4-4-3氣體產物之特性分析 ......................................................................... 109
4-5產能效率評估 ............................................................................................... 124
第五章 結論與建議 ................................................................................................... 135
5-1結論 ............................................................................................................... 135
5-2建議 ............................................................................................................... 137
參考文獻 ..................................................................................................................... 139
附錄 ............................................................................................................................. 155
Abbas-Abadi, Mehrdad Seifali, Haghighi, Mehdi Nekoomanesh, Yeganeh, Hamid, McDonald, Armando G., 2014. Evaluation of pyrolysis process parameters on polypropylene degradation products. Journal of Analytical and Applied Pyrolysis 109, 272-277.
Al-Salem, S. M., 2019. Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Safety and Environmental Protection 127, 171-179.
Alipour, Mozhdeh, Asadi, Hossein, Chen, Chengrong, Rashti, Mehran Rezaei, 2021. Bioavailability and eco-toxicity of heavy metals in chars produced from municipal sewage sludge decreased during pyrolysis and hydrothermal carbonization. Ecological Engineering 162, 106173.
Alvarez, J., Lopez, G., Amutio, M., Artetxe, M., Barbarias, I., Arregi, A., Bilbao, J., Olazar, M., 2016. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Processing Technology 149, 169-175.
Antonakou, E. V., Kalogiannis, K. G., Stefanidis, S. D., Karakoulia, S. A., Triantafyllidis, K. S., Lappas, A. A., Achilias, D. S., 2014. Catalytic and thermal pyrolysis of polycarbonate in a fixed-bed reactor: The effect of catalysts on products yields and composition. Polymer Degradation and Stability 110, 482-491.
Arturi, Katarzyna R., Sokoli, Hülya U., Søgaard, Erik G., Vogel, Frédéric, Bjelić, Saša, 2018. Recovery of value-added chemicals by solvolysis of unsaturated polyester resin. Journal of Cleaner Production 170, 131-136.
Brebu, Mihai, Tamminen, Tarja, Hannevold, Lenka, Stöcker, Michael, Spiridon, Iuliana, 2014. Catalytic upgrading of co-pyrolysis oils from bisphenol A polycarbonate and lignins. Polymer Degradation and Stability 102, 88-94.
Brebu, Mihai, Ucar, Suat, Vasile, Cornelia, Yanik, Jale, 2010. Co-pyrolysis of pine cone with synthetic polymers. Fuel 89, 1911-1918.
Cai, Wenfei, Luo, Zhongyang, Zhou, Jinsong, Wang, Qinhui, 2021. A review on the selection of raw materials and reactors for biomass fast pyrolysis in China. Fuel Processing Technology 221, 106919.
Charusiri, Witchakorn, Vitidsant, Tharapong, 2017. Upgrading bio-oil produced from the catalytic pyrolysis of sugarcane (Saccharum officinarum L) straw using calcined dolomite. Sustainable Chemistry and Pharmacy 6, 114-123.
Chattopadhyay, Jayeeta, Pathak, T. S., Srivastava, R., Singh, A. C., 2016. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy 103, 513-521.
Choi, Dongho, Nam, In-Hyun, Park, Young-Kwon, Ok, Yong Sik, Lee, Jechan, Kwon, Eilhann E., 2019. Catalytic pyrolysis of brown algae using carbon dioxide and oyster shell. Journal of CO2 Utilization 34, 668-675.
Coats, A. W., Redfern, J. P., 1964. Kinetic Parameters from Thermogravimetric Data. Nature 201, 68-69.
Das, Pallab, Tiwari, Pankaj, 2018a. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Management 79, 615-624.
Das, Pallab, Tiwari, Pankaj, 2018b. Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling 128, 69-77.
Dewangan, Ashish, Pradhan, Debalaxmi, Singh, R. K., 2016. Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield. Fuel 185, 508-516.
Dimitrov, Nino, Kratofil Krehula, Ljerka, Ptiček Siročić, Anita, Hrnjak-Murgić, Zlata, 2013. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polymer Degradation and Stability 98, 972-979.
Esperanza, M. M., García, Ángela Nuria, Font, Rafael, Conesa, Juan A., 1999. Pyrolysis of varnish wastes based on a polyurethane. Journal of Analytical and Applied Pyrolysis 52, 151-166.
Fan, Yuyang, Liu, Chao, Kong, Xiangchen, Han, Yue, Lei, Ming, Xiao, Rui, 2021. A new perspective on polyethylene-promoted lignin pyrolysis with mass transfer and radical explanation. Green Energy & Environment.
Feng, Jie, Hao, Jianwei, Du, Jianxin, Yang, Rongjie, 2012. Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite. Polymer Degradation and Stability 97, 605-614.
Gadwal, Sudershan B., Banapurmath, N. R., Kamoji, M. A., Rampure, P. B., Khandal, S. V., 2019. Performance and emission characteristic studies on CRDI diesel engine fuelled with plastic pyrolysis oil blended with ethanol and diesel. International Journal of Sustainable Engineering 12, 262-271.
Gholizadeh, Mortaza, Li, Chao, Zhang, Shu, Wang, Yi, Niu, Shengli, Li, Yingjie, Hu, Xun, 2020. Progress of the development of reactors for pyrolysis of municipal waste. Sustainable Energy & Fuels 4, 5885-5915.
Grause, Guido, Tsukada, Norihiro, Hall, William J., Kameda, Tomohito, Williams, Paul T., Yoshioka, Toshiaki, 2010. High-value products from the catalytic hydrolysis of polycarbonate waste. Polymer Journal 42, 438-442.
Herrera, M., Matuschek, G., Kettrup, A., 2002. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polymer Degradation and Stability 78, 323-331.
Honus, Stanislav, Kumagai, Shogo, Fedorko, Gabriel, Molnár, Vieroslav, Yoshioka, Toshiaki, 2018. Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET—Part I: Production and physical properties. Fuel 221, 346-360.
Hu, Binhang, Huang, Qunxing, Buekens, Alfons, Chi, Yong, Yan, Jianhua, 2017. Co-gasification of municipal solid waste with high alkali coal char in a three-stage gasifier. Energy Conversion and Management 153, 473-481.
Inayat, Abrar, Rocha-Meneses, Lisandra, Ghenai, Chaouki, Abdallah, Mohamed, Shanableh, Abdallah, Al-Ali, Khadija, Alghfeli, Amna, Alsuwaidi, Reem, 2022. Co-pyrolysis for bio-oil production via fixed bed reactor using date seeds and plastic waste as biomass. Case Studies in Thermal Engineering 31, 101841.
Janczak, Katarzyna, Dąbrowska, Grażyna B., Raszkowska-Kaczor, Aneta, Kaczor, Daniel, Hrynkiewicz, Katarzyna, Richert, Agnieszka, 2020. Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. International Biodeterioration & Biodegradation 155, 105087.
Jang, Bok Nam, Wilkie, Charles A., 2004. A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polymer Degradation and Stability 86, 419-430.
Jia, Hang, Ben, Haoxi, Luo, Ying, Wang, Rui, 2020. Catalytic Fast Pyrolysis of Poly (Ethylene Terephthalate) (PET) with Zeolite and Nickel Chloride. Polymers 12.
Jia, Shikui, Wang, Zhong, Zhu, Yan, Chen, LiGui, Fu, Lei, 2015. Composites of poly(lactic) acid/thermoplastic polyurethane/mica with compatibilizer: morphology, miscibility and interphase. RSC Advances 5, 98915-98924.
Jin, Wei, Shen, Dekui, Liu, Qian, Xiao, Rui, 2016. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS. Polymer Degradation and Stability 133, 65-74.
Jin, Zechen, Chen, Dezhen, Yin, Lijie, Hu, Yuyan, Zhu, Huangqing, Hong, Liu, 2018. Molten waste plastic pyrolysis in a vertical falling film reactor and the influence of temperature on the pyrolysis products. Chinese Journal of Chemical Engineering 26, 400-406.
Kalargaris, Ioannis, Tian, Guohong, Gu, Sai, 2017a. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Processing Technology 157, 108-115.
Kalargaris, Ioannis, Tian, Guohong, Gu, Sai, 2017b. Investigation on the long-term effects of plastic pyrolysis oil usage in a diesel engine. Energy Procedia 142, 49-54.
Kalargaris, Ioannis, Tian, Guohong, Gu, Sai, 2017c. The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy 131, 179-185.
Kılıç, Murat, Kırbıyık, Çisem, Çepelioğullar, Özge, Pütün, Ayşe E., 2013. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science 283, 856-862.
Kim, Jeung Gon, 2020. Chemical recycling of poly(bisphenol A carbonate). Polymer Chemistry 11, 4830-4849.
Kumagai, Shogo, Motokucho, Suguru, Yabuki, Ryosuke, Anzai, Airi, Kameda, Tomohito, Watanabe, Atsushi, Nakatani, Hisayuki, Yoshioka, Toshiaki, 2017. Effects of hard- and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane elastomers. Journal of Analytical and Applied Pyrolysis 126, 337-345.
Kumar, Aman, Singh, Ekta, Khapre, Abhishek, Bordoloi, Nirmali, Kumar, Sunil, 2020. Sorption of volatile organic compounds on non-activated biochar. Bioresource Technology 297, 122469.
Kumar, Sachin, 2011. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Brazilian Journal of Chemical Engineering 28, 659-667.
López, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., Adrados, A., 2011a. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal 173, 62-71.
López, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., Adrados, A., Aranzabal, A., 2011b. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Applied Catalysis B: Environmental 104, 211-219.
Lee, Hyung Won, Kim, Young-Min, Lee, Boram, Kim, Seungdo, Jae, Jungho, Jung, Sang-Chul, Kim, Tae-Wan, Park, Young-Kwon, 2018. Catalytic copyrolysis of torrefied cork oak and high density polyethylene over a mesoporous HY catalyst. Catalysis Today 307, 301-307.
Lee, Kyong-Hwan, Shin, Dae-Hyun, 2007. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction. Waste Management 27, 168-176.
Lee, Seokhwan, Choi, Young, Kang, Kernyong, 2019. Application of blended fuel containing coffee ground pyrolysis oil in a diesel generator. Fuel 256, 115998.
Li, S., Li, Aimin, Yan, J., Ren, Y., Li, Xiaoqiang, Li, Prof Rundong R. D., Chi, Yanxin, Cen, K., 2000. Pyrolysis of the biomass wastes pyrolysis in a rotary kiln I: Influences of reaction conditions on pyrolysis product distribution. 21, 333-340.
Li, S. Q., Yao, Q., Chi, Y., Yan, J. H., Cen, K. F., 2004. Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor. Industrial & Engineering Chemistry Research 43, 5133-5145.
Li, Yu-huan, Chang, Feng-min, Huang, Bo, Song, Ya-peng, Zhao, Hong-yu, Wang, Kai-jun, 2020a. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel 266, 117053.
Li, Zhaoying, Zhong, Zhaoping, Zhang, Bo, Wang, Wei, Seufitelli, Gabriel V. S., Resende, Fernando L. P., 2020b. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve. Waste Management 102, 561-568.
Liu, Xuan, Burra, Kiran Raj G., Wang, Zhiwei, Li, Jinhu, Che, Defu, Gupta, Ashwani K., 2021a. Influence of Char Intermediates on Synergistic Effects During Co-Pyrolysis of Pinewood and Polycarbonate. Journal of Energy Resources Technology 143.
Liu, Xuan, Burra, Kiran Raj G., Wang, Zhiwei, Li, Jinhu, Che, Defu, Gupta, Ashwani K., 2021b. Towards enhanced understanding of synergistic effects in co-pyrolysis of pinewood and polycarbonate. Applied Energy 289, 116662.
Liu, Xuan, Burra, Kiran, Wang, Zhiwei, Li, Jinhu, Che, Defu, Gupta, Ashwani, 2021c. Towards enhanced understanding of synergistic effects in co-pyrolysis of pinewood and polycarbonate. Applied Energy 289, 116662.
Liu, Yi-Yu, Qin, Guo-Hui, Song, Xiu-Yan, Ding, Jun-Wei, Liu, Fu-Sheng, Yu, Shi-Tao, Ge, Xiao-Ping, 2018. Mesoporous alumina modified calcium catalyst for alcoholysis of polycarbonate. Journal of the Taiwan Institute of Chemical Engineers 86, 222-229.
Ly, Hoang Vu, Kim, Seung-Soo, Woo, Hee Chul, Choi, Jae Hyung, Suh, Dong Jin, Kim, Jinsoo, 2015. Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production. Energy 93, 1436-1446.
Méndez-Liñán, Laura, López-Garzón, F. Javier, Domingo-García, María, Pérez-Mendoza, Manuel, 2010. Carbon Adsorbents from Polycarbonate Pyrolysis Char Residue: Hydrogen and Methane Storage Capacities. Energy & Fuels 24, 3394-3400.
Matthews, Chris, Moran, Fintan, Jaiswal, Amit, 2021. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production 283, 125263.
Miandad, R., Barakat, M. A., Aburiazaiza, Asad S., Rehan, M., Ismail, I. M. I., Nizami, A. S., 2017a. Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation 119, 239-252.
Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Ismail, I. M. I., Nizami, A. S., 2017b. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management 69, 66-78.
Mishra, Ranjeet Kumar, Sahoo, Abhisek, Mohanty, Kaustubha, 2019. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Bioresource Technology 289, 121608.
Osman, Ahmed I., Farrell, Charlie, Al-Muhtaseb, Alaa H., Al-Fatesh, Ahmed S., Harrison, John, Rooney, David W., 2020. Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environmental Sciences Europe 32, 112.
Pagés, P., 2005. Characterization of polymer materials using FT-IR and DSC techniques.
Praveen Kumar, Kanduri, Srinivas, Seethamraju, 2020. Catalytic Co-pyrolysis of Biomass and Plastics (Polypropylene and Polystyrene) Using Spent FCC Catalyst. Energy & Fuels 34, 460-473.
Qi, Pengyu, Chang, Guozhang, Wang, Hongchao, Zhang, Xiuli, Guo, Qingjie, 2018. Production of aromatic hydrocarbons by catalytic co-pyrolysis of microalgae and polypropylene using HZSM-5. Journal of Analytical and Applied Pyrolysis 136, 178-185.
Ragaert, Kim, Delva, Laurens, Van Geem, Kevin, 2017. Mechanical and chemical recycling of solid plastic waste. Waste Management 69, 24-58.
Rahman, Md Hafizur, Bhoi, Prakashbhai R., Saha, Arpita, Patil, Vivek, Adhikari, Sushil, 2021. Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid. Energy 225, 120231.
Ratnasari, Devy K., Nahil, Mohamad A., Williams, Paul T., 2017. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. Journal of Analytical and Applied Pyrolysis 124, 631-637.
Ryu, Sumin, Lee, Jechan, Reddy Kannapu, Hari Prasad, Jang, Seong-Ho, Kim, Yeonjoon, Jang, Hoyeon, Ha, Jeong-Myeong, Jung, Sang-Chul, Park, Young-Kwon, 2020. Acid-treated waste red mud as an efficient catalyst for catalytic fast copyrolysis of lignin and polyproylene and ozone-catalytic conversion of toluene. Environmental Research 191, 110149.
Saeaung, Koranit, Phusunti, Neeranuch, Phetwarotai, Worasak, Assabumrungrat, Suttichai, Cheirsilp, Benjamas, 2021. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Management 127, 101-111.
Sakulkit, Patipan, Palamanit, Arkom, Dejchanchaiwong, Racha, Reubroycharoen, Prasert, 2020. Characteristics of pyrolysis products from pyrolysis and co-pyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications. Journal of Environmental Chemical Engineering 8, 104561.
Salvilla, John Nikko V., Ofrasio, Bjorn Ivan G., Rollon, Analiza P., Manegdeg, Ferdinand G., Abarca, Ralf Ruffel M., de Luna, Mark Daniel G., 2020. Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production. Applied Energy 279, 115668.
Sauve, Giovanna, Van Acker, Karel, 2020. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. Journal of Environmental Management 261, 110216.
Schulzke, Tim, Iakovleva, Anastasiia, Cao, Qiongmin, Conrad, Stefan, Zabelkin, Sergey, Grachev, Andrey, 2018. Polyurethane foams produced from pyrolysis oil – Production and possible application. Biomass and Bioenergy 115, 195-202.
Sebestyén, Z., Barta-Rajnai, E., Bozi, J., Blazsó, M., Jakab, E., Miskolczi, N., Sója, J., Czégény, Zs, 2017. Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5. Applied Energy 207, 114-122.
Siddiqui, Muhammad Zain, Park, Young-Kwon, Kang, Yejin, Watanabe, Atsushi, Kim, Seungdo, Kim, Young-Min, 2019. Effective use of aluminum-plastic laminate as a feedstock for catalytic pyrolysis over micro and mesoporous catalysts. Journal of Cleaner Production 229, 1093-1101.
Singh, Ekta, Kumar, Aman, Mishra, Rahul, You, Siming, Singh, Lal, Kumar, Sunil, Kumar, Rakesh, 2021a. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresource Technology 320, 124278.
Singh, Sanjay, Patil, Trilok, Tekade, Shyam P., Gawande, Manoj B., Sawarkar, Ashish N., 2021b. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Science of The Total Environment 783, 147004.
Sogancioglu, Merve, Yel, Esra, Ahmetli, Gulnare, 2017. Investigation of the Effect of Polystyrene (PS) Waste Washing Process and Pyrolysis Temperature on (PS) Pyrolysis Product Quality. Energy Procedia 118, 189-194.
Strabala, Kyle, 2009. The Effects of Combined Compression and Aging on the Properties of Glassy Polycarbonate.
Takenaka, Nozomi, Tominaga, Aya, Sekiguchi, Hiroshi, Nakano, Ryoko, Takatori, Eiichi, Yao, Shigeru, 2017. Creation of Advanced Recycle Process to Waste Container and Packaging Plastic — Polypropylene Sorted Recycle Plastic Case —. Nihon Reoroji Gakkaishi 45, 139-143.
Tulashie, Samuel Kofi, Boadu, Enoch Kofi, Dapaah, Samuel, 2019. Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana. Thermal Science and Engineering Progress 11, 417-424.
Undri, Andrea, Rosi, Luca, Frediani, Marco, Frediani, Piero, 2014. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis 110, 55-65.
Wang, Jia, Jiang, Jianchun, Wang, Xiaobo, Wang, Ruizhen, Wang, Kui, Pang, Shusheng, Zhong, Zhaoping, Sun, Yunjuan, Ruan, Roger, Ragauskas, Arthur J., 2020. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. Journal of Hazardous Materials 386, 121970.
Wang, Peng, Yan, Jingchun, Wang, Shuyuan, Xu, Peng, Shen, Laihong, Song, Tao, 2021. Synergistic effects of lanthanum ferrite perovskite and hydrogen to promote ammonia production during microalgae catalytic pyrolysis process. Bioresource Technology 340, 125641.
Wang, Ru, Yishui, Tian, Zhao, Lixin, Yao, Zonglu, Meng, Haibo, Hou, shulin, 2014. Industrial analysis and determination of calorific value for biomass based on thermogravimetry. Transactions of the Chinese Society of Agricultural Engineering 30.
Wang, Xuebin, Jin, Qiming, Zhang, Jiaye, Li, Yan, Li, Shuaishuai, Mikulčić, Hrvoje, Vujanović, Milan, Tan, Houzhang, Duić, Neven, 2018. Soot formation during polyurethane (PU) plastic pyrolysis: The effects of temperature and volatile residence time. Energy Conversion and Management 164, 353-362.
Wang, Xuebin, Ma, Daoyang, Jin, Qiming, Deng, Shuanghui, Stančin, Hrvoje, Tan, Houzhang, Mikulcic, Hrvoje, 2019. Synergistic effects of biomass and polyurethane co-pyrolysis on the yield, reactivity, and heating value of biochar at high temperatures. Fuel Processing Technology 194, 106127.
Westerhout, R. W. J., Kuipers, J. A. M., van Swaaij, W. P. M., 1998. Experimental Determination of the Yield of Pyrolysis Products of Polyethene and Polypropene. Influence of Reaction Conditions. Industrial & Engineering Chemistry Research 37, 841-847.
Wu, Jingli, Chen, Tianju, Luo, Xitao, Han, Dezhi, Wang, Zhiqi, Wu, Jinhu, 2014. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. Waste Management 34, 676-682.
Wu, Xiuyun, Wu, Yulong, Wu, Kejing, Chen, Yu, Hu, Husheng, Yang, Mingde, 2015. Study on pyrolytic kinetics and behavior: The co-pyrolysis of microalgae and polypropylene. Bioresource Technology 192, 522-528.
Xue, Yuan, Zhou, Shuai, Brown, Robert C., Kelkar, Atul, Bai, Xianglan, 2015. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156, 40-46.
Yan, Feng, Zhang, Leguan, Hu, Zhiquan, Cheng, Gong, Jiang, Chengcheng, Zhang, Yanli, Xu, Tao, He, Piwen, Luo, Siyi, Xiao, Bo, 2010. Hydrogen-rich gas production by steam gasification of char derived from cyanobacterial blooms (CDCB) in a fixed-bed reactor: Influence of particle size and residence time on gas yield and syngas composition. International Journal of Hydrogen Energy 35, 10212-10217.
Yazdani, Esmaeil, Hashemabadi, Seyed Hassan, Taghizadeh, Afshin, 2019. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Management 85, 195-201.
Ye, S., Ma, X., Chen, D., Tao, P., 2014. Influence of rotating speed on pyrolysis products of waste plastics in rotary kiln. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering 34, 3952-3958.
Yoshioka, Toshiaki, Grause, Guido, Eger, Christian, Kaminsky, Walter, Okuwaki, Akitsugu, 2004. Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant. Polymer Degradation and Stability 86, 499-504.
Yue, Lei, Guangqian, li, He, Guijin, Guo, Yongsheng, Xu, Li, Fang, Wenjun, 2015. Impacts of hydrogen to carbon ratio (H/C) on fundamental properties and supercritical cracking performance of hydrocarbon fuels. Chemical Engineering Journal 283.
Zhang, Huiyan, Nie, Jianlong, Xiao, Rui, Jin, Baosheng, Dong, Changqing, Xiao, Guomin, 2014. Catalytic Co-pyrolysis of Biomass and Different Plastics (Polyethylene, Polypropylene, and Polystyrene) To Improve Hydrocarbon Yield in a Fluidized-Bed Reactor. Energy & Fuels 28, 1940-1947.
Zhang, Yayun, Duan, Dengle, Lei, Hanwu, Villota, Elmar, Ruan, Roger, 2019. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy 251, 113337.
Zhang, Yutao, Ji, Guozhao, Chen, Chuanshuai, Wang, Yinxiang, Wang, Weijian, Li, Aimin, 2020. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206, 106455.
Zhou, Limin, Wang, Yiping, Huang, Qunwu, Cai, Junqing, 2006. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology 87, 963-969.
Zia, Khalid Mahmood, Bhatti, Haq Nawaz, Ahmad Bhatti, Ijaz, 2007. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and Functional Polymers 67, 675-692.
Grand View Research, website:https://www.grandviewresearch.com/industry-snslysis/global-plastics-market,2021
Our World in Data,website: https://ourworldindata.org/plastic-pollution,2018
WORLD ECONOMIC FORUM, website: https://www.weforum.org/reports/the-new
Lumen. Activation Energy AND Temperature Dependence. website: https://courses.lumenlearning.com/boundless-chemistry/chapter/activation-energy-and-temperature-dependence/
姚彥丞,塑膠廢棄催化裂解產能效率與裂解油物種特性變化之評估研究,中華民國環境工程學會2017廢棄物處理技術研討會,臺北,2017
陳宣宇,含鋁塑膠包裝廢棄物熱處理回收鋁及能源之可行性,國立中央大學環境工程研究所,碩士論文,桃園,2021。
許惟迪,旋轉窯焚化爐三維數值與實場量測,國立中山大學環境工程研究所,碩士論文,高雄,2000。
蕭柏文,多種事業廢棄物在熱裂解製程的最佳摻配比-實場測試,國立雲林科技大學環境與安全衛生工程系,碩士論文,雲林,2021。
江康鈺,姚彥丞,呂承翰,陳又新,塑膠廢棄物共同熱裂解與協同效應之動力學研究,中華民國環境工程學會2016廢棄物處理技術研討會,桃園,2016
張佳琪,生質塑膠熱裂解產能效率之評估研究,國立中央大學環境工程研究所,碩士論文,桃園,2021。
蔣淞宇,生活廢棄物裂解反應物之碳化研究,國立中正大學機械工程學系暨研究所,碩士論文,嘉義,2014。
戴華山,郭耀升,許祉祥,張一岑,以熱裂解模式探討聚丙烯(PP)循環再利用之特徵研究,中華民國環境工程學會2010廢棄物處理技術研討會,高雄,2010
戴華山,許祉祥,賀偉雄,王永泰,廢棄生質塑膠(PLA)容器之熱裂解動力學性質研究,中華民國環境工程學會2012廢棄物處理技術研討會,高雄,2012
吳照雄,王仁鴻,黃天寶,何鎧任,PLA與木屑及造紙廠廢棄物熱裂解液體產物分析與油水分離,中華民國環境工程學會2017廢棄物處理技術研討會,屏東,2017
吳照雄,王仁鴻,黃天寶,何鎧任,王奕翔,生物分解性塑膠共裂解對產率影響之研究,中華民國環境工程學會2016廢棄物處理技術研討會,屏東,2016
許富傑,廢棄電路板與污泥熱裂解特性研究,國立中正大學機械工程學系暨研究所,碩士論文,嘉義,2015。
王韻婷,塑膠廢棄物與生質物共同熱裂解之動力學研究,國立高雄第一科技大學環境與安全衛生工程研究所,碩士論文,高雄,2014。
黃昱維,食品包材鋁箔袋之熱裂解研究,國立中正大學機械工程學系暨研究所,碩士論文,嘉義,2015。
馬漢德,相思樹與聚丙烯於不同混合比在流化床熱裂解下固態與可冷凝揮發性產物分析,國立中央大學機械工程學系,碩士論文,桃園,2018。
Plastics-economy-rethinking-the-future-of-plastics,網址 : https://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf
智育,網址 : https://www.ppsolutions.com.tw/chinese/plastic
中文百科知識,網址 :https://www.easyatm,com,tw/wiki/TPU
行政院環保署,網址 : https://www.epa.gov.tw/Page/8514DFCAB3529136?page=1&SD=20010101&ED=00010101&M=S,2018
行政院環保署,網址 : https://www.epa.gov.tw/Page/8514DFCAB3529136?page=1&SD=20010101&ED=00010101&M=S,2021
電子全文 電子全文(網際網路公開日期:20270520)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊