跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:皮德正
研究生(外文):PI, TE-CHENG
論文名稱:具動能回收之電池/超級電容混合電源無刷直流馬達驅動器
論文名稱(外文):Battery/Supercapacitor Hybrid-Powered BLDC Motor Driver with Kinetic Energy Recovery
指導教授:阮昱霖
指導教授(外文):JUAN, YU-LIN
口試委員:郭政謙謝耀慶阮昱霖
口試委員(外文):KUO, CHENG-CHIENHSIEH, YAO-CHINGJUAN, YU-LIN
口試日期:2022-07-20
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:70
中文關鍵詞:超級電容動能回收無刷直流馬達驅動器
外文關鍵詞:Supercapacitorkinetic energy recoverybrushless DC motor driver
相關次數:
  • 被引用被引用:1
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來輕型電動機車在市場上能見度越來越高,其中常見以由四顆鉛酸電池串接而成的48V電池組作為供電來源。然而,多數鉛酸電池無法承受較大的瞬間功率變化,因此於台灣市區走走停停的行駛情況,容易造成電池壽命縮短。本研究遂將超級電容整合至馬達驅動系統中,與鉛酸電池組成一混合式電源。搭配所設計之切換電路與雙向升降壓轉換電路組成一具動能回收之無刷直流馬達驅動系統。
當電動機車起步時,切換電路將優先選擇超級電容作為輸出元件,當超級電容電壓降低至15V時,將切換為串聯放電模式,以鉛酸電池及超級電容共同放電。當超級電容電壓降低至10V時,將切離超級電容,並以鉛酸電池供電,完成起步流程。另外當驅動器處於煞車階段時,將選擇超級電容作為動能回收對象,避免能量之浪費。最後,實際研製一600W輸出之馬達驅動器,並架設一具有轉動慣量之測試平台,驗證所提出之操作模式可行性。針對多種輸入電壓進行效率量測,其轉換效率於不同輸出功率下介於95.6%至84%。

In recent years, light electric scooters have become more and more popular in the market. A 48V battery pack consisting of four lead-acid batteries connected in series is often used as the power source. However, most lead-acid batteries cannot withstand large instantaneous power changes, so the stop-and-go driving situation in Taiwan urban is likely to shorten the battery life. In this study, supercapacitors were integrated into the motor drive system to form a hybrid power source with lead-acid batteries. The hybrid power source is integrated into the proposed kinetic energy regenerative brushless DC motor driver with a switching circuit and a bidirectional step up/down converter.
When starting up the electric scooter, supercapacitors will firstly be selected as the power source. Then, the switching circuit will change into the series mode when the voltage of supercapacitors drops to 15V. The driving power is then provided by lead-acid batteries and supercapacitors in series. When the voltage of supercapacitors drops to 10V, supercapacitors will be cut off and the motor is then powered only by lead-acid batteries, and the start-up process is finished. In addition, when the driver is in the braking stage, supercapacitors will be selected to store the recovered kinetic energy to avoid the waste of energy. Finally, a motor driver with 600W rated power is constructed, and a test platform with a flywheel is set up to verify the feasibility and performance. Efficiency measurements were performed for various input voltages, and the conversion efficiencies ranged from 95.6% to 84% at different output powers.

目錄
摘要.............................................................................................................ⅰ
英文摘要....................................................................................................ⅱ
致謝...........................................................................................................ⅲ
目錄...........................................................................................................ⅳ
圖目錄.......................................................................................................ⅵ
表目錄........................................................................................................ⅹ
第一章 緒論..............................................................................................1
1.1研究背景及動機..........................................................................1
1.2研究方法......................................................................................2
1.3論文架構......................................................................................4
第二章 文獻探討......................................................................................5
2.1無刷電動機及有刷電動機簡介..................................................5
2.2應用於無刷馬達之驅動方式及電路架構..................................8
2.3應用於馬達驅動之複合電能系統............................................13
第三章 具動能回收之混合式電源輸入無刷直流馬達驅動器............19
3.1電路架構及操作原理................................................................19
3.2驅動控制器設計........................................................................37
第四章 實驗結果....................................................................................45
4.1實作電路及硬體設置................................................................45
4.2週邊電路及回授電路設計........................................................49
4.3電路實測波形............................................................................52
4.4效率量測....................................................................................61
第五章 結論與未來研究方向................................................................64
5.1結論............................................................................................64
5.2未來研究方向............................................................................65
參考文獻..................................................................................................66

圖目錄
圖1-1 傳統三相換流器............................................................................3
圖1-2 硬體系統架構圖............................................................................3
圖2-1 有刷馬達內部結構示意圖............................................................5
圖2-2 四極無刷馬達內部結構示意圖....................................................6
圖2-3 反電動勢及相電流與霍爾訊號波形圖........................................9
圖2-4 Zeta架構之馬達驅動電路...........................................................11
圖2-5 Ćuk架構之馬達驅動電路...........................................................12
圖2-6 被動並聯電路架構......................................................................15
圖2-7 超級電容/電池電路架構.............................................................15
圖2-8 電池/超級電容電路架構.............................................................16
圖2-9 主動式串聯電路架構..................................................................17
圖2-10 主動式並聯電路架構................................................................17
圖2-11 多輸入式電路架構....................................................................18
圖3-1 系統架構圖..................................................................................19
圖3-2 主電路架構..................................................................................20
圖3-3 單級式升降壓型馬達驅動器電路..............................................21
圖3-4 三相換流器開關訊號及反電動勢關係圖..................................22
圖3-5 輸出功率至馬達時之各元件理想波形圖..................................24
圖3-6 Q0導通於驅動器供電時之電流路徑圖......................................25
圖3-7 Q0導通於驅動器供電時之等效電路圖......................................25
圖3-8 Q0截止於驅動器供電時之電流路徑圖......................................27
圖3-9 Q0截止於驅動器供電時之等效電路圖......................................27
圖3-10 馬達煞車時之各元件理想波形圖............................................28
圖3-11 Q0導通於驅動器煞車時之電流路徑圖....................................29
圖3-12 Q0導通於驅動器煞車時之等效電路圖....................................30
圖3-13 Q0截止於驅動器煞車時之電流路徑圖....................................31
圖3-14 Q0截止於驅動器煞車時之等效電路圖....................................31
圖3-15 混合式電源切換電路操作模式................................................33
圖3-16 電動機車煞車至起步抽載時之操作模式示意圖....................34
圖3-17 煞車回充超級電容組之切換電路狀態....................................34
圖3-18 馬達起步時之切換電路狀態....................................................35
圖3-19 兩輸入元件串聯時之切換電路狀態........................................36
圖3-20 鉛酸電池組供電時之切換電路狀態........................................36
圖3-21 微控制器之控制訊號架構圖....................................................37
圖3-22 主程式流程圖............................................................................38
圖3-23 外部中斷副程式流程圖............................................................39
圖3-24 Timer1中斷副程式流程圖........................................................40
圖3-25 Timer2中斷副程式流程圖........................................................41
圖3-26 馬達轉速閉迴路控制器方塊圖................................................41
圖3-27 轉速控制流程圖........................................................................42
圖3-28 電流控制流程圖........................................................................43
圖3-29 混合式儲能模組切換電路控制流程圖....................................44
圖4-1 實作硬體電路..............................................................................45
圖4-2 實驗測試平台..............................................................................46
圖4-3 實驗中所使用之鉛酸電池..........................................................48
圖4-4 超級電容組實體圖......................................................................48
圖4-5 TLP250閘極驅動電路.................................................................49
圖4-6 超級電容電壓回授電路..............................................................50
圖4-7 電感電流回授電路......................................................................51
圖4-8 驅動器主開關Q0及電感L1電壓電流波形...............................52
圖4-9 驅動器主開關Q0及電感C1電壓電流波形..............................53
圖4-10 煞車時驅動器主開關Q0及電感L1電壓電流波形.................54
圖4-11 煞車時驅動器主開關Q0及電感C1電壓電流波形.................54
圖4-12 Q0主開關及U、V、W三相上臂開關訊號.............................55
圖4-13 U相上臂及U、V、W三相上臂開關訊號..............................55
圖4-14 U、V相導通時之開關訊號......................................................56
圖4-15 三相上臂訊號以及U相電流...................................................56
圖4-16 馬達啟動過程之系統量測波形圖............................................57
圖4-17 電容供電時之電壓電流波形圖................................................58
圖4-18 串聯供電時之電壓電流波形圖................................................58
圖4-19 電池供電時之電壓電流波形圖................................................59
圖4-20 馬達煞車動能回收之系統量測波形圖....................................60
圖4-21 動能回收時之電壓電流波形圖................................................61
圖4-22 驅動器於70V輸入時之效率曲線圖.......................................62
圖4-23 驅動器於48V輸入時之效率曲線圖.......................................63
圖4-24 驅動器於12V輸入時之效率曲線圖.......................................63

表目錄
表2-1 馬達特性比較表............................................................................7
表2-2 各種類電池與超級電容特性比較..............................................14
表4-1 驅動器電路參數..........................................................................47
表4-2 馬達規格表..................................................................................47
表4-3 電壓回授電路參數表..................................................................50
表4-4 電流回授電路參數表..................................................................51
[1]產業經濟統計簡訊,經濟部統計處(2021),檢自https://www.moea.gov.tw/MNS/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=8954 (Jun. 23, 2022)
[2]H. Maghfiroh, F. Adriyanto, A. Seta Ekananda, J. Slamet Saputro, A. Sujono and R. Lullus Lambang GH, "Brushless Direct Current (BLDC) Motor Control System with Isolated Gate Driver," 2021 International Conference on Electrical and Information Technology (IEIT), Sep. 2021. pp. 39-44.
[3]M. P. Maharajan and S. A. E. Xavier, "Design of Speed Control and Reduction of Torque Ripple Factor in BLdc Motor Using Spider Based Controller," IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 7826-7837, Aug. 2019.
[4]D. Biba, S. Muşuroi and M. Svoboda, "Powertrain 48V Power Supply Proposal and Safety Validation Voltage Levels for BLDC Motor Driver ASIC," 2018 International Conference on Applied and Theoretical Electricity (ICATE), Oct. 2018.
[5]Q. Dong and Z. Chu, "Brushless DC Motor Driver based on SA306A Integrated Switching Amplifier," 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Jul. 2021. pp. 403-408.
[6]A. Goswami, M. Sreejeth and M. Singh, "Simulation and Analysis of Hall Sensor Misalignment in BLDC Motor Drive," 2022 IEEE Delhi Section Conference (DELCON), Feb. 2022. pp. 1-6.
[7]K. Imai, G. Valente and D. Gerada, "Position Sensorless Control for Triple Three-phase Permanent Magnet Synchronous Motor Based on Extended Electromotive Force Model," 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Nov. 2020. pp. 1977-1982.
[8]H. Zhang, G. Liu, X. Zhou and S. Zheng, "High-Precision Sensorless Optimal Commutation Deviation Correction Strategy of BLDC Motor With Asymmetric Back EMF," IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5250-5259, Aug. 2021.
[9]S. Foti et al., "Rotor Position Error Compensation in Sensorless Synchronous Reluctance Motor Drives," IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 4442-4452, Apr. 2022.
[10]C. Zhao, M. Tanaskovic, F. Percacci, S. Mariéthoz and P. Gnos, "Sensorless Position Estimation for Slotless Surface Mounted Permanent Magnet Synchronous Motors in Full Speed Range," IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 11566-11579, Dec. 2019.
[11]Y. Park, H. Kim, H. Jang, S. -H. Ham, J. Lee and D. -H. Jung, "Efficiency Improvement of Permanent Magnet BLDC With Halbach Magnet Array for Drone," IEEE Transactions on Applied Superconductivity, vol. 30, n-o. 4, pp. 1-5, Jun. 2020.
[12]R. C. C M and S. J S, "Bidirectional DC-DC Converter Fed BLDC Motor in Electric Vehicle," 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Apr. 2021. pp. 1-6.
[13]D. Das, N. Kumaresan, V. Nayanar, K. Navin Sam and N. Ammasai Gounden, "Development of BLDC Motor-Based Elevator System Suitable for DC Microgrid," IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1552-1560, Jun. 2016.
[14]N. R and G. S. K, "Non Inverting Buck-Boost Converter with PV fed BLDC Drive for Irrigation," 2020 IEEE International Power and Renewable Energy Conference, Nov. 2020. pp. 1-5.
[15]P. Mishra, A. Banerjee and M. Ghosh, "Implementation of Digital PWM on Buck-Type CSI Fed BLDC Motor Drive," 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), Jun. 2018. pp. 1-6.
[16]Kumar, U. Sharma and B. Singh, "Single Switch Boost-Flyback PFC Converter for BLDC Motor Drive used in Ceiling Fan," 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Oct. 2020. pp. 534-539.
[17]Y. L. Juan, T. Rong Chen, S. M. Chen, L. Ling Chen, C. Y. Cheng and S. Hsiang Hsiao, "Integrated Single-Stage Driver for BLDC Motors," 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Nov. 2019. pp. 1-4.
[18]S. Chauhan and H. Singh, "Design and Performance Analysis of Zeta, Sepic and Cuk Converter Based BLDC Motor drive for Solar Water Pumping Application," 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT), Sep. 2021. pp. 1-6.
[19]N. K. S, V. R. S, K. M and A. Purushothaman, "Commutation Torque Ripple Comparison in Cuk Converter Fed Brushless DC Motor Drives with Mode Switching Selection Circuit," 2020 International Conference on Power Electronics and Renewable Energy Applications (PEREA), Nov. 2020. pp. 1-6.
[20]J. Cao, N. Schofield and A. Emadi, "Battery balancing methods: A comprehensive review," 2008 IEEE Vehicle Power and Propulsion Conference, Sep. 2008. pp. 1-6.
[21]J. Cao and A. Emadi, "A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122-132, Jan. 2012.
[22]S. M. Lukic, S. G. Wirasingha, F. Rodriguez, J. Cao and A. Emadi, "Power Management of an Ultracapacitor/Battery Hybrid Energy Storage System in an HEV," 2006 IEEE Vehicle Power and Propulsion Conference, Sep. 2006. pp. 1-6.
[23]Lijun Gao, R. A. Dougal and Shengyi Liu, "Power enhancement of an actively controlled battery/ultracapacitor hybrid," in IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 236-243, Jan. 2005.
[24]M. Ortuzar, J. Moreno and J. Dixon, "Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation," IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2147-2156, Aug. 2007.
[25]Lijun Gao, R. A. Dougal and Shengyi Liu, "Power enhancement of an actively controlled battery/ultracapacitor hybrid," IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 236-243, Jan. 2005.
[26]O. Onar and A. Khaligh, "Dynamic modeling and control of a cascaded active battery/ultra-capacitor based vehicular power system," 2008 IEEE Vehicle Power and Propulsion Conference, Sep. 2008. pp. 1-4.
[27]X. Liu, Q. Zhang and C. Zhu, "Design of battery and ultracapacitor multiple energy storage in hybrid electric vehicle," 2009 IEEE Vehicle Power and Propulsion Conference, Sep. 2009.pp. 1395-1398.
[28]Z. Li, O. Onar, A. Khaligh and E. Schaltz, "Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System," 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Feb. 2009. pp. 591-596.

電子全文 電子全文(網際網路公開日期:20270810)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top