|
[1] D. Gerónimo, A. M. López, A. D. Sappa and T. Graf, "Survey of Pedestrian Detection for Advanced Driver Assistance Systems," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1239-1258, 2010.
[2] I. P. Howard and B. J. Rogers, "Binocular vision and stereopsis, " Oxford Uversity Press, USA, 1995.
[3] D. Eigen, C. Puhrsch, and R. Fergus, “Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network,” Advances in Neural Information Processing Systems 27 (NIPS), Dec. 2014.
[4] M. Song and W. Kim, "Depth Estimation from a Single Image Using Guided Deep Network," EEE Access 7, pp. 142595-142606, 2019.
[5] Y. Cao, Z. Wu, and C. Shen, “Estimating Depth from Monocular Images as Classification Using Deep Fully Convolutional Residual Networks,” IEEE Trans. Circuits and Systems for Video Technology, vol. 28, no. 11, pp. 3174–3182, Nov. 2018.
[6] Y. Kim, H. Jung, D. Min, and K. Sohn, “Deep Monocular Depth Estimation via Integration of Global and Local Predictions,” IEEE Trans. Image Processing, vol. 27, no. 8, pp. 4131–4144, Aug. 2018.
[7] H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao, "Deep Ordinal Regression Network for Monocular Depth Estimation, "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002-2011, 2018.
[8] I. Alhashim and P. Wonka, "High Quality Monocular Depth Estimation via Transfer Learning," arXiv preprint arXiv:1812.11941, 2018.
[9] J. Hu, M. Ozay, Y. Zhang, and T. Okatani, “Revisiting Single Image Depth Estimation: Toward Higher Resolution Maps with Accurate Object Boundaries,” WACV, Waikoloa Village, HI, USA, pp. 1043-1051, March 2019.
[10] S. Miangoleh, S. Dille, L. Mai, S. Paris and Y. Aksoy, "Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging", 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
[11] F. Liu, C. Shen, G. Lin, and I. D. Reid, ” Learning depth from single monocular images using deep convolutional neural fields,“ IEEE Trans. Pattern Analysis and Machine Intelligence,38(10):2024–2039, 2016.
[12] C. Godard, O. Aodha and G. Brostow, "Unsupervised Monocular Depth Estimation with Left-Right Consistency", 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[13] A. Pilzer, S. Lathuili`ere, N. Sebe, and E. Ricci, “Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for Unsupervised Monocular Depth Estimation,” CVPR, pp. 9768-9777, June 2019.
[14] A. Wong and S. Soatto, “Bilateral Cyclic Constraint and Adaptive Regularization for Unsupervised Monocular Depth Prediction,” CVPR, Open Access paper, pp. 5644-5653, June 2019.
[15] X. Ye, X. Fan, M. Zhang, R. Xu, and W. Zhong, “ Unsupervised Monocular Depth Estimation via Recursive Stereo Distillation, “ IEEE Trans. Image Processing , Vol. 30, pp.4492-4504, 2021.
[16] M. Yucel, V. Dimaridou, A. Drosou and A. Saa-Garriga, "Real-time Monocular Depth Estimation with Sparse Supervision on Mobile", 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021.
[17] Y. Kuznietsov, J. Stuckler, and B. Leibe,” Semi-supervised deep learning for monocular depth map prediction,” In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, July 2017.
[18] J. Liu, et. al. “Collaborative Deconvolutional Neural Networks for Joint Depth Estimation and Semantic Segmentation,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5655–5666, Nov. 2018.
[19] J. Jiao, Y. Cao, Y. Song, and R. Lau, “Look Deeper into Depth: Monocular Depth Estimation with Semantic Booster and Attention-Driven Loss,” ECCV, Open Access paper, pp. 53-69, Sept. 2018.
[20] P. Z. Ramirez, M. Poggi, and F. Tosi, “Geometry meets semantics for semi-supervised monocular depth estimation,“ 14th Asian Conference on Computer Vision (ACCV), pp. 298-313, Dec. 2018.
[21] H. Tian and F. Li, “Semi-Supervised Depth Estimation from a Single Image Based on Confidence Learning,” ICASSP, United Kingdom, pp. 8573-8577, May 2019.
[22] P. Y. Chen, A. H. Liu, Y. C. Liu, and Y.-C. F. Wang, “Towards Scene Understanding: Unsupervised Monocular Depth Estimation with Semantic-aware Representation,” CVPR open-access paper, pp. 2624-2632, June 2019.
[23] C. Godard, O. M. Aodha, M. Firman, and G Brostow, “Digging into Self-Supervised Monocular Depth Estimation,” ICCV, Open Access paper, pp. 3828-3838, Oct. 2019.
[24] Z. Zhang, Z. Cui, C. Xu, Y.Yan, N. Sebe, and Jian Yang “Pattern-affinitive propagation across depth, surface normal and semantic segmentation,” CVPR, 2019.
[25] J. Choi, D. Jung, D. Lee, and C. Kim, “ SAFENet: Self-Supervised Monocular Depth Estimation with Semantic-Aware Feature Extraction, “ CVGIP, 2020. arXiv:2010.02893v3
[26] J. Hu, X. Guo, J. Chen, G. Liang, F. Deng and T. Lam, "A Two-Stage Unsupervised Approach for Low Light Image Enhancement", IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8363-8370, 2021. Available: 10.1109/lra.2020.3048667 [Accessed 9 November 2021]. [27] X. Wang, R. Girshick, A. Gupta and K. He, "Non-local Neural Networks", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[28] A. Buades, B. Coll and J. Morel, "A Non-Local Algorithm for Image Denoising", 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[29] G. Li, X. He, W. Zhang, H. Chang, L. Dong and L. Lin, "Non-locally Enhanced Encoder-Decoder Network for Single Image De-raining", Proceedings of the 26th ACM international conference on Multimedia, 2018.
[30] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, "Vision meets robotics: The KITTI dataset", The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231-1237, 2013.
[31] N. Silberman, D. Hoiem, P. Kohli and R. Fergus, "Indoor Segmentation and Support Inference from RGBD Images", Computer Vision – ECCV 2012, pp. 746-760, 2012.
[32] G. Huang, Z. Liu, L. Van Der Maaten and K. Weinberger, "Densely Connected Convolutional Networks", 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[33] L. Huynh, P. Nguyen-Ha, J. Matas, E. Rahtu and J. Heikkilä, "Guiding Monocular Depth Estimation Using Depth-Attention Volume", Computer Vision – ECCV 2020, pp. 581-597, 2020.
|