|
1. Robinson, J. W.; Frame, E. M. S.; Frame, G. M.; Eileen, M.; Skelly, F., Undergraduate instrumental analysis. 2005. 2. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166. 3. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20. 4. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275 (5303), 1102-1106. 5. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters 1997, 78 (9), 1667. 6. Jensen, L.; Aikens, C. M.; Schatz, G. C., Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews 2008, 37 (5), 1061-1073. 7. Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials 2016, 1 (6), 1-16. 8. Shi, R.; Liu, X.; Ying, Y., Facing challenges in real-life application of surface-enhanced Raman scattering: design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. Journal of Agricultural and Food Chemistry 2017, 66 (26), 6525-6543. 9. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical Chemistry 2005, 77 (10), 3261-3266. 10. Fang, Y.; Seong, N.-H.; Dlott, D. D., Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321 (5887), 388-392. 11. Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A., Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chemical Society Reviews 2008, 37 (5), 885-897. 12. Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B., Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nature Materials 2013, 12 (2), 165-171. 13. Xia, L.; Chen, M.; Zhao, X.; Zhang, Z.; Xia, J.; Xu, H.; Sun, M., Visualized method of chemical enhancement mechanism on SERS and TERS. Journal of Raman Spectroscopy 2014, 45 (7), 533-540. 14. Zhao, L.; Jensen, L.; Schatz, G. C., Pyridine− Ag20 cluster: a model system for studying surface-enhanced Raman scattering. Journal of the American Chemical Society 2006, 128 (9), 2911-2919. 15. Sun, M.; Liu, S.; Chen, M.; Xu, H., Direct visual evidence for the chemical mechanism of surface‐enhanced resonance Raman scattering via charge transfer. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 2009, 40 (2), 137-143. 16. Ansar, S. M.; Li, X.; Zou, S.; Zhang, D., Quantitative comparison of Raman activities, SERS activities, and SERS enhancement factors of organothiols: Implication to chemical enhancement. The Journal of Physical Chemistry Letters 2012, 3 (5), 560-565. 17. Hakonen, A.; Svedendahl, M.; Ogier, R.; Yang, Z.-J.; Lodewijks, K.; Verre, R.; Shegai, T.; Andersson, P. O.; Käll, M., Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. Nanoscale 2015, 7 (21), 9405-9410. 18. Lai, Y.-H.; Kuo, S.-C.; Hsieh, Y.-C.; Tai, Y.-C.; Hung, W.-H.; Jeng, U.-S., Electrochemically fabricated gold dendrites with underpotential deposited silver monolayers for a bimetallic SERS-active substrate. RSC Advances 2016, 6 (16), 13185-13192. 19. Li, L.; Chin, W. S., Rapid fabrication of a flexible and transparent Ag nanocubes@ PDMS film as a SERS substrate with high performance. ACS Applied Materials & Interfaces 2020, 12 (33), 37538-37548. 20. Gupta, P.; Luan, J.; Wang, Z.; Cao, S.; Bae, S. H.; Naik, R. R.; Singamaneni, S., On-demand electromagnetic hotspot generation in surface-enhanced Raman scattering substrates via “add-on” plasmonic patch. ACS Applied Materials & Interfaces 2019, 11 (41), 37939-37946. 21. Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q., Polymer multilayers enabled stable and flexible Au@ Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2021, 223, 121782. 22. Mosier-Boss, P. A., Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7 (6), 142. 23. Hussain, A.; Sun, D.-W.; Pu, H., SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Additives & Contaminants: Part A 2019, 36 (6), 851-862. 24. He, H.; Sun, D.-W.; Pu, H.; Huang, L., Bridging Fe3O4@ Au nanoflowers and Au@ Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chemistry 2020, 324, 126832. 25. Yi, J.; Jeong, H.; Park, J., Modulation of nanoparticle separation by initial contact angle in coffee ring effect. Micro and Nano Systems Letters 2018, 6 (1), 1-7. 26. Oh, K.; Lee, M.; Lee, S. G.; Jung, D. H.; Lee, H. L., Cellulose nanofibrils coated paper substrate to detect trace molecules using surface-enhanced Raman scattering. Cellulose 2018, 25 (6), 3339-3350. 27. Huo, D.; Chen, B.; Meng, G.; Huang, Z.; Li, M.; Lei, Y., Ag-nanoparticles@ bacterial nanocellulose as a 3D flexible and robust surface-enhanced Raman scattering substrate. ACS Applied Materials & Interfaces 2020, 12 (45), 50713-50720. 28. Ahmed, A.; Al-Amin, A. Q.; Ambrose, A. F.; Saidur, R., Hydrogen fuel and transport system: A sustainable and environmental future. International Journal of Hydrogen Energy 2016, 41 (3), 1369-1380. 29. Ogden, J. M., Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment 1999, 24 (1), 227-279. 30. Balat, M.; Balat, M., Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy 2009, 34 (9), 3589-3603. 31. Sobrino, F. H.; Monroy, C. R.; Pérez, J. L. H., Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe. Renewable and Sustainable Energy Reviews 2010, 14 (2), 772-780. 32. Khan, S. B.; Ali, F.; Asiri, A. M., Metal nanoparticles supported on polyacrylamide water beads as catalyst for efficient generation of H2 from NaBH4 methanolysis. International Journal of Hydrogen Energy 2020, 45 (3), 1532-1540. 33. Danilovic, N.; Subbaraman, R.; Chang, K.-C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y.-T.; Myers, D., Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. The Journal of Physical Chemistry Letters 2014, 5 (14), 2474-2478. 34. Fang, M.; Gao, W.; Dong, G.; Xia, Z.; Yip, S.; Qin, Y.; Qu, Y.; Ho, J. C., Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 2016, 27, 247-254. 35. McArthur, M.; Jorge, L.; Coulombe, S.; Omanovic, S., Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. Journal of Power Sources 2014, 266, 365-373. 36. Gao, X.; Zhang, H.; Fan, X.; Zhang, C.; Sun, Y.; Liu, C.; Li, Z.; Jiang, S.; Man, B.; Yang, C., Toward the highly sensitive SERS detection of bio-molecules: the formation of a 3D self-assembled structure with a uniform GO mesh between Ag nanoparticles and Au nanoparticles. Optics Express 2019, 27 (18), 25091-25106. 37. Xie, X.; Pu, H.; Sun, D.-W., Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis. Critical Reviews in Food Science and Nutrition 2018, 58 (16), 2800-2813. 38. Yang, N.; You, T.-T.; Gao, Y.-K.; Zhang, C.-M.; Yin, P.-G., Fabrication of a flexible gold nanorod polymer metafilm via a phase transfer method as a SERS substrate for detecting food contaminants. Journal of Agricultural and Food Chemistry 2018, 66 (26), 6889-6896. 39. Wang, Y.; Jin, Y.; Xiao, X.; Zhang, T.; Yang, H.; Zhao, Y.; Wang, J.; Jiang, K.; Fan, S.; Li, Q., Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 2018, 10 (32), 15195-15204. 40. Chen, J.; Huang, M.; Kong, L., Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Applied Surface Science 2020, 533, 147454. 41. Xu, K.; Zhou, R.; Takei, K.; Hong, M., Toward flexible surface‐enhanced raman scattering (SERS) sensors for point‐of‐care diagnostics. Advanced Science 2019, 6 (16), 1900925. 42. Shi, G. C.; Wang, M. L.; Zhu, Y. Y.; Shen, L.; Ma, W. L.; Wang, Y. H.; Li, R. F., Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Scientific Reports 2018, 8 (1), 1-11. 43. Xia, L.; Wu, S.; Wang, J.; Ma, C.; Song, P., Spectral proof for the 4-aminophenyl disulfide plasma assisted catalytic reaction. Scientific Reports 2017, 7 (1), 1-7. 44. Yan, X.; Xu, Y.; Tian, B.; Lei, J.; Zhang, J.; Wang, L., Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor. Applied Catalysis B: Environmental 2018, 224, 305-309. 45. Liu, X.; Tang, L.; Niessner, R.; Ying, Y.; Haisch, C., Nitrite-triggered surface plasmon-assisted catalytic conversion of p-aminothiophenol to p, p′-dimercaptoazobenzene on gold nanoparticle: surface-enhanced Raman scattering investigation and potential for nitrite detection. Analytical Chemistry 2015, 87 (1), 499-506. 46. Xiao, G.-N.; Man, S.-Q., Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chemical Physics Letters 2007, 447 (4-6), 305-309. 47. Huang, Y.-F.; Wu, D.-Y.; Zhu, H.-P.; Zhao, L.-B.; Liu, G.-K.; Ren, B.; Tian, Z.-Q., Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Physical Chemistry Chemical Physics 2012, 14 (24), 8485-8497. 48. Khan, M. A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J., Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews 2018, 1 (4), 483-530. 49. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical Reviews 2019, 120 (2), 851-918. 50. Singh, S.; Jain, S.; Venkateswaran, P.; Tiwari, A. K.; Nouni, M. R.; Pandey, J. K.; Goel, S., Hydrogen: A sustainable fuel for future of the transport sector. Renewable and Sustainable Energy Reviews 2015, 51, 623-633. 51. Veziroglu, T. N., 21st Century's energy: Hydrogen energy system. In Assessment of Hydrogen Energy for Sustainable Development, Springer: 2007; pp 9-31. 52. Wang, S.; Lu, A.; Zhong, C.-J., Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 2021, 8 (1), 1-23. 53. Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J., A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews 2020, 49 (7), 2196-2214. 54. Das, D.; Veziroǧlu, T. N., Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 2001, 26 (1), 13-28. 55. Sambrook, J.; Fritsch, E. F.; Maniatis, T., Molecular Cloning: A Laboratory Manual. Cold spring harbor laboratory press: 1989. 56. Sabbagh, F.; Muhamad, I. I., Acrylamide-based hydrogel drug delivery systems: release of acyclovir from MgO nanocomposite hydrogel. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 182-193. 57. Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A. V.; Rutkowsky, S. A.; Boritz, C., Synthesis and study of silver nanoparticles. Journal of Chemical Education 2007, 84 (2), 322. 58. Abdelhamid, H. N., A review on hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy 2020. 59. Ling, W. L.; Lua, W. H.; Gan, S. K. E., Fast reversible single‐step method for enhanced band contrast of polyacrylamide gels for automated detection. Electrophoresis 2015, 36 (9-10), 1224-1227. 60. Huynh, K.; Napolitano, K.; Wang, R.; Jessop, P. G.; Davis, B. R., Indirect hydrolysis of sodium borohydride: Isolation and crystallographic characterization of methanolysis and hydrolysis by-products. International Journal of Hydrogen Energy 2013, 38 (14), 5775-5782. 61. Fernandes, V.; Pinto, A.; Rangel, C., Hydrogen production from sodium borohydride in methanol–water mixtures. International Journal of Hydrogen Energy 2010, 35 (18), 9862-9868.
|