跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐子涵
研究生(外文):Zi-Han Hsu
論文名稱:多面向軟膜之研發 – 表面增強拉曼散射與產氫功能探索
論文名稱(外文):Development of multi-functional film materials as a SERS substrate and heterogeneous catalyst for hydrogen production
指導教授:陳文龍陳文龍引用關係黃家琪黃家琪引用關係
指導教授(外文):Chen, WenlungHuang, Chia-Chi
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:78
中文關鍵詞:表面增強拉曼散射光譜檢測軟膜氫氣異相催化劑表面增強拉曼散射
外文關鍵詞:flexible substratehydrogen productioncatalystSERS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為黃家琪老師實驗室一系列先進材料研發項目之一,致力於多面向軟膜平臺之創作,可應用於表面增強拉曼散射 (surface enhanced Raman scattering, SERS) 光譜檢測及催化氫氣生成。製程上利用方便簡易的吸附作用以及原位還原的方式將奈米銀修飾在具親水性的聚丙醯胺聚合物膠片,以形成富含奈米銀並具有規律性的銀奈米立方體結構。由於其表面如同澳洲大堡礁的奇景,因此暱稱本軟膜平臺為大堡膠。在本論文範圍内,將此軟膜依循兩大方向進行測試,如下:
第一部分研究是將大堡膠作為表面增強拉曼光譜的檢測器,在開發過程中,首要的挑戰是確保大堡膠製程的再現性,其次是在檢測中確保待測物的表面增強拉曼光譜指紋區的再現性。
第二部分研究在於將軟膜作為製作氫氣的異相催化劑,使硼氫化鈉與甲醇溶液可在短時間內迅速反應,轉化產生氫氣。此外,我們亦確認催化效果不因使用次數增多而弱化。
在成功提高製程的再現性,以確保未來的備料無虞;有效增強待測物的拉曼訊號;以及透過異相催化,快速製備氫氣等結果的佐證下,本研究完成了多面向軟膜平臺之開發,以及初步的應用。
As part of a series of research projects for the development of advanced materials in Prof. C. C. Huang’s labs, the purpose of this thesis is to study gel materials for multiple functions and evaluate their performance. In the process, silver nanoparticles (AgNPs) are deposited on a hydrophilic polyacrylamide gel by adsorption and in-situ reduction. The resultant gel is found to have a regulated cubic surface morphology, which, being reminiscent of the famous great barrier reef, is nicknamed the Great Barrier Gel (GBG). We further study the application of the GBG in the following two areas:
Firstly, we apply the GBG to surface enhanced Raman scattering (SERS) as a flexible SERS substrate. With the aid of the gel, AgNPs are immobilized, and the Raman signal of the sample molecule is enhanced by the silver-dressed cubes, to provide SERS spectra with high stability and good reproducibility.
Secondly, we use the AgNPs-dressed gel as a catalyst to accelerate the generation of hydrogen. The results show that the GBG successfully converted sodium borohydride-methanol into hydrogen rapidly. We also demonstrated the reusability of the gel in the catalytic process.
摘要 i
Abstract ii
目次 iv
表次 vii
圖次 viii
第一章、緒論 2
1.1 表面增強拉曼散射光譜 2
1.1.1 表面增強拉曼散射光譜發展與簡介 2
1.1.2 表面增強拉曼光譜檢測平台 4
1.2 氫氣生成與催化劑之簡述 6
1.2.1氫氣與產氫技術 6
1.2.2 催化劑 7
第二章、開發表面增強拉曼散測光譜檢測軟膜基材 9
2.1 前言 9
2.2 材料與方法 11
2.2.1 材料 11
2.2.2 大堡膠之製備 11
2.2.3 SERS樣品之製備 12
2.2.4儀器設備 13
2.3 結果與討論 14
2.3.1 GBG-AgNPs(I)之鑑定 14
2.3.2 4-APDS之鑑定 17
2.3.3 標準品運用在GBG-AgNPs(I)之效果 20
2.3.4 NaCl對SERS效果之影響 22
2.3.5 大堡膠之再現性探討 26
2.3.6 雷射激發波長對樣品訊號之探討 27
2.4 結論 33
第三章、大堡膠作為加速氫氣產生的催化劑 34
3.1 前言 34
3.2 材料與方法 36
3.2.1材料 36
3.2.2大堡膠之製備 36
3.2.3 以排水集氣法收集氫氣 37
3.2.4 重複使用性測試 37
3.2.5 膠片與反應溶液之pH檢測 38
3.2.6 儀器設備 38
3.3 結果與討論 38
3.3.1 大堡膠機制與特性探討 38
3.3.2 催化氫氣反應 43
3.3.3 經催化後的膠片型態變化 43
3.3.4 排水集氣法數據分析 49
3.4 結論 55
第四章 參考文獻 56
附錄 61
附錄一 GBG-AgNPs(I) SEM圖 三重複 61
附錄二 圖2 7 GBG-AgNPs(I)-4-APDS之原始SERS光譜圖 (532 nm) 62
附錄三 圖2 9 GBG-AgNPs(I)-4-APDS-NaCl之原始SERS光譜圖 63
附錄四 圖2-11 GBG-AgNPs(I)-10-7 M 4-APDS-NaCl 再現性之原始SERS光譜圖 64
附錄五 圖2 12 GBG-AgNPs(I)-EtOH(-NaCl)之原始SERS光譜圖 65
附錄六 圖2 13 GBG-AgNPs(I)-4-APDS之原始SERS光譜圖 (633 nm) 66
附錄七 圖2 14 GBG-AgNPs(I)-4-APDS-NaCl之原始SERS光譜圖 67
附錄八 圖2 15 GBG-AgNPs(I)-4-APDS-之原始SERS光譜圖 (785 nm) 68
附錄九 圖2 16 GBG-AgNPs(I)-4-APDS-NaCl之原始SERS光譜圖 69
論文著作 70
1. Robinson, J. W.; Frame, E. M. S.; Frame, G. M.; Eileen, M.; Skelly, F., Undergraduate instrumental analysis. 2005.
2. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
3. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
4. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275 (5303), 1102-1106.
5. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters 1997, 78 (9), 1667.
6. Jensen, L.; Aikens, C. M.; Schatz, G. C., Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews 2008, 37 (5), 1061-1073.
7. Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials 2016, 1 (6), 1-16.
8. Shi, R.; Liu, X.; Ying, Y., Facing challenges in real-life application of surface-enhanced Raman scattering: design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. Journal of Agricultural and Food Chemistry 2017, 66 (26), 6525-6543.
9. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical Chemistry 2005, 77 (10), 3261-3266.
10. Fang, Y.; Seong, N.-H.; Dlott, D. D., Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321 (5887), 388-392.
11. Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A., Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chemical Society Reviews 2008, 37 (5), 885-897.
12. Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B., Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nature Materials 2013, 12 (2), 165-171.
13. Xia, L.; Chen, M.; Zhao, X.; Zhang, Z.; Xia, J.; Xu, H.; Sun, M., Visualized method of chemical enhancement mechanism on SERS and TERS. Journal of Raman Spectroscopy 2014, 45 (7), 533-540.
14. Zhao, L.; Jensen, L.; Schatz, G. C., Pyridine− Ag20 cluster: a model system for studying surface-enhanced Raman scattering. Journal of the American Chemical Society 2006, 128 (9), 2911-2919.
15. Sun, M.; Liu, S.; Chen, M.; Xu, H., Direct visual evidence for the chemical mechanism of surface‐enhanced resonance Raman scattering via charge transfer. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 2009, 40 (2), 137-143.
16. Ansar, S. M.; Li, X.; Zou, S.; Zhang, D., Quantitative comparison of Raman activities, SERS activities, and SERS enhancement factors of organothiols: Implication to chemical enhancement. The Journal of Physical Chemistry Letters 2012, 3 (5), 560-565.
17. Hakonen, A.; Svedendahl, M.; Ogier, R.; Yang, Z.-J.; Lodewijks, K.; Verre, R.; Shegai, T.; Andersson, P. O.; Käll, M., Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. Nanoscale 2015, 7 (21), 9405-9410.
18. Lai, Y.-H.; Kuo, S.-C.; Hsieh, Y.-C.; Tai, Y.-C.; Hung, W.-H.; Jeng, U.-S., Electrochemically fabricated gold dendrites with underpotential deposited silver monolayers for a bimetallic SERS-active substrate. RSC Advances 2016, 6 (16), 13185-13192.
19. Li, L.; Chin, W. S., Rapid fabrication of a flexible and transparent Ag nanocubes@ PDMS film as a SERS substrate with high performance. ACS Applied Materials & Interfaces 2020, 12 (33), 37538-37548.
20. Gupta, P.; Luan, J.; Wang, Z.; Cao, S.; Bae, S. H.; Naik, R. R.; Singamaneni, S., On-demand electromagnetic hotspot generation in surface-enhanced Raman scattering substrates via “add-on” plasmonic patch. ACS Applied Materials & Interfaces 2019, 11 (41), 37939-37946.
21. Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q., Polymer multilayers enabled stable and flexible Au@ Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2021, 223, 121782.
22. Mosier-Boss, P. A., Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7 (6), 142.
23. Hussain, A.; Sun, D.-W.; Pu, H., SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Additives & Contaminants: Part A 2019, 36 (6), 851-862.
24. He, H.; Sun, D.-W.; Pu, H.; Huang, L., Bridging Fe3O4@ Au nanoflowers and Au@ Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chemistry 2020, 324, 126832.
25. Yi, J.; Jeong, H.; Park, J., Modulation of nanoparticle separation by initial contact angle in coffee ring effect. Micro and Nano Systems Letters 2018, 6 (1), 1-7.
26. Oh, K.; Lee, M.; Lee, S. G.; Jung, D. H.; Lee, H. L., Cellulose nanofibrils coated paper substrate to detect trace molecules using surface-enhanced Raman scattering. Cellulose 2018, 25 (6), 3339-3350.
27. Huo, D.; Chen, B.; Meng, G.; Huang, Z.; Li, M.; Lei, Y., Ag-nanoparticles@ bacterial nanocellulose as a 3D flexible and robust surface-enhanced Raman scattering substrate. ACS Applied Materials & Interfaces 2020, 12 (45), 50713-50720.
28. Ahmed, A.; Al-Amin, A. Q.; Ambrose, A. F.; Saidur, R., Hydrogen fuel and transport system: A sustainable and environmental future. International Journal of Hydrogen Energy 2016, 41 (3), 1369-1380.
29. Ogden, J. M., Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment 1999, 24 (1), 227-279.
30. Balat, M.; Balat, M., Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy 2009, 34 (9), 3589-3603.
31. Sobrino, F. H.; Monroy, C. R.; Pérez, J. L. H., Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe. Renewable and Sustainable Energy Reviews 2010, 14 (2), 772-780.
32. Khan, S. B.; Ali, F.; Asiri, A. M., Metal nanoparticles supported on polyacrylamide water beads as catalyst for efficient generation of H2 from NaBH4 methanolysis. International Journal of Hydrogen Energy 2020, 45 (3), 1532-1540.
33. Danilovic, N.; Subbaraman, R.; Chang, K.-C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y.-T.; Myers, D., Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. The Journal of Physical Chemistry Letters 2014, 5 (14), 2474-2478.
34. Fang, M.; Gao, W.; Dong, G.; Xia, Z.; Yip, S.; Qin, Y.; Qu, Y.; Ho, J. C., Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 2016, 27, 247-254.
35. McArthur, M.; Jorge, L.; Coulombe, S.; Omanovic, S., Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. Journal of Power Sources 2014, 266, 365-373.
36. Gao, X.; Zhang, H.; Fan, X.; Zhang, C.; Sun, Y.; Liu, C.; Li, Z.; Jiang, S.; Man, B.; Yang, C., Toward the highly sensitive SERS detection of bio-molecules: the formation of a 3D self-assembled structure with a uniform GO mesh between Ag nanoparticles and Au nanoparticles. Optics Express 2019, 27 (18), 25091-25106.
37. Xie, X.; Pu, H.; Sun, D.-W., Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis. Critical Reviews in Food Science and Nutrition 2018, 58 (16), 2800-2813.
38. Yang, N.; You, T.-T.; Gao, Y.-K.; Zhang, C.-M.; Yin, P.-G., Fabrication of a flexible gold nanorod polymer metafilm via a phase transfer method as a SERS substrate for detecting food contaminants. Journal of Agricultural and Food Chemistry 2018, 66 (26), 6889-6896.
39. Wang, Y.; Jin, Y.; Xiao, X.; Zhang, T.; Yang, H.; Zhao, Y.; Wang, J.; Jiang, K.; Fan, S.; Li, Q., Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 2018, 10 (32), 15195-15204.
40. Chen, J.; Huang, M.; Kong, L., Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Applied Surface Science 2020, 533, 147454.
41. Xu, K.; Zhou, R.; Takei, K.; Hong, M., Toward flexible surface‐enhanced raman scattering (SERS) sensors for point‐of‐care diagnostics. Advanced Science 2019, 6 (16), 1900925.
42. Shi, G. C.; Wang, M. L.; Zhu, Y. Y.; Shen, L.; Ma, W. L.; Wang, Y. H.; Li, R. F., Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Scientific Reports 2018, 8 (1), 1-11.
43. Xia, L.; Wu, S.; Wang, J.; Ma, C.; Song, P., Spectral proof for the 4-aminophenyl disulfide plasma assisted catalytic reaction. Scientific Reports 2017, 7 (1), 1-7.
44. Yan, X.; Xu, Y.; Tian, B.; Lei, J.; Zhang, J.; Wang, L., Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor. Applied Catalysis B: Environmental 2018, 224, 305-309.
45. Liu, X.; Tang, L.; Niessner, R.; Ying, Y.; Haisch, C., Nitrite-triggered surface plasmon-assisted catalytic conversion of p-aminothiophenol to p, p′-dimercaptoazobenzene on gold nanoparticle: surface-enhanced Raman scattering investigation and potential for nitrite detection. Analytical Chemistry 2015, 87 (1), 499-506.
46. Xiao, G.-N.; Man, S.-Q., Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chemical Physics Letters 2007, 447 (4-6), 305-309.
47. Huang, Y.-F.; Wu, D.-Y.; Zhu, H.-P.; Zhao, L.-B.; Liu, G.-K.; Ren, B.; Tian, Z.-Q., Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Physical Chemistry Chemical Physics 2012, 14 (24), 8485-8497.
48. Khan, M. A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J., Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews 2018, 1 (4), 483-530.
49. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical Reviews 2019, 120 (2), 851-918.
50. Singh, S.; Jain, S.; Venkateswaran, P.; Tiwari, A. K.; Nouni, M. R.; Pandey, J. K.; Goel, S., Hydrogen: A sustainable fuel for future of the transport sector. Renewable and Sustainable Energy Reviews 2015, 51, 623-633.
51. Veziroglu, T. N., 21st Century's energy: Hydrogen energy system. In Assessment of Hydrogen Energy for Sustainable Development, Springer: 2007; pp 9-31.
52. Wang, S.; Lu, A.; Zhong, C.-J., Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 2021, 8 (1), 1-23.
53. Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J., A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews 2020, 49 (7), 2196-2214.
54. Das, D.; Veziroǧlu, T. N., Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 2001, 26 (1), 13-28.
55. Sambrook, J.; Fritsch, E. F.; Maniatis, T., Molecular Cloning: A Laboratory Manual. Cold spring harbor laboratory press: 1989.
56. Sabbagh, F.; Muhamad, I. I., Acrylamide-based hydrogel drug delivery systems: release of acyclovir from MgO nanocomposite hydrogel. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 182-193.
57. Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A. V.; Rutkowsky, S. A.; Boritz, C., Synthesis and study of silver nanoparticles. Journal of Chemical Education 2007, 84 (2), 322.
58. Abdelhamid, H. N., A review on hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy 2020.
59. Ling, W. L.; Lua, W. H.; Gan, S. K. E., Fast reversible single‐step method for enhanced band contrast of polyacrylamide gels for automated detection. Electrophoresis 2015, 36 (9-10), 1224-1227.
60. Huynh, K.; Napolitano, K.; Wang, R.; Jessop, P. G.; Davis, B. R., Indirect hydrolysis of sodium borohydride: Isolation and crystallographic characterization of methanolysis and hydrolysis by-products. International Journal of Hydrogen Energy 2013, 38 (14), 5775-5782.
61. Fernandes, V.; Pinto, A.; Rangel, C., Hydrogen production from sodium borohydride in methanol–water mixtures. International Journal of Hydrogen Energy 2010, 35 (18), 9862-9868.
電子全文 電子全文(網際網路公開日期:20260901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊