跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林意庭
研究生(外文):Yi-Ting Lin
論文名稱:履帶式植保機器人之行走性能測試
論文名稱(外文):Performance Evaluation of Tracklayer Self-Propelled Vehicles for Plant Robot Protect
指導教授:艾群
指導教授(外文):Chyung Ay
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生物機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:66
中文關鍵詞:履帶式植保機器人性能測試靜態翻覆角GPS路徑
外文關鍵詞:Tracklayer self-propelled vehiclesPerformance testTilt angleGPS path plaining
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對先前研發之輪式植保機器人進行改善,因輪式植保機器人在移動地形較多限制且接觸面積小,不利於地力複雜之地面行走,考量到田間工作環境多為非平坦地面,如行駛在泥土地或砂質地,容易使輪子陷入土裡造成自走車傾斜或打滑,所以重新設計一履帶式植保機器人。
本研究重新設計出履帶式植保機器人,參考現有農機性能測定項目,進而制定履帶車性能測試之方法,藉由對機器人進行行走性能測試,來了解植保機器人對地形的適應力,此外,針對GPS路徑規劃功能進行誤差距離的量測,最後觀察在實際溫室場域的運作狀況。
經過性能測試,履帶式植保機器人在左右兩側之靜態翻覆角右側為35.7±0.6度;左側翻覆角為34.3±0.6度;水泥地與泥土地的打滑率為2.71±0.18%與3.24±0.63%;續航力表現為8小時9分。
在GPS路徑規劃誤差距離試驗中,當移動速度為0.9 km/hr,在水泥地與泥土地的誤差距離為6.7±2.9公分與7.2±3.2公分。
This study aims to improve the previously developed wheeled plant protection robot. Because the wheeled plant protection robot has many restrictions on the moving bumpy terrain and small contact area, it is not easy walking on the bumpy ground. Considering that the field working environment is mostly uneven ground, such as driving in soil or sand, the wheels is easy to sink into the soil and cause the self-propelled car to tilt or slip, so a tracklayer plant protection robot is redesigned.
In this study, a tracklayer self-propelled robot for plant was redesigned, referring to the existing agricultural machinery performance test items, and then formulating a method for the performance test of the tracklayer vehicle. By testing the walking performance of the robot, we can understand the adaptability of the plant protection robot to the terrain. In addition, the error distance is measured for the GPS route planning, and the operation status of the robot in the environment of the actual greenhouse is observed as well.
After the walking performance test, the static overturning angle of the tracklayer plant protection robot on the two sides is 35.7±0.6 degrees on the right side, the left overturning angle is 34.3±0.6 degrees, the slippages of cement and soil surface were respectively 2.71±0.18% and 3.24±0.63%. Endurance performance is 8 hours and 9 minutes
In the GPS path planning error distance test, when the moving speed is 0.9 km/hr, the error distance between concrete and soil individually are 6.7±2.9 cm and 7.2±3.2 cm.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 前言 1
1.1研究背景 1
1.2 研究動機 3
1.3 研究目的 4
第二章 文獻探討 5
2.1 無人自走車於農業應用 5
2.2 無人自走車導引技術 8
2.3 即時動態定位技術 10
2.4 自走車的設計 11
第三章 理論基礎 14
3.1靜態傾翻穩定性分析 14
3.2履帶車基本運動學模型 16
3.3履帶車動力學 18
3.3.1直線運動 18
3.3.2原地轉向運動 19
3.3.3單邊驅動轉向 19
第四章 材料與方法 21
4.1實驗場域 21
4.1.1水泥地及泥土地測試場地 21
4.1.2溫室場地 22
4.2 履帶式電動自走車與相關設備介紹 23
4.2.1 UR5協作型機械手臂(UNIVERSAL ROBOTS , DENMARK,UR5) 24
4.2.2 工業電腦(台灣宸曜科技,Nuvo-7000 DE) 25
4.2.3 Arduino Uno & Arduino Mega開發板(義大利微控制套件) 26
4.2.4 噴藥機構及電磁閥(台灣鼎機股份有限公司,UD-8) 27
4.2.5 GPS路徑規劃 28
4.2.6 電源供應器、鋰電池、自走車鋰電池 28
4.2.7無人自走車(台灣建東精工股份有限公司) 28
4.3量測設備與儀器 30
4.3.1勾配計(DIAL,SLANT RULE) 30
4.3.2油壓板車 31
4.4 實驗方法 32
4.4.1 靜態翻覆角 33
4.4.2 植保機器人打滑率 35
4.4.3 連續作業續航力 36
4.4.4 GPS路徑規劃 37
4.4.5 植保機器人於溫室場域進行完整運作測試 43
4.5實驗數據分析 47
第五章 結果與討論 48
5.1 輪式與履帶式植保機器人性能比較 48
5.1.1靜態傾斜角比較 48
5.1.2履帶式自走車打滑率 49
5.1.3 連續作業續航力比較 50
5.2 GPS路徑規劃移動偏移誤差 52
5.3 於溫室場域進行完整運作結果 55
第六章 結論與建議 58
6.1 結論 58
6.2 建議 60
參考文獻 61
附錄 履帶式植保機器人三次連續作業紀錄內容表 64
1. 張穎、蔣立茂(2019)。農業機器人簡述.收藏, 2.
2. 陳令錫、龍國維、何榮祥、田雲生(1995)。設施內自動噴藥裝置之開發和應用。臺中區農業專訊,(11),14-16.
3. 盛中德(2008)。設施內施藥。興大農業第65期。p.1-5
4. 彭聖瀛、萬鍾汶、楊上禾(2017)。臺灣應用農業設施生產蔬菜之生產效率分析。嘉大農林學報,65(2),89-100.
5. 黃雅賢、李春壽、盛中德、盧世昌. 1997.農用無人自走車直行系統之研究。農業機械學刊。第 6 卷,第 4 期。p.61-68
6. 楊智凱、黃國祥 (2013)。設施內自走載具之研發與應用。102 年度農業工程自動化計畫成果研討會。臺中。p.50-55
7. Bashford, L. L., and M. F. Kocher. 1999. Belts vs tires, belts vs belts, tires vs tires. Applied Engineering in Agriculture, 15(3): 175.
8. Belforte, G., R. Deboli, P. Gay, P. Piccarolo, and D. R.Aimonino. 2006. Robot design and testing for greenhouse applications. Biosystems Engineering, 95(3): 309-321.
9. Ding, Z.,Y. Li, and Z. Tang. 2020. Theoretical Model for Prediction of Turning Resistance of Tracked Vehicle on Soft Terrain. Mathematical Problems in Engineering. pp. 1-9
10. Ebadi, H. and M. A. Chapman, “GPS-controlled strip triangulation using geometric constraints of man-made structures”, Photogrammetric Engineering & Remote Sensing, vol.64, no.4, pp.329-333, 1998.
11. Fujimoto, T., J. Ota, T. Arai, T. Ueyama, and T. Nishiyama.2001. Semi-guided navigation of AGV through iterative learning. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180) (Vol. 2, pp. 968-973). IEEE.
12. González, R., F. Rodríguez, J. Sánchez-Hermosilla, and J. G. Donaire.2009. Navigation techniques for mobile robots in greenhouses. Applied Engineering in Agriculture, 25(2), 153-165.
13. Ko, M. H., K. C. Kim, B. S. Ryuh, A. Suprem, and N. P. Mahalik. 2013. Development of autonomous traveling for agricultural robot drive platform by using a single camera. In Proceedings of the World Congress on Engineering and Computer Science vol. 1, pp. 2078-0958.
14. Moeller, R., T. Deemyad and A. Sebastian.2020. Autonomous navigation of an agricultural robot using RTK GPS and Pixhawk. In 2020 Intermountain Engineering, Technology and Computing (IETC) (pp. 1-6). IEEE.
15. Sánchez-Hermosilla, J., F. Rodríguez, R. González, J. L. Guzmán, and M. Berenguel.2010. A mechatronic description of an autonomous mobile robot for agricultural tasks in greenhouses. In Mobile robots navigation. IntechOpen.
16. Sánchez-Hermosilla, R. González, F. Rodríguez, J. G. Donaire.2013. Mechatronic description of a laser autoguided vehicle for greenhouse operations. Sensors, 13(1), 769-784.
17. Shiller, Z., W. Serate, M. Hua.1993. Trajectory planning of tracked vehicles. Proceedings IEEE International Conference on Robotics and Automation (pp. 796-801). IEEE.
18. Ullrich, G. 2015. Automated guided vehicle systems. Springer-Verlag Berlin Heidelberg. doi, 10, 978-3.
19. Jyh-Hwa, T., and L. S. Kuo. 2008. The development of the restaurant service mobile robot with a laser positioning system. In 2008 27th Chinese Control Conference (pp. 662-666). IEEE.
20. Zhang, X., and R. Forsberg.2007. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry. Journal of Geodesy, 81(3), 201-211.
21. Zhou, L., G.Wang, K. Sun,and X. Li.2019. Trajectory Tracking Study of Track Vehicles Based on Model Predictive Control. Strojniski Vestnik/Journal of Mechanical Engineering, 65(6).

電子全文 電子全文(網際網路公開日期:20240124)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top