跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾薰
研究生(外文):Hsun Chung
論文名稱:智能固定信念、STEM學習成效與自我效能之相關研究:以PowerTech青少年科技創作競賽學生為例
論文名稱(外文):Entity Belief of Intelligence Predicts STEM Learning Performance, and Self-efficacy: A Perspective of PowerTech STEM and Hands-on Making Contest
指導教授:蔡其瑞蔡其瑞引用關係
指導教授(外文):Chi-Ruei Tsai
口試委員:洪榮昭古智雄
口試委員(外文):Jon-Chao HongChih-Hsiung Ku
口試日期:2021-06-29
學位類別:碩士
校院名稱:國立東華大學
系所名稱:教育與潛能開發學系
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:108
中文關鍵詞:STEMPowerTech仿生獸智能固定信念動手做自我效能
外文關鍵詞:STEMPowerTech Strandbeestentity belief of intelligencehands-on making self-efficacy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:1
自108課綱促進科學教育、創客教育的發展,過去許多研究也證明了自我效能與智能信念,對於個體日後投入學業或工作參與度及成就之間有顯著關係。因此,本研究以參加PowerTech青少年科技創作競賽的國中小學生為研究對象進行差異分析,並進一步分析學生的智能固定信念、STEM表現以及動手做自我效能之相關。研究對象為臺灣參加PowerTech 全國青少年科技創作競賽學生,有效樣本為250人。本研究結果顯示,智能固定信念、STEM能力與動手做自我效能在性別沒有顯著差異,但國中組的STEM科技能力顯著大於國小組學生。相關研究部分,學習者智能固定信念與STEM能力呈顯著負相關,STEM能力與動手做自我效能之間呈顯著正相關,且學習者智能固定信念與動手做自我效能之間呈現間接負相關。
The “108 Curriculum Guidelines” have placed strong emphasis on and contributed to the development of STEM education and maker education in Taiwan. Besides, many previous studies have proved that self-efficacy and belief of intelligence have a significant relationship with an individual’s later levels of participation in schoolwork or work and their achievements. This study performed the variance analysis on 250 elementary school and junior high school students who participated in the PowerTech Science and Technology Hands-On Creation Contest for Youth to investigate the relevance of the students’ entity belief of intelligence to their STEM performance and hands-on making self-efficacy. The results of the study showed that in terms of sex, there were no significant differences in entity belief of intelligence, STEM abilities, and hands-on making self-efficacy, but STEM abilities of the junior high school students were significantly better than those of the elementary school students. In addition, for learners, there was a significant negative correlation between their entity belief of intelligence and their STEM abilities; their STEM abilities were significantly positive correlated with their hands-on making self-efficacy. And the learners’ entity belief of intelligence had an indirect negative correlation with their hands-on making self-efficacy.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 名詞解釋 6
第四節 研究範圍與步驟 8
第二章 文獻探討 9
第一節 STEM教育 9
第二節 智能信念 19
第三節 自我效能 22
第三章 研究設計與實施 29
第一節 研究架構 29
第二節 研究方法與對象 35
第三節 研究工具 37
第四節 資料處理方法 42
第四章 研究結果 51
第一節 樣本特徵分析 51
第二節 驗證性因素分析 53
第三節 結構方程模型分析 56
第五章 結論與建議 61
第一節 研究討論與結論 61
第二節 研究貢獻 66
第三節 研究限制 67
第四節 後續研究建議 68
參考文獻 71
丁翊修(2016)。如何評量科技素養─以動物凸輪玩具為例。科技與人力教育季刊,2(4),33-47。https://doi.org/10.6587/JTHRE.2016.2(4).3
中國教育科學研究院(2017)。中國STEM教育白皮書。
http://www.ckjy.org/wp-content/uploads/2017/09/STEM教育白皮书.pdf
孔令文(2020)。STEAM體現於工藝教育。中等教育,71(1),74-88。
https://doi.org/10.6249/SE.202003_71(1).0005
王瓊珠、洪儷瑜、張郁雯、陳秀芬(2008)。一到九年級學生國字識字量發展。教育心理學報,39(4),555-568。https://doi.org/10.6251/BEP.20071026
史麗珠、鍾佳玘、趙國玉、林雪蓉、侯嘉玲、林慧芬(2015)。注意力不足過動症知識量表之發展及信效度評估。台灣公共衛生雜誌,34(3),319-334。
https://doi.org/10.6288/TJPH201534103110
任慶儀(2009)。課程統整的設計與應用。社會科教育研究,14,151-169。
http://ntcuir.ntcu.edu.tw/handle/987654321/6451
余鑑(2003a)。科技與科學關係之探討。生活科技教育月刊,36(7),3-10。
https://doi.org/10.6232/LTE.2003.36(7).2
余鑑(2003b)。工藝教育思想的流變。生活科技教育月刊,36(8),3-11。
https://doi.org/10.6232/LTE.2003.36(8).2
吳正新(2019)。數學素養導向評量試題研發策略。中等教育,70(3),11-35。
https://doi.org/10.6249/SE.201909_70(3).0024
吳佳樺、楊旻婕(2017)。培育學生成長心態之教學策略。臺灣教育評論月刊,6(6),163-166。http://www.ater.org.tw/journal/article/6-6/free/23.pdf
吳明隆、涂金堂(2012)。SPSS與統計應用分析(二版)。五南。
吳相儀、陳冠羽、廖思涵、劉政宏、謝碧玲(2018)。「新編青少年強項量表」之編製與驗證。測驗學刊,65(4),367-399。
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=16094905-201812-201901280010-201901280010-367-399
吳清山、林天祐(2005)。教育新辭書。高等教育。
李亭儀、楊仁仁、徐志輝、張梅香(2011)。有氧舞蹈課程滿意度量表編製之研究。運動健康休閒學報,2,47-57。https://doi.org/10.29961/JSHL.201104.0005
李姿儀(2018)。國中科技教育的內容規劃。科技與人力教育季刊,4(3),46-66。
https://doi.org/10.6587/JTHRE.201803_4(3).0003
李茂能(2006)。結構方程模式軟體Amos之簡介及其在測驗編製上之應用。心理。
李隆盛、孔心怡、陳芊妤、林坤誼(2019)。專題、問題與探究導向總整課程教學策略對學習成效的影響。課程與教學,22(3),55-76。
http://www.aci-taiwan.org.tw/pdf/22-3/b3-c.pdf
李隆盛、林坤誼、莊善媛(2006)。高中生活科技新課程的工程趨向。課程與教學,9(1),51-60。https://doi.org/10.6384/CIQ.200601.0051
周玉秀(2006)。從PISA看數學素養與中小學數學教育。科學教育月刊,293,2-21。http://www.sec.ntnu.edu.tw/monthly/95(286-295)/293-pdf/01.pdf
周芬美、段曉林(2019)。以自我效能激發策略融入STEM統整活動對國中學生STEM學習效能之探討。科技與人力教育季刊,5(4),26-49。
https://doi.org/10.6587/JTHRE.201906_5(4).0002
林秀珍(2001)。「教育即生活」抑「生活即教育」?-杜威觀點的詮釋。教育研究集刊,47,1-16。https://doi.org/10.6910/BER.200107_(47).0001
邱皓政(2011a)。結構方程模式:LISREL的理論、技術與應用(二版)。雙葉書廊。
邱皓政(2011b)。當PLS遇上SEM:議題與對話。αβγ量化研究學刊,3(1),20-53。http://www.AiritiLibrary.com/Publication/Index/P20110516001-201106-201109140005-201109140005-20-53
邱皓政(2019)。量化研究與統計分析(六版):SPSS與R資料分析範例解析。五南。
柳金佑、朱益賢(2010)。國中生與高中生在班級科技競賽中之參賽表現與問題解決能力差異之研究。臺東大學教育學報,21(1),31-55。
https://doi.org/10.6778/NTTUERJ.201006.0031
馬宜平(2020)。STEM 教育對學生科學生涯選擇的影響。科技與人力教育季刊,7(1),1-25。https://doi.org/10.6587/JTHRE.202009_7(1).0001
高睦凱(2008)。科技課程演進的回顧與啟示。生活科技教育月刊,41(4),31-39。https://doi.org/10.6232/LTE.2008.41(4).5
國立臺灣師範大學(2020)。2020 PowerTech青少年科技創作競賽活動簡章。
http://www.hn.thu.edu.tw/download.php?type=announcement&id=4772&c=file1
國家教育研究院(2016)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校數學領域(草案)。
http://www.naer.edu.tw/ezfiles/0/1000/attach/37/pta_10147_1655251_02807.pdf
張永宗、魏炎順(2004)。臺灣與英國中小學階段科技教育課程之比較。生活科技教育月刊,37(3),33-49。
http://140.122.64.129/files/archive/125_9b77254a.pdf
張玉山(2016)。從創客教育培養創造力、實踐力、以及承受力。新北市教育季刊,18,14-15。
https://ebook.ntpc.gov.tw/ebook/492?file=/pdf/492/preview?v1
張玉山(2018)。STEAM Maker跨域整合,實踐12年國教。臺灣教育評論月刊,7(2),1-5。http://www.ater.org.tw/journal/article/7-2/topic/01.pdf
張同廟、吳明隆、劉世閔(2015)。領導風格、責任感對工作表現之影響-以南部大學校院學生事務處為例。教育行政論壇,7(1),1-26。
http://ir.nptu.edu.tw/retrieve/23194/01.pdf
張金田(2017)。淺談我國中小學「課程統整」現況與未來展望。臺灣教育評論月刊,6(4),171-174。http://www.ater.org.tw/journal/article/6-4/free/14.pdf
張春興(2007)。教育心理學-三化取向的理論與實踐(二版)。東華。
張偉豪(2011)。論文寫作-SEM不求人。鼎茂。
張偉豪、鄭時宜(2012)。與結構方程模型共舞:曙光初現。前程文化。
張基成、陳怡靜(2018)。機器人跨領域STEM主題式統整課程與任務導向式教學的設計及評鑑。科學教育學刊,26(4),305-331。
https://doi.org/10.6173/CJSE.201812_26(4).0002
教育部(2003a)。科學教育白皮書。
教育部(2003b)。國民中小學九年一貫課程綱要數學學習領域。
教育部(2008)。國民中小學九年一貫課程綱要總綱。
教育部(2014)。十二年國民基本教育課程綱要總綱。
教育部(2017)。十二年國民基本教育課程綱要議題融入說明手冊。
教育部(2018a)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─數學領域。
教育部(2018b)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校─科技領域。
許宜婷(2015)。科技教育教學內容之探討。科技與人力教育季刊,2(2),16-29。
https://doi.org/10.6587/JTHRE.2015.2(2).2
郭彥成、林靜萍(2006)。大學生桌球認知測驗之編製。體育學報,39(3),119-129。https://doi.org/10.6222/pej.3903.200609.1110
陳正昌、程炳林、陳新豐、劉子鍵(2003)。多變量分析方法:統計軟體應用(三版)。五南。
陳美華(2007)。身體活動、自我概念和自尊關係之文獻回顧。臺灣運動心理學報,11,17-39。https://doi.org/10.6497/BSEPT.20071101_(11).0002
陳家騏、古建國(2017)。STEM 教學應用於高中探究與實作課程之行動研究—以摩擦力為例。物理教育學刊,18(2),17-38。
http://phys5.ncue.edu.tw/physedu/article/18-2/2.pdf
陳琪婷、吳貞穎(2020)。海外實習對跨文化能力、生涯自我效能和就業力之影響。觀光旅遊研究學刊,15(2),25-41。
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=19936362-202012-202101060022-202101060022-25-41
陳新豐(2016)。國小中高年級學童線上圖形工作記憶測驗之編製。臺灣教育評論月刊,5(11),160-180。
http://www.ater.org.tw/journal/article/5-11/monograph/02.pdf
陳新豐、方金雅(2016)。高屏地區不同類型國小學童識字能力成長之實徵研究。臺灣教育評論月刊,5(2),111-130。
http://www.ater.org.tw/教評月刊/臺評月刊第五卷第二期網路公告版/專論/專論001_陳新豐、方金雅_不同類型國小學童識字能力成長之實徵研究.pdf
單文經(2001)。解析Beane對課程統整理論與實際的主張。教育研究集刊,47,57-89。https://doi.org/10.6910/BER.200107_(47).0004
游銘仁、吳靜吉(2019)。應得權益感與創新行為關係之研究:以創意自我效能為中介變項。科技管理學刊,24(1),1-29。
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=10287353-201903-201909260013-201909260013-1-29
黃芳銘(2007)。結構方程模式理論與應用(五版)。五南。
黃建皓(2011)。家庭社經地位與班級經營效能對學生自我效能感之影響:階層線性模式分析。國立臺南大學教育經營與管理研究集刊,8,107-130。
https://doi.org/10.6713/BEEM.201201_(8).0005
葉玉珠、彭月茵、林志哲、蔡維欣、鍾素香(2008)。「情境式科學創造力測驗」之發展曁科學創造力之性別與年級差異分析。測驗學刊,55(1),33-60。
https://doi.org/10.7108/PT.200804.0033
詹惠雪、陳美如(2018)。自然科學素養導向課程設計與實踐──以國中理化能源主題為例。中等教育,69(4),90-104。
https://doi.org/10.6249/SE.201812_69(4).0044
靳知勤(2014)。台灣所需優先解決的科學教育問題─科學與科學教育學者的觀點。教育學報,42(1),53-76。
https://www.hkier.cuhk.edu.hk/journal/document/EJ/EJ_V42N1_53-76.pdf
蔡蕙文、羅希哲、朱怡貞、陳柏豪(2007)。國中STEM教學模式之實驗研究。科技教育課程改革與發展學術研討會論文集,2006,278-284。
https://doi.org/10.29495/CITE.200707.0278
蔡錫濤(1999)。中國大陸勞動技術課程實施情況探討。生活科技教育月刊,32(4),2-5。https://doi.org/10.6232/LTE.1999.32(4).2
鄭芬蘭(2014)。人際和諧活動方案對國小學童群己關係之實驗研究。高雄師大學報,37,73-95。
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=P20120111002-201412-201503090016-201503090016-73-95
鄭芬蘭、陳曉筠(2018)。不同學習背景學童在貧窮文化、學習動機、社會關懷及自我概念之實徵研究。人文社會科學研究:教育類,12(2),31-54。
https://doi.org/10.6618/HSSRP.201806_12(2).2
鄭章華(2018)。淺論十二年國教數學素養導向教學。台灣教育,709,83-91。
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=18166482-201802-201803140009-201803140009-83-91
簡佑宏、張玉山、簡爾君(2016)。STEM取向準工程課程設計:以二氧化碳賽車單元為例。科技與人力教育季刊,3(1),32-52。
http://140.122.64.129/files/recruit/91_1dd3744f.pdf
羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM 整合式教學法在國民中學自然與生活科技領域之研究。人文社會科學研究期刊,3(3),42-66。
http://lawdata.com.tw/tw/detail.aspx?no=188362
譚華德、郝永崴、黃明月(2019)。泰文學習拼字系統之創新教學:泰語學習自我效能、學習興趣、學習焦慮及學習成就之相關研究。教育科學研究期刊,64(3),1-29。https://doi.org/10.6209/JORIES.201909_64(3).0001
Accreditation Board for Engineering and Technology [ABET] (2013). More than 75 years of quality assurance in technical education.
http://www.abet.org/about-abet/history/
Anderman, E. M., & Midgley, C. (1997). Changes in achievement goal orientations, perceived academic competence, and grades across the transition to middle-level schools. Contemporary Educational Psychology, 22(3), 269-298.
https://doi.org/10.1006/ceps.1996.0926
Arbuckle, J., & Wothke, W. (1999). AMOS 4 user’s reference guide. Smallwaters Corporation.
Aronson, J., Fried, C. B., & Good, C. (2002). Reducing the effects of stereotype threat on African American college students by shaping theories of intelligence. Journal of Experimental Social Psychology, 38(2), 113-125.
https://doi.org/10.1006/jesp.2001.1491
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-215. https://doi.org/10.1037/0033-295X.84.2.191
Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37, 122-147. https://doi.org/10.1037/0003-066X.37.2.122
Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs.
Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman.
Bandura, A., Barbaranelli, C., Caprara, G. V., & Pastorelli, C. (2001). Self‐efficacy beliefs as shapers of children's aspirations and career trajectories. Child Development, 72(1), 187-206. https://doi.org/10.1111/1467-8624.00273
Barak, M., & Assal, M. (2018). Robotics and STEM learning: Students’ achievements in assignments according to the P3 Task Taxonomy—practice, problem solving, and projects. International Journal of Technology and Design Education, 28(1), 121-144. https://doi.org/10.1007/s10798-016-9385-9
Beane, J. A. (1997). Curriculum integration: Designing the core of democratic education. Teachers College Press.
Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The Clearing House, 83(2), 39-43. https://doi.org/10.1080/00098650903505415
Bempechat, J., London, P., & Dweck, C. S. (1991). Children's conceptions of ability in major domains: An interview and experimental study. Child Study Journal, 21(1), 11-36. https://psycnet.apa.org/record/1991-29996-001
Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31(1), 419-456.
https://doi.org/10.1146/annurev.ps.31.020180.002223
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246. https://doi.org/10.1037/0033-2909.107.2.238
Bentler, P. M. (1995). EQS structural equations program manual. Multivariate Software.
Bentler, P. M., & Bonnett, D. G. (1980). Significant tests and goodness of fit in the analysis of covariance structure. Psychological Bulletin, 88, 588-606.
https://doi.org/10.1037/0033-2909.88.3.588
Biddle, S. J., Wang, C. J., Chatzisarantis, N. L., & Spray, C. M. (2003). Motivation for physical activity in young people: Entity and incremental beliefs about athletic ability. Journal of Sports Science, 21(12), 973-989.
https://doi.org/10.1080/02640410310001641377
Blackwell, L. S. (2002). Psychological mediators of student achievement during the transition to junior high school: The role of implicit theories. Columbia University.
Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246-263.
https://doi.org/10.1111/j.1467-8624.2007.00995.x
Blotnicky, K. A., Franz-Odendaal, T., French, F., & Joy, P. (2018). A study of the correlation between STEM career knowledge, mathematics self-efficacy, career interests, and career activities on the likelihood of pursuing a STEM career among middle school students. International Journal of STEM Education, 5(1), 1-15.
https://doi.org/10.1186/s40594-018-0118-3
Bollen, K. A. (1989). Structure equations with latent variables. John Wiley.
Boomsma, A. (1982). The robustness of LISREL against small sample sizes in factor analysis models. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction (Part I). North Holland.
https://www.econbiz.de/Record/the-robustness-of-lisrel-against-small-sample-sizes-in-factor-analysis-models-boomsma/10001936630
Borg, E. (2015). Classroom behaviour and academic achievement: How classroom behaviour categories relate to gender and academic performance. British Journal of Sociology of Education, 36(8), 1127-1148.
https://doi.org/10.1080/01425692.2014.916601
Breivik, E., & Olsson, U. H. (2001). Adding variables to improve fit: The effect of model size on fit assessment in LISREL. Structural Equation Modeling: Present and Future, 169-194.
https://www.researchgate.net/publication/284653191_Adding_variables_to_improve_fit_The_effect_of_model_size_on_fit_assessment_in_LISREL_Structural_equation_modeling_Present_and_future
Britner, S. L,, & Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485-499.
https://doi.org/10.1002/tea.20131
Britner, S. L. (2008). Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching, 45(8), 955-970. https://doi.org/10.1002/tea.20249
Britner, S. L., & Pajares, F. (2001). Self-efficacy beliefs, motivation, race, and gender in middle school science. Journal of Women and Minorities in Science and Engineering, 7(4), 271-285.
https://doi.org/10.1615/JWomenMinorScienEng.v7.i4.10
Brouwer, J., Jansen, E., Flache, A., & Hofman, A. (2016). The impact of social capital on study success among first-year university students. Learning and Individual Differences, 52, 109-118. https://doi.org/10.1016/j.lindif.2016.09.016
Brown, P. L., Concannon, J. P., Marx, D., Donaldson, C., & Black, A. (2016). An Examination of Middle School Students' STEM Self-Efficacy, Interests and Perceptions. Journal of STEM Education: Innovations and Research, 17(3), 27-39.
https://www.researchgate.net/publication/350124524_An_examination_of_middle_school_student'_stem_self-efficacy_interest_and_perceptions
Brown, T. A. (2006). Confirmatory factor analysis for applied research. Guilford Press.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sociological Methods and Research, 21(2), 230-258.
https://doi.org/10.1177/0049124192021002005
Burnette, J. L., O’Boyle, E. H., VanEpps, E. M., Pollack, J. M., & Finkel, E. J. (2013). Mind-sets matter: A meta-analytic review of implicit theories and self-regulation. Psychological Bulletin, 139(3), 655-701. https://doi.org/10.1037/a0029531
Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Heinemann.
Bybee, R. W. (2010). What is STEM Education? Science, 329(5995), 996. https://doi.org/10.1126/science.1194998
Byrne, B. B. (2010). Principles and practice of structural equation modeling. Guilford Press.
Byrne, B. M. (2001). Multivariate applications book series. Structural equation modeling with AMOS: Basic concepts, applications, and programming. Lawrence Erlbaum Associates Publishers.
Byrne, M., & Flood, B. (2005). A study of accounting students' motives, expectations and preparedness for higher education. Journal of Further and Higher Education, 29(2), 111-124. https://doi.org/10.1080/03098770500103176
Cain, K. M., & Dweck, C. S. (1989). The development of children’s conceptions of intelligence: A theoretical framework. Lawrence Erlbaum Associates.
Canning, E. A., Muenks, K., Green, D. J., & Murphy, M. C. (in press). STEM faculty who believe ability is fixed have larger racial achievement gaps and inspire less student motivation in their classes. Science advances, 5(2).
https://doi.org/10.1126/sciadv.aau4734
Carmeli, A., & Schaubroeck, J. (2007). The influence of leaders' and other referents' normative expectations on individual involvement in creative work. The Leadership Quarterly, 18(1), 35-48. https://doi.org/10.1016/j.leaqua.2006.11.001
Carmines, E. G., & McIver, J. P. (1981). Analyzing models with unobserved variables: Analysis of covariance structure. In G. W. Bohrnstedt and E. F. Borgatta (Eds.), Social measurement: Current issues.
https://doi.org/10.117/0049124183011003003
Caspi, A., & Roberts, B. W. (2001). Personality development across the life course: The argument for change and continuity. Psychological Inquiry, 12(2), 49-66.
https://doi.org/10.1207/S15327965PLI1202_01
Castagnetti, C., & Rosti, L. (2009). Effort allocation in tournaments: The effect of gender on academic performance in Italian universities. Economics of Education Review, 28(3), 357-369. https://doi.org/10.1016/j.econedurev.2008.06.004
Cebeci, U., Ertug, A., & Turkcan, H. (2020). Exploring the determinants of intention to use self-checkout systems in super market chain and its application. Management Science Letters, 10(5), 1027-1036. https://doi.org/10.5267/j.msl.2019.11.007
Čerešník, M. (2015). School self-concept of the adolescents in the relation to the risk behavior. Age specifications. Social and Behavioral Sciences, 174, 3500-3508.
https://doi.org/10.1016/j.sbspro.2015.01.1064
Chang, C. S., Liu, E. Z. F., Sung, H. Y., Lin, C. H., Chen, N. S., & Cheng, S. S. (2014). Effects of online college student’s internet self-efficacy on learning motivation and performance. Innovations in education and teaching international, 51(4), 366-377. https://doi.org/10.1080/14703297.2013.771429
Charles, M., & Bradley, K. (2002). Equal but separate? A cross-national study of sex segregation in higher education. American Sociological Review, 67, 573-599.
https://doi.org/10.2307/3088946
Charles, M., & Bradley, K. (2009). Indulging our gendered selves? Sex segregation by field of study in 44 countries. American Journal of Sociology, 114(4), 924-976.
https://doi.org/10.1086/595942
Chen, K., Chen, J. V., & Yen, D. C. (2011). Dimensions of self-efficacy in the study of smart phone acceptance. Computer Standards and Interfaces, 33(4), 422-431.
https://doi.org/10.1016/j.csi.2011.01.003
Christensen, R., & Knezek, G. (2017). Relationship of middle school student STEM interest to career intent. Journal of Education in Science Environment and Health, 3(1), 1-13. https://doi.org/10.21891/jeseh.275649
Cleary, T. J., & Kitsantas, A. (2017). Motivation and self-regulated learning influences on middle school mathematics achievement. School Psychology Review, 46(1), 88-107. https://doi.org/10.17105/SPR46-1.88-107
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
https://doi.org/10.2307/249688
Compeau, S. (2016). The calling of an engineer: High school students’ perceptions of engineering. http://qspace.library.queensu.ca/jspui/handle/1974/13924
Comrey, A. L. (1973). A first course in factor analysis. Academic Press.
Cooley, C. H. (1922). Human nature and the social order. Scribner.
Cordero, E. D., Porter, S. H., Israel, T., & Brown, M. T. (2010). Math and science pursuits: A self-efficacy intervention comparison study. Journal of Career Assessment, 18(4), 362-375. https://doi.org/10.1177/1069072710374572
Costa, A., & Faria, L. (2018). Implicit theories of intelligence and academic achievement: A meta-analytic review. Frontiers in Psychology, 9.
https://doi.org/10.3389/fpsyg.2018.00829
Covington, M. V. (1984). The self-worth theory of achievement motivation: Findings and implications. The Elementary School Journal, 85(1), 5-20.
https://doi.org/10.1086/461388
Cvencek, D., Meltzoff, A. N., & Greenwald, A. G (2011). Math-gender stereotypes in elementary school children. Child Development, 82(3), 766-779.
https://doi.org/10.1111/j.1467-8624.2010.01529.x
Cvencek, D., Meltzoff, A. N., & Kapur, M. (2014). Cognitive consistency and math-gender stereotypes in Singaporean children. Journal of Experimental Child Psychology, 117(1), 73-91. https://doi.org/10.1016/j.jecp.2013.07.018
De Castella, K., & Byrne, D. (2015). My intelligence may be more malleable than yours: The revised implicit theories of intelligence (self-theory) scale is a better predictor of achievement, motivation, and student disengagement. European Journal of Psychology of Education, 30(3), 245-267.
https://doi.org/10.1007/s10212-015-0244-y
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13-21.
https://doi.org/10.1016/j.intell.2006.02.001
Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438
Dickerson, A., & Taylor, M. A. (2000). Self-limiting behavior in women: Self-esteem and self-efficacy as predictors. Group and Organization Management, 25(2), 191-210. https://doi.org/10.1177/1059601100252006
Diener, C. I., & Dweck, C. S. (1978). An analysis of learned helplessness: Continuous changes in performance, strategy, and achievement cognitions following failure. Journal of Personality and Social Psychology, 36(5), 451-462.
https://doi.org/10.1037/0022-3514.36.5.451
Diseth, Å., Meland, E., & Breidablik, H. J. (2014). Self-beliefs among students: Grade level and gender differences in self-esteem, self-efficacy and implicit theories of intelligence. Learning and Individual Differences, 35, 1-8.
https://doi.org/10.1016/j.lindif.2014.06.003
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS Quarterly, 18(4), 453-461.
https://doi.org/10.2307/249524
Donegan-Ritter, M. (2017). STEM for all children: Preschool teachers supporting engagement of children with special needs in physical science learning centers. Young Exceptional Children, 20(1), 3-15.
https://doi.org/10.1177/1096250614566541
Doron, J., Stephan, Y., Boiché, J., & Scanff, C. L. (2009). Coping with examinations: Exploring relationships between students' coping strategies, implicit theories of ability, and perceived control. British Journal of Educational Psychology, 79(3), 515-528. https://doi.org/10.1348/978185409X402580
Drake, S. (1993). Planning integrated course: The call to adventure. Association for Supervision and Course Development.
Duchi, L., Lombardi, D., Paas, F., & Loyens, S. M. (in press). How a growth mindset can change the climate: The power of implicit beliefs in influencing people's view and action. Journal of Environmental Psychology, 70.
https://doi.org/10.1016/j.jenvp.2020.101461
Duckworth, A. L., & Seligman, M. E. (2005). Self-discipline outdoes IQ in predicting academic performance of adolescents. Psychological Science, 16(12), 939-944.
https://doi.org/10.1111/j.1467-9280.2005.01641.x
Duckworth, A. L., & Seligman, M. E. (2006). Self-discipline gives girls the edge: Gender in self-discipline, grades, and achievement test scores. Journal of Educational Psychology, 98(1), 198-208. https://doi.org/10.1037/0022-0663.98.1.198
Dupeyrat, C., & Mariné, C. (2005). Implicit theories of intelligence, goal orientation, cognitive engagement, and achievement: A test of Dweck’s model with returning to school adults. Contemporary Educational Psychology, 30(1), 43-59.
https://doi.org/10.1016/j.cedpsych.2004.01.007
Dweck, C. S. (1975). The role of expectations and attributions in the alleviation of learned helplessness. Journal of Personality and Social Psychology, 31(4), 674-685.
https://doi.org/10.1037/h0077149
Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040-1048. https://doi.org/10.1037/0003-066X.41.10.1040
Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Psychology Press.
Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.
Dweck, C. S. (2012). Mindset: How you can fulfill your potential. Constable & Robinson Limited.
Dweck, C. S., & Leggett, E. L. (1988). A social cognitive approach to motivation and personality. Psychological Review, 95(2), 256-273.
https://doi.org/10.1037/0033-295X.95.2.256
Dweck, C. S., Chiu, C. Y., & Hong, Y. Y. (1995). Implicit theories and their role in judgments and reactions: A world from two perspectives. Psychological Inquiry, 6, 267-285. https://doi.org/10.1207/s15327965pli0604_1
Elias, S. M., & MacDonald, S. (2007). Using past performance, proxy efficacy, and academic self-efficacy to predict college performance. Journal of Applied Social Psychology, 37, 2518-2531. https://doi.org/10.1111/j.1559-1816.2007.00268.x
Elliott, E. S., & Dweck, C. S. (1988). Goals: An approach to motivation and achievement. Journal of Personality and Social Psychology, 54(1), 5-12.
https://doi.org/10.1037/0022-3514.54.1.5
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053
Erekson, T., & Shumway, S. (2006). Integrating the study of technology into the curriculum: A consulting teacher model. Journal of Technology Education, 18(1), 27-38. https://www.learntechlib.org/p/157978/
Falco, L., & Summers, J. (2017). Improving career decision self-efficacy and STEM self-efficacy in high school girls: evaluation of an intervention. Journal of Career Development.
https://doi.org/10.1177/0894845317721651
Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation method, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6, 56-83. https://doi.org/10.1080/10705519909540119
Flanigan, A. E., Peteranetz, M. S., Shell, D. F., & Soh, L. K. (2017). Implicit intelligence beliefs of computer science students: Exploring change across the semester. Contemporary Educational Psychology, 48, 179-196.
https://doi.org/10.1016/j.cedpsych.2016.10.003
Fogarty, R. (1991). Ten ways to integrate course. Educational Leadership, 49(2), 61-65. https://eric.ed.gov/?id=EJ432787
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Fouad, N. A., & Smith, P. L. (1996). A test of a social cognitive model for middle school students: math and science. Journal of Counseling Psychology, 43(3), 338-346. https://doi.org/10.1037//0022-0167.43.3.338.
Gong, Y., Huang, J. C., & Farh, J. L. (2009). Employee learning orientation, transformational leadership, and employee creativity: The mediating role of employee creative self-efficacy. Academy of management Journal, 52(4), 765-778.
https://doi.org/10.5465/amj.2009.43670890
Good, C., Aronson, J., & Inzlicht, M. (2003). Improving adolescents' standardized test performance: An intervention to reduce the effects of stereotype threat. Journal of Applied Developmental Psychology, 24(6), 645-662.
https://doi.org/10.1016/j.appdev.2003.09.002
Guimond, S., & Roussel, L. (2001). Bragging about one’s school grades: Gender stereotyping and students’ perception of their abilities in science, mathematics, and language. Social Psychology of Education, 4(3-4), 275-293.
https://doi.org/10.1023/a:1011332704215
Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164-1165. https://doi.org/10.1126/science.1154094
Gulhan, F., & Sahin, F. (2018). The effects of STEAM (STEM+ Art) activities 7th grade students’ academic achievement, STEAM attitude and scientific creativities. International Journal of Human Sciences, 15(3), 1675-1699.
https://www.j-humansciences.com/ojs/index.php/IJHS/article/view/5430
Haimovitz, K., Wormington, S. V., & Corpus, J. H. (2011). Dangerous mindsets: How beliefs about intelligence predict motivational change. Learning and Individual Differences, 21(6), 747-752. https://doi.org/10.1016/j.lindif.2011.09.002
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2006). Multivariate data analysis (6th ed.). Pearson Education Inc.
Hair, J. F., William, C. B., Barry, J. B., & Rolph, E. A. (2009). Multivariate data analysis (7th ed.). Prentice Hall.
Hales, J. A., & Snyder, J. F. (1980). Jackson’s Mill industrial arts curriculum theory. Fairmont College.
Halpern, D. F. (2004). A cognitive-process taxonomy for sex differences in cognitive abilities. Current Directions in Psychological Science, 13(4), 135-139.
https://doi.org/10.1111/j.0963-7214.2004.00292.x
Halpern, D. F. (2011). Sex differences in cognitive abilities (4th ed.). Erlbaum.
Halpern, D. F., & Collaer, M. L. (2005). Sex differences in visuospatial abilities: More than meets the eye. Cambridge University Press.
Hand, S., Rice, L., & Greenlee, E. (2017). Exploring teachers’ and students’ gender role bias and students’ confidence in STEM fields. Social Psychology of Education, 20(4), 929-945. https://doi.org/10.1007/s11218-017-9408-8
Hanham, J., Lee, C. B., & Teo, T. (in press). The influence of technology acceptance, academic self-efficacy, and gender on academic achievement through online tutoring. Computers and Education, 172.
https://doi.org/10.1016/j.compedu.2021.104252
Hansson, S. O. (2015). The role of technology in science: Philosophical perspectives. Springer.
Hepper, E. G., Gramzow, R. H., & Sedikides, C. (2010). Individual differences in self‐enhancement and self‐protection strategies: An integrative analysis. Journal of Personality, 78(2), 781-814. https://doi.org/10.1111/j.1467-6494.2010.00633.x
Hertzog, C., & Nesselroade, J. R. (1987). Beyond autoregressive models: Some implications of the trait-state distinction for the structural modeling of developmental change. Child Development, 58, 93-109.
https://doi.org/10.2307/1130294
Hong, J. C., Hwang, M. Y., & Tsai, C. R. (2020). The effect of object-free and object-related intelligences on hands-on making self-efficacy and attitude toward quality improvement. International Journal of Science and Mathematics Education, 19, 863-879. https://doi.org/10.1007/s10763-020-10093-7
Hong, Y. Y., Chiu, C. Y., Dweck, C. S., Lin, D. M. S., & Wan, W. (1999). Implicit theories, attributions, and coping: A meaning system approach. Journal of Personality and Social psychology, 77(3), 588-599.
https://doi.org/10.1037/0022-3514.77.3.588
Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review, 17, 63-84. https://doi.org/10.1016/j.edurev.2015.11.002
Howell, A. J., & Buro, K. (2009). Implicit beliefs, achievement goals, and procrastination: A mediational analysis. Learning and Individual Differences, 19(1), 151-154. https://doi.org/10.1016/j.lindif.2008.08.006
Howell, A. J., & Buro, K. (2015). Measuring and predicting student well-being: Further evidence in support of the flourishing scale and the scale of positive and negative experiences. Social Indicators Research, 121(3), 903-915.
https://doi.org/10.1007/s11205-014-0663-1
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
https://doi.org/10.1080/10705519909540118
Hummell, L. J. D. T. E. (2018). Community connections. Children’s Technology and Engineering, 22(3), 12-15.
https://www.iteea.org/Publications/Journals/ESCJournal/CTE-March2018.aspx
Jaaffar, A. H., Ibrahim, H. I., Rajadurai, J., & Sohail, M. S. (2019). Psychological impact of work-integrated learning programmes in Malaysia: the moderating role of self-esteem on relation between self-efficacy and self-confidence. International Journal of Educational Psychology, 8(2), 188-213.
https://doi.org/10.17583/ijep.2019.3389
Jackson, C. D., & Mohr-Schroeder, M. J. (2018). Increasing STEM literacy via an informal learning environment. Journal of STEM Teacher Education, 53(1), 43-52. https://doi.org/10.30707/JSTE53.1Jackson
Jacobs, H. H. (1989). Interdisciplinary curriculum: Design and implementation. Association for Supervision and Curriculum Development.
Jacovidis, J. N., Anderson, R. C., Beach, P. T., & Chadwick, M. K. L. (2020). Growth mindset thinking and beliefs in teaching and learning.
https://www.ibo.org/globalassets/publications/ib-research/policy/growth-mindset-policy-paper.pdf
Jaussi, K. S., Randel, A. E., & Dionne, S. D. (2007). I am, I think I can, and I do: The role of personal identity, self-efficacy, and cross-application of experiences in creativity at work. Creativity Research Journal, 19(2-3), 247-258.
https://doi.org/10.1080/10400410701397339
Joët, G., Usher, E. L., & Bressoux, P. (2011). Sources of self-efficacy: An investigation of elementary school students in France. Journal of Educational Psychology, 103(3), 649-663. https://doi.org/10.1037/a0024048
John, T. M., Badejo, J. A., Popoola, S. I., Omole, D. O., Odukoya, J. A., Ajayi, P. O., ... & Atayero, A. A. (2018). The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution. Data in Brief, 18, 360-374.
https://doi.org/10.1016/j.dib.2018.03.052
Jones, A. P., & James, L. R. (1979). Psychological climate: dimensions of individual and aggregated work environment perceptions. Organizational Behavior and Human Performance, 23(2), 201-250.
https://doi.org/10.1016/0030-5073(79)90056-4
Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57(2), 239-251. https://doi.org/10.1093/biomet/57.2.239
Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Scientific Software International.
Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Scientific Software International.
Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L., Calvert, N., & Grise, K. (2018). Computational what? Relating computational thinking to teaching. TechTrends, 62(6), 574-584. https://doi.org/10.1007/s11528-018-0290-9
Karplus, R., Pulos, S., & Stage, E. K. (1983). Early adolescents' proportional reasoning on ‘rate’ problems. Educational Studies in Mathematics, 14(3), 219-233.
https://doi.org/10.1007/bf00410539
Kelley, T., & Kelley, D. (2013). Creative confidence: unleashing the creative potential within us all. Crown Business.
Kelly, G. (1991). A theory of personality: The psychology of personal constructs. Routhledge.
Kenney-Benson, G. A., Pomerantz, E. M., Ryan, A. M., & Patrick, H. (2006). Sex differences in math performance: The role of children's approach to schoolwork. Developmental Psychology, 42(1), 11-26.
https://doi.org/10.1037/0012-1649.42.1.11
Kenny, D. A. (2006). Confirmatory factor analysis for applied research. Guilford Press.
Kimura, D. (2000). Sex and cognition. MIT Press.
Kinlaw, C. R., & Kurtz-Costes, B. (2007). Children's theories of intelligence: Beliefs, goals, and motivation in the elementary years. The Journal of General Psychology, 134(3), 295-311. https://doi.org/10.3200/GENP.134.3.295-312
Kline, R. B. (1998). Methodology in the social sciences. Principles and practice of structural equation modeling. Guilford Press.
Kline, R. B. (2005). Principles and practice of structural equation modeling. Guilford.
Komarraju, M., & Nadler, D. (2013). Self-efficacy and academic achievement: Why do implicit beliefs, goals, and effort regulation matter? Learning and Individual Differences, 25, 67-72. https://doi.org/10.1016/j.lindif.2013.01.005
Komarraju, M., Swanson, J., & Nadler, D. (2014). Increased career self-efficacy predicts college students’ motivation, and course and major satisfaction. Journal of Career Assessment, 22(3), 420-432.
https://doi.org/10.1177/1069072713498484
Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology, 86(1), 148-161.
https://doi.org/10.1037/0022-3514.86.1.148
Kurniawan, D, A., Astalini, A., Darmaji, D., & Melsayanti, R. (2019). Students’ attitude towards natural sciences. International Journal of Evaluation and Research in Education, 8(3), 455-460. https://doi.org/10.11591/ijere.v8i3.16395
Kurtz-Costes, B., Rowley, S. J., Harris-Britt, A., & Woods, T. A. (2008). Gender stereotypes about mathematics and science and self-perceptions of ability in late childhood and early adolescence. Merrill-Palmer Quarterly, 54, 386-409.
https://doi.org/10.1353/mpq.0.0001
Leggett, E. L. (1985). Children's entity and incremental theories of intelligence: Relationships to achievement behavior. In annual meeting of the Eastern Psychological Association, Boston.
Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79-122. https://doi.org/10.1006/jvbe.1994.1027
Lese, K. P., & Robbins, S. B. (1994). Relationship between goal attributes and the academic achievement of Southeast Asian adolescent refugees. Journal of Counseling Psychology, 41(1), 45-52. https://doi.org/10.1037/0022-0167.41.1.45
Lewis, T. (2004). A turn to engineering: The continuing struggle of technology education for legitimization as a school subject. Journal of Technology Education, 16(1), 21-39. https://doi.org/10.21061/jte.v16i1.a.2
Li, Y., & Bates, T. C. (in press). Testing the association of growth mindset and grades across a challenging transition: Is growth mindset associated with grades? Intelligence, 81. https://doi.org/10.1016/j.intell.2020.101471
Lipscombe, J., & Williams, B. (1979). Are science and technology neutral? Butterworths.
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51(1), 201-226.
https://doi.org/10.1146/annurev.psych.51.1.201
MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32, 193-210.
https://doi.org/10.1207/s15327906mbr3202_5
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149. https://doi.org/10.1037/1082-989X.1.2.130
Mackay, J., & Parkinson, J. (2010). Gender, self‐efficacy and achievement among South African Technology teacher trainees. Gender and Education, 22(1), 87-103.
https://doi.org/10.1080/09540250802467935
Maehr, M. L., & Anderman, E. M. (1993). Reinventing schools for early adolescents: Emphasizing task goals. The Elementary School Journal, 93(5), 593-610.
https://doi.org/10.1086/461742
Makarova, E., & Herzog, W. (2015). Trapped in the gender stereotype? The image of science among secondary school students and teachers. Equality, Diversity and Inclusion, 34(2), 106-123. https://doi.org/10.1108/EDI-11-2013-0097
Malpass, J. R., O’Neil, H. F., & Hocevar Jr, D. (1999). Self‐regulation, goal orientation, self‐efficacy, worry, and high‐stakes math achievement for mathematically gifted high school students. Roeper Review, 21(4), 281-288.
https://doi.org/10.1080/02783199909553976
Margolis, H., & McCabe, P. P. (2006). Improving self-efficacy and motivation: What to do, what to say. Intervention in School and Clinic, 41(4), 218-227.
https://doi.org/10.1177/10534512060410040401
Marks, G. N. (2008). Accounting for the gender gaps in student performance in reading and mathematics: evidence from 31 countries. Oxford Review of Education, 34(1), 89-109. https://doi.org/10.1080/03054980701565279
Marsh, H. W., Balla, J. R., & Hau, K. T. (1996). An Evaluation of Incremental Fit Indexes: A Clarification of Mathematical and Empirical Properties. In G. A. Marcoulides, & R. E. Schumacker (Eds.), Advanced Structural Equation Modeling Techniques (pp. 315-353). Lawrence Erlbaum.
https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=2293598
Marsh, H. W., Hau, K.-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33(2), 181-220.
https://doi.org/10.1207/s15327906mbr3302_1
Martin, A. J. (2001). The student motivation scale: A tool for measuring and enhancing motivation. Journal of Psychologists and Counsellors in Schools, 11, 1-20.
https://doi.org/10.1017/S1037291100004301
Martin, A. J. (2003). The student motivation scale: Further testing of an instrument that measures school students' motivation. Australian Journal of Education, 47(1), 88-106. https://doi.org/10.1177/000494410304700107
Massachusetts Department of Elementary and Secondary Education (2016). 2016 Science and Technology Engineering Framework.
https://www.doe.mass.edu/frameworks/current.html
McAuliffe, M. (2016). The potential benefits of divergent thinking and metacognitive skills in STEAM learning: A discussion paper. International Journal of Innovation, Creativity and Change, 2(3), 71-82.
https://ijicc.net/images/Vol2iss3/McAuliffe_May_2016.pdf
McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation analysis. Psychological Methods, 7, 64-82.
https://doi.org/10.1037/1082-989X.7.1.64
McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological Bulletin, 107(2), 247-255.
https://doi.org/10.1037/0033-2909.107.2.247
McGeown, S. P. (2013). Sex or gender identity? Understanding children’s reading choices and motivation. Journal of Research in Reading, 38(1), 35-46.
https://doi.org/10.1111/j.1467-9817.2012.01546.x
McGeown, S. P., & Warhurst, A. (2020). Sex differences in education: Exploring children’s gender identity. Educational Psychology, 40(1), 103-119.
https://doi.org/10.1080/01443410.2019.1640349
McGeown, S., Goodwin, H., Henderson, N. & Wright, P. (2012). Gender differences in reading motivation: Does sex or gender identity provide a better account? Journal of Research in Reading, 35(3), 328-336.
https://doi.org/10.1111/j.1467-9817.2010.01481.x
Mead, G. H. (1934). Mind, self, and society. University of Chicago Press.
Midgley, C., Anderman, E., & Hicks, L. (1995). Differences between elementary and middle school teachers and students: A goal theory approach. The Journal of Early Adolescence, 15(1), 90-113. https://doi.org/10.1177/0272431695015001006
Mulaik, S. A. (2009). Linear causal modeling with structural equations. Chapman and Hall/CRC.
Mulaik, S. A., James, L. R., Altine, J. V., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430-445.
https://doi.org/10.1037/0033-2909.105.3.430
National Academy of Engineering and National Research Council [NAE and NRC] (2002). Technically speaking: Why all Americans need to know more about technology. National Academy Press.
National Research Council [NRC] (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. The National Academies Press.
National Science Board [NSB] (1986). Undergraduate science, mathematics and engineering education. National Science Foundation.
National Science Foundation [NSF] (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology (Vol. 1). National Science Foundation, Division of Undergraduate Education.
Navarro, R. L., Flores, L. Y., & Worthington, R. L. (2007). Mexican American middle school students’ goal intentions in mathematics and science: a test of social cognitive career theory. Journal of Counseling Psychology, 54(3), 320-335.
https://doi.org/10.1037/0022-0167.54.3.320
Nugent, G, Barker, B, Welch, G, Grandgenett, N, Wu, C, Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067-1088.
https://doi.org/10.1080/09500693.2015.1017863
Nunnally, J. C. (1978). Psychometric theory. McGraw-Hill.
Organisation for Economic Co-operation and Development [OECD] (2016). PISA 2015 Assessment and analytical framework: Science, reading, mathematic and financial Literacy. PISA, OECD Publishing.
Organisation for Economic Co-operation and Development [OECD] (2013). PISA 2015 draft science framework.
https://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf
Organization for Economic Co-operation and Development [OECD] (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006.
Organization for Economic Co-operation and Development [OECD] (2007). PISA 2006: Science competencies for tomorrow’s world.
Oxford English Dictionary (2019a). Science.
https://en.oxforddictionaries.com/definition/science
Oxford English Dictionary (2019b). Technology.
https://en.oxforddictionaries.com/definition/technology
Oxford English Dictionary (2019c). Engineering.
https://en.oxforddictionaries.com/definition/engineering
Oxford English Dictionary (2019d). Mathematics.
https://en.oxforddictionaries.com/definition/mathematics
Pajares, F. & Valiante, G. (2001). Gender differences in writing motivation and achievement of middle school students: A function of gender orientation? Contemporary Educational Psychology, 26(2), 366-381.
https://doi.org/10.1006/ceps.2000.1069
Pajares, F. (1996). Self-Efficacy Beliefs in Academic Settings. Review of Educational Research, 66(4), 543-578. https://doi.org/10.3102/00346543066004543
Pajares, F., & Schunk, D. H. (2001). Self-beliefs and school success: Self-efficacy, self-concept, and school achievement. In R. J. Riding & S. G. Rayner (Eds.), Self perception (pp. 239–265). Ablex Publishing.
https://psycnet.apa.org/record/2001-05481-011
Parker, P. D., Marsh, H. W., Ciarrochi, J., Marshall, S., & Abduljabbar, A. S. (2014). Juxtaposing math self-efficacy and self-concept as predictors of long-term achievement outcomes. Educational Psychology, 34(1), 29-48.
https://doi.org/10.1080/01443410.2013.797339
Parsons, R. D., Hinson, S. L., & Sardo-Brown, D. (2001). Educational psychology: A practitioner-researcher model of teaching. Wadsworth/Thomson Learning.
Perera, H. N., & John, J. E. (in press). Teachers’ self-efficacy beliefs for teaching math: Relations with teacher and student outcomes. Contemporary Educational Psychology, 61. https://doi.org/10.1016/j.cedpsych.2020.101842
Piaget, J., & Inhelder, B. (1969). The psychology of the child. Basic Books.
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33-40. https://doi.org/10.1037/0022-0663.82.1.33
Pomerantz, E. M., & Ruble, D. N. (1997). Distinguishing multiple dimensions of conceptions of ability: Implications for self‐evaluation. Child Development, 68(6), 1165-1180. https://doi.org/10.1111/j.1467-8624.1997.tb01992.x
Potvin, G., Hazari, Z., Tai, R. H., & Sadler, P. M. (2009). Unraveling bias from student evaluations of their high school science teachers. Science Education, 93(5), 827-845. https://doi.org/10.1002/sce.20332
Raelin, J. A., Bailey, M., Hamann, J., Pendleton, L., Raelin, J., Reisberg, R., & Whitman, D. (2011). The effect of cooperative education on change in self-efficacy among undergraduate students: Introducing work self-efficacy. Journal of Cooperative Education and Internships, 45(2), 17-35.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2019933
Ramírez-Uclés, I. M., & Ramírez-Uclés, R. (2020). Gender differences in visuospatial abilities and complex mathematical problem solving. Frontiers in Psychology, 11, 191. https://doi.org/10.3389/fpsyg.2020.00191
Raykov, T., & Marcoulides, G.A. (2006). A first course in structural equation modeling (2nd ed.). Erlebaum.
Reilly, D. (2012). Gender, culture, and sex-typed cognitive abilities. Sex Roles, 67, 247-250. https://doi.org/10.1371/journal.pone.0039904
Reilly, D., Neumann, D. L., & Andrews, G. (2017). Gender differences in spatial ability: Implications for STEM education and approaches to reducing the gender gap for parents and educators. In Visual-spatial ability in STEM education (pp. 195-224). Springer. https://doi.org/10.1007/978-3-319-44385-0_10
Rhodewalt, F. (1994). Conceptions of ability, achievement goals, and individual differences in self‐handicapping behavior: On the application of implicit theories. Journal of Personality, 62(1), 67-85.
https://doi.org/10.1111/j.1467-6494.1994.tb00795.x
Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students' academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138(2), 353-387.
https://doi.org/10.1037/a0026838
Robins, R. W., & Pals, J. L. (2002). Implicit self-theories in the academic domain: Implications for goal orientation, attributions, affect, and self-esteem change. Self and Identity, 1(4), 313-336. https://doi.org/10.1080/15298860290106805
Roco, M. C., & Bainbridge, W. S. (2003). Overview converging technologies for improving human performance. In M. C. Roco, & W. S. Bainbridge (Ed.), Converging technologies for improving human performance, 1-27. Springer.
https://doi.org/10.1007/978-94-017-0359-8_1
Rogers, C. R. (1951). Client-centered therapy. Houghton Mifflin.
Rosenberg, M. (1989). Self-concept research: A historical overview. Social Forces, 68(1), 34-44. https://doi.org/10.1093/sf/68.1.34
Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118-137.
https://doi.org/10.1016/j.intell.2015.09.002
Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied, 80(1), 1-28.
https://doi.org/10.1037/h0092976
Sagala, R., Umam, R., Thahir, A., Saregar, A., & Wardani, I. (2019). The effectiveness of STEM-Based on gender differences: The impact of physics concept understanding. European Journal of Educational Research, 8(3), 753-761.
https://doi.org/10.12973/eu-jer.8.3.753
Sakellariou, C., & Fang, Z. (in press). Self-efficacy and interest in STEM subjects as predictors of the STEM gender gap in the US: The role of unobserved heterogeneity. International Journal of Educational Research, 109.
https://doi.org/10.1016/j.ijer.2021.101821
Salikutluk, Z., & Heyne, S. (2017). Do gender roles and norms affect performance in math? The impact of adolescents’ and their peers’ gender conceptions on math grades. European Sociological Review, 33(3), 368-381.
https://doi.org/10.1093/esr/jcx049
Scherbaum, C. A., Cohen-Charash, Y., & Kern, M. J. (2006). Measuring general self-efficacy: A comparison of three measures using item response theory. Educational and Psychological Measurement, 66(6), 1047-1063.
https://doi.org/10.1177/0013164406288171
Schlegel, R. J., Chu, S. L., Chen, K., Deuermeyer, E., Christy, A. G., Quek, F. (in press). Making in the classroom: Longitudinal evidence of increases in self-efficacy and STEM possible selves over time. Computers and Education, 142.
https://doi.org/10.1016/j.compedu.2019.103637
Schmader, T., Johns, M., & Barquissau, M. (2004). The costs of accepting gender differences: The role of stereotype endorsement in women's experience in the math domain. Sex Roles, 50(11), 835-850.
https://doi.org/10.1023/b:sers.0000029101.74557.a0
Schroder, H. S., Fisher, M. E., Lin, Y., Lo, S. L., Danovitch, J. H., & Moser, J. S. (2017). Neural evidence for enhanced attention to mistakes among school-aged children with a growth mindset. Developmental Cognitive Neuroscience, 24, 42-50.
https://doi.org/10.1016/j.dcn.2017.01.004
Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling (2nd ed.). Lawrence Erlbaum Associates.
Sezgintürk, M., & Sungur, S. (2020). A multidimensional investigation of students’ science self-efficacy: The role of gender. İlkogretim Online-Elementary Education Online, 19(1), 208-218.
https://doi.org/10.17051/ilkonline.2020.653660
Shamos, M. H. (1995). The myth of scientific literacy. Rutgers University Press.
Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-concept: Validation of construct interpretations. Review of Educational Research, 46(3), 407-441.
https://doi.org/10.3102/00346543046003407
Sheer, V. C. (2014). A meta-synthesis of health-related self-efficacy instrumentation: problems and suggestions. Journal of Nursing Measurement, 22(1), 77-93.
https://doi.org/10.1891/1061-3749.22.1.77
Shettle, C., Roey, S., Mordica, J., Perkins, R., Nord, C., Teodorovic, J., & Kastberg, D. (2007). The nation’s report card: America’s high school graduates. Results from the 2005 NAEP high school transcript study. National Center for Education Statistics. http://nces.ed.gov/nationsreportcard/pdf/studies/2007467.pdf
Shiau, W. L., Yuan, Y., Pu, X., Ray, S., & Chen, C. C. (2020). Understanding fintech continuance: perspectives from self-efficacy and ECT-IS theories. Industrial Management and Data Systems, 120(9), 1659-1689.
https://doi.org/10.1108/IMDS-02-2020-0069
Shu, Y., & Huang, T. C. (2021). Identifying the potential roles of virtual reality and STEM in Maker education. The Journal of Educational Research, 114(2), 108-118. https://doi.org/10.1080/00220671.2021.1887067
Sigmundsson, H. (in press). Passion, grit and mindset in the ages 14 to 77: Exploring relationship and gender differences. New Ideas in Psychology, 60.
https://doi.org/10.1016/j.newideapsych.2020.100815
Sigmundsson, H., Clemente, F. M., & Loftesnes, J. M. (in press). Passion, grit and mindset in football players. New Ideas in Psychology, 59.
https://doi.org/10.1016/j.newideapsych.2020.100797
Sigmundsson, H., Haga, M., & Hermundsdottir, F. (in press). Passion, grit and mindset in young adults: Exploring the relationship and gender differences. New Ideas in Psychology, 59. https://doi.org/10.1016/j.newideapsych.2020.100795
So, H. J., Ryoo, D., Park, H., & Choi, H. (2019). What Constitutes Korean Pre-service Teachers’ Competency in STEAM Education: Examining the Multi-functional Structure. The Asia-Pacific Education Researcher, 28(1), 47-61. https://doi.org/10.1007/s40299-018-0410-5
Stigler, J. W., Smith, S., & Mao, L. W. (1985). The self-perception of competence by Chinese children. Child Development, 56, 1259-1270.
https://doi.org/10.2307/1130241
Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34. https://doi.org/10.5703/1288284314653
Storek, J., & Furnham, A. (2012). Gender and gender role differences in Domain-Masculine Intelligence and beliefs about intelligence: A study with Mensa UK members. Personality and Individual Differences, 53(7), 890-895.
https://doi.org/10.1016/j.paid.2012.05.039
Stump, G. S., Husman, J., & Corby, M. (2014). Engineering students’ intelligence beliefs and learning. Journal of Engineering Education, 103(3), 369-387.
https://doi.org/10.1002/jee.20051
Taylor, K. M., & Betz, N. E. (1983). Applications of self-efficacy theory to the understanding and treatment of career indecision. Journal of Vocational Behavior, 22(1), 63-81. https://doi.org/10.1016/0001-8791(83)90006-4
Techakosit, S., & Nilsook, P. (2018). The Development of STEM Literacy Using the Learning Process of Scientific Imagineering through AR. International Journal of Emerging Technologies in Learning, 13(1), 230-238.
https://doi.org/10.3991/ijet.v13i01.7664
Thier, M., & Daviss, B. (2002). The new science literacy: Using language skills to help students learn science. Heinemann.
Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: Its potential antecedents and relationship to creative performance. Academy of Management journal, 45(6), 1137-1148. https://doi.org/10.5465/3069429
Todor, I. (2014). Investigating “the old stereotype” about boys/girls and mathematics: Gender differences in implicit theory of intelligence and mathematics self-efficacy beliefs. Procedia-Social and Behavioral Sciences, 159, 319-323.
https://doi.org/10.1016/j.sbspro.2014.12.380
Tornare, E., Czajkowski, N. O., & Pons, F. (2015). Children's emotions in math problem solving situations: Contributions of self-concept, metacognitive experiences, and performance. Learning and Instruction, 39, 88-96.
https://doi.org/10.1016/j.learninstruc.2015.05.011
Toulmin, C. N., & Groome, M. (2007). Building a science, technology, engineering, and math agenda. https://files.eric.ed.gov/fulltext/ED496324.pdf
Truong, T. N. N., & Wang, C. (2019). Understanding Vietnamese college students’ self-efficacy beliefs in learning English as a foreign language. System, 84, 123-132.
https://doi.org/10.1016/j.system.2019.06.007
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1-10. https://doi.org/10.1007/BF02291170
Tzu-Ling, H. (2019). Gender differences in high-school learning experiences, motivation, self-efficacy, and career aspirations among Taiwanese STEM college students. International Journal of Science Education, 41(13), 1870-1884.
https://doi.org/10.1080/09500693.2019.1645963
Usher, E. L., & Pajares, F. (2006). Sources of academic and self-regulatory efficacy beliefs of entering middle school students. Contemporary Educational Psychology, 31(2), 125-141. https://doi.org/10.1016/j.cedpsych.2005.03.002
Van Diemen, T., Craig, A., Van Nes, I. J., Stolwijk-Swuste, J. M., Geertzen, J. H., Middleton, J., & Post, M. W. (2020). Enhancing our conceptual understanding of state and trait self-efficacy by correlational analysis of four self-efficacy scales in people with spinal cord injury. BMC psychology, 8(1), 1-9.
https://doi.org/10.1186/s40359-020-00474-6
Volpe, F. A. (2016). The role of academic achievement motivation in predicting performance on the northwest evaluation association's measure of academic progress. Mindsets: Incremental vs. entity beliefs about intelligence. The University of New Mexico.
Wang, M. T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational psychology review, 29(1), 119-140.
https://doi.org/10.1007/s10648-015-9355-x
Wang, Q. & Koh, J. B. K. (2015). How will things be the next time? Self in the construction of future events among school-aged children. Consciousness and Cognition, 36, 131-138. https://doi.org/10.1016/j.concog.2015.06.013
Wang, Y., Peng, H., Huang, R., Hou, Y., & Wang, J. (2008). Characteristics of distance learners: Research on relationships of learning motivation, learning strategy, self‐efficacy, attribution and learning results. Open Learning: The Journal of Open, Distance and e-Learning, 23(1), 17-28.
https://doi.org/10.1080/02680510701815277
Webb-Williams, J. (2018). Science self-efficacy in the primary classroom: Using mixed methods to investigate sources of self-efficacy. Research in Science Education, 48(5), 939-961. https://doi.org/10.1007/s11165-016-9592-0
Weisgram, E. S., & Bigler, R. S. (2006). Girls and science careers: The role of altruistic values and attitudes about scientific tasks. Journal of Applied Developmental Psychology, 27(4), 326-348. https://doi.org/10.1016/j.appdev.2006.04.004
Wheaton, B. (1987). Assessment of fit in over-identified models with latent variables. Sociological Methods and Research, 16(1), 118-154.
https://doi.org/10.1177/0049124187016001005
Williams, B. (1978). A sampler on sampling. Wiley and Sons.
Wiswall, M., Stiefel, L., Schwartz, A. E., & Boccardo, J. (2014). Does attending a STEM high school improve student performance? Evidence from New York City. Economics of Education Review, 40, 93-105.
https://doi.org/10.1016/j.econedurev.2014.01.005
Xu, Z., & Jang, E. E. (2017). The role of math self-efficacy in the structural model of extracurricular technology-related activities and junior elementary school students' mathematics ability. Computers in Human Behavior, 68, 547-555.
https://doi.org/10.1016/j.chb.2016.11.063
Zhang, L, & Barnett, M. (2015). How high school students envision their STEM career pathways. Cultural Studies of Science Education, 10(3), 637-656.
https://doi.org/10.1007/s11422-013-9557-9
Zhen, R., Liu, R. D., Wang, M. T., Ding, Y., Jiang, R., Fu, X., & Sun, Y. (2020). Trajectory patterns of academic engagement among elementary school students: The implicit theory of intelligence and academic self‐efficacy matters. British Journal of Educational Psychology, 90(3), 618-634.
https://doi.org/10.1111/bjep.12320
Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25(1), 82-91. https://doi.org/10.1006/ceps.1999.1016
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top