跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李敏婕
研究生(外文):Lee, Min-Chieh
論文名稱:透過轉錄體學分析間歇性斷食對代謝性相關脂肪肝及心臟損傷的影響
論文名稱(外文):Transcriptomic analysis of time-restricted feeding against high-fat diet induced metabolic associated fatty liver disease and cardio- injury effects
指導教授:李世裕李世裕引用關係
指導教授(外文):Lee, Shih-Yu
口試委員:黃文忠林榮俊張自忠嚴逸釗李世裕
口試委員(外文):Huang, Wen-ChungLin, Jung-ChunChang, Tsu-ChungYen, I-ChuanLee, Shih-Yu
口試日期:2022-05-16
學位類別:碩士
校院名稱:國防醫學院
系所名稱:航太及海底醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:152
中文關鍵詞:間歇性斷食脂肪酸合成與代謝胰島素阻抗內質網壓力細胞自噬
外文關鍵詞:MAFLDTRFfatty acid synthesis and metabolisminsulin resistanceAMPKER stressautophagy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
背景: 代謝相關性脂肪肝(Metabolic associated fatty liver disease, MAFLD)是最常見的慢性肝病,與肥胖、胰島素阻抗和糖尿病相關。先前研究已顯示出間歇性斷食(Time-restricted feeding, TRF)對代謝症候群的功效。但TRF 在 MAFLD及高脂飲食心臟損傷中的作用和詳細機制尚不清楚。
目的: 探討餵食高脂飲食(HFD)的小鼠進行間歇性斷食(TRF)的分子機制。
方法: 24隻C57BL/6 (5週大)小鼠隨機分配到Control 6隻(正常飲食)、HFD 6隻、HFD+TRF 5週6隻以及HFD+TRF 2週6隻(10:00-16:00,斷食18小時)實驗進行10週。評估體重、食物攝取量、血清生化分析。透過H&E和Oil Red O檢查心臟和肝臟的病理切片,接著透過轉錄體學的分析和西方墨點法,評估餵食高脂飲食的小鼠進行TRF的分子機制。
結果: TRF 5週組和TRF 2週組的體重在進行TRF一週後都有明顯降低,而且TRF兩組的總熱量攝取低於HFD組。在肝臟的H&E以及Oil Red O中在TRF組有減少脂肪的情形。而心臟的H&E也顯示改善了心肌纖維斷裂。相較之下TRF 5 週比TRF 2週組對於 HFD 引起的肥胖、心臟損傷和 MAFLD 症狀有更顯著效果。從心臟RNA-seq的差異基因帶入基因功能分類(GO)資料庫和京都基因與基因組百科全書(KEGG)資料庫中分析發現TRF 5週組心臟的差異基因參與了適應性產熱、體溫調節、晝夜節律路徑、 Rap1信號路徑,另外發現TRF 2週組心臟的差異基因參與脂質代謝的調節、冷影響產熱調節、晝夜節律、膽固醇代謝、PPAR信號路徑這些路徑。而TRF 5週組對於肝臟的差異基因則參與了脂肪酸代謝、磷酸核苷代謝的過程、PPAR信號通路、產熱作用,另外發現TRF 2週組肝臟的差異基因參與了Wnt信號路徑、血管平滑肌收縮路徑、PPAR信號路徑。我們進一步利用西方墨點法驗證,發現HFD組顯著增加脂肪酸合成與代謝,並顯著降低AMPK信號路徑,而TRF 5週組和TRF 2週組則顯著降低脂肪酸合成與代謝及顯著增加AMPK 信號路徑;胰島素阻抗、內質網壓力、MAPK信號路徑在HFD組中影響顯著增加,而在TRF 5週組和TRF 2週組則顯著降低。最後細胞自噬路徑在2個TRF組中均顯著增加。因此我們使用西方墨點法驗證TRF能夠藉由調控脂肪酸合成與代謝、胰島素阻抗、AMPK、內質網壓力、MAPK和細胞自噬相關路徑改善代謝相關性脂肪肝的情況。
結論: 我們對TRF改善代謝症候群的分子機制提供了更好的見解,這是對高脂飲食所導致的心臟代謝異常及MAFLD 的潛在策略。

Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease, which is related to obesity, insulin resistance, and diabetes. Time-restricted feeding (TRF) has shown the efficacy against metabolic symptoms. However, the detailed mechanisms remain unclear. This study aimed to explore the molecular mechanisms of TRF in high fat diet (HFD) induced MAFLD and heart injury. Twenty-four of C57BL/6 (5-week-old) mice. Six of mice were divided into control (normal chow diet), six of mice were divided into HFD, six of mice were divided into HFD+TRF 5 weeks and six of mice were divided into HFD+TRF 2 weeks (10-16 feeding, 18 hours fasting) for 10 weeks. In this study, we compared how different between HFD+TRF 2 weeks and HFD+TRF 5 weeks. Body weight, food intake, serum biochemical analysis, and lipid profiles were assessed, and both TRF groups had lower caloric intake than the HFD group. Pathology of heart and liver were examined by H&E and oil Red O. The mechanistic insights of TRF in HFD induced MAFLD and cardio-metabolic effects were analyzed by RNA sequencing and western blotting. Both of TRF 5 week and TRF 2 week significantly attenuated HFD-induced obesity, cardiac injury, and MAFLD symptoms. Analysis of RNA sequencing by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed significant enrichment of adaptive thermogenesis, temperature homeostasis, circadian rhythm and Rap1 signaling pathways in TRF 5 weeks heart tissue; significant enrichment of regulation of lipid metabolic process, regulation of cold-induced thermogenesis, circadian rhythm, cholesterol metabolism, PPAR signaling pathway in TRF 2 weeks heart tissue. In addition, fatty acid metabolism, nucleoside phosphate metabolism, PPAR signaling pathway and thermogenesis were significantly enriched in liver tissue after TRF 5 weeks; Wnt signaling pathway, vascular smooth muscle contraction, PPAR signaling pathway, and were significantly enriched in liver tissue after TRF 2 weeks. We further verified by western blotting method and found that the HFD group significantly increased fatty acid synthesis and metabolism and significantly decreased the AMPK signaling pathway, while TRF 5 weeks group and TRF 2 weeks group significantly decreased fatty acid synthesis and metabolism and significantly increased AMPK signaling pathway;Insulin resistance pathway, ER stress and MAPK pathways were significantly increased in the HFD group, while the TRF 5 weeks group and TRF 2 weeks group were significantly decreased. The autophagy pathway was significantly increased in both TRF groups. Therefore, we further used the western blotting method to verify that TRF can improve metabolic-related fatty liver by regulating fatty acid synthesis and metabolism, insulin resistance, AMPK, endoplasmic reticulum stress (ER stress), MAPK and autophagy. We thus provide a better understanding regarding molecular mechanisms of TRF against metabolic syndrome and it will be a potential strategy against HFD induced cardio-metabolic abnormalities and MAFLD.
目錄 頁
目錄........................................................................................................................I
圖目錄.................................................................................................................IV
表目錄.................................................................................................................. V
縮寫表.................................................................................................................VI
中文摘要.............................................................................................................IX
ABSTRACT .......................................................................................................XI
第一章、緒論....................................................................................................... 1
第一節、高脂飲食............................................................................................... 1
壹、 高脂飲食對身體影響............................................................................. 1
貳、 高脂飲食對肝臟的影響......................................................................... 1
一、 內質網壓力(ER stress)對非酒精性脂肪肝的影響 ........................ 2
二、 細胞自噬 (Autophagy)對非酒精性脂肪肝的影響........................ 3
三、 腸道菌群對非酒精性脂肪肝的影響.............................................. 3
參、 高脂飲食對心臟的影響......................................................................... 4
一、 高脂飲食的心臟對脂肪生成與代謝途徑...................................... 7
第二節、間歇性斷食........................................................................................... 8
壹、 間歇性斷食............................................................................................. 8
一、 168 斷食 ........................................................................................... 9
貳、 間歇性斷食對肝臟的影響................................................................... 10
參、 間歇性斷食對心臟的影響................................................................... 13
第三節、研究動機............................................................................................. 15
II
第二章、研究材料與方法................................................................................. 16
第一節、主要儀器及藥品試劑......................................................................... 16
壹、 儀器及器材........................................................................................... 16
貳、 藥品試劑............................................................................................... 17
參、 抗體....................................................................................................... 17
第二節、方法…................................................................................................. 18
壹、 動物飼養............................................................................................... 18
貳、 檢體組織冷凍包埋與油紅 O (Oil Red O)染色.................................. 20
參、 蛋白質濃度測定(Protein assay)..................................................... 21
肆、 西方墨點法(Western blotting)........................................................ 21
伍、 RNA Sequencing................................................................................... 28
第三章、結果..................................................................................................... 32
第一節、間歇性斷食對於 HFD 誘導的肥胖小鼠模型中體重變化及熱量攝取
與肝臟、腎臟損傷 ALT、AST 和血脂指標的影響....................... 32
第二節、間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟和心臟組織蘇木
素-伊紅染色(H&E Stain)與油紅 O 染色(Oil Red O Stain)病理切
片分析................................................................................................. 34
第三節、間歇性斷食對於 HFD 誘導的肥胖小鼠模型中心臟基因表現差異分
析......................................................................................................... 35
第四節、間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟基因表現差異分
析......................................................................................................... 38
第五節、間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟組織的脂肪生合
成與代謝相關的蛋白表現................................................................. 41
第六節、間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟組織胰島素阻抗
III
相關的蛋白表現................................................................................. 42
第七節、間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟組織 AMPK 路
徑相關的蛋白表現............................................................................. 43
第八節、 間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟組織的內質網
壓力相關蛋白表現............................................................................. 44
第九節、 間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟組織的 MAPK
路徑相關蛋白表現............................................................................. 45
第十節、 間歇性斷食對於 HFD 誘導的肥胖小鼠模型中肝臟組織的細胞自
噬相關蛋白表現................................................................................. 46
第四章、討論..................................................................................................... 47
第一節、TRF 與不同斷食方法的差異............................................................ 47
壹、 TRF 與生酮飲食(Ketogenic diet ,KD)的比較.................................... 49
貳、 TRF 與戰士飲食 (Warrior Diet)的比較 ............................................. 52
第二節、透過轉錄體學分析 TRF 對心臟代謝的影響 ................................. 52
第三節、透過轉錄體學分析 TRF 對代謝相關性脂肪肝的影響 .................. 58
第四節、脂肪合成與代謝對代謝相關性脂肪肝的影響................................. 62
第五節、內質網壓力對代謝相關性脂肪肝的影響......................................... 63
第六節、MAPK 路徑對代謝相關性脂肪肝的影響 ....................................... 64
第七節、 細胞自噬作用代謝相關性脂肪肝的影響 ....................................... 65
第八節、 TRF (5 weeks)與 TRF (2 weeks)的比較......................................... 66
第五章、結論..................................................................................................... 68
第六章、參考文獻........................................................................................... 120
IV
圖目錄
Figure 1. TRF ameliorates HFD-induced body weight, ALT, AST and lipid
profile ...........................................................................................70-73
Figure 2. TRF ameliorates HFD-induced hepatic steatosis and histopathological
alterations in heart tissue of C57BL/6 model ................................74-76
Figure 3. Transcriptomic profiles of TRF heart using RNA sequencing .......77-84
Figure 4. Transcriptomic profiles of TRF liver using RNA sequencing........85-92
Figure 5. TRF reduced Fatty acid synthesis and metabolic pathways
in HFD-fed C57BL/6 mice ...........................................................93-94
Figure 6. TRF reduced Insulin resistance pathway in HFD-fed C57BL/6 mice
.........................................................................................................95-96
Figure 7. TRF reduced AMPK pathway in HFD-fed C57BL/6 mice ............97-98
Figure 8. TRF reduced ER stress in HFD-fed C57BL/6 mice .....................99-100
Figure 9. Time –restricted feeding reduced MAPK signaling in HFD-fed C57BL/6
mice ..............................................................................................101-102
Figure 10. TRF increases Autophagy signaling pathway in liver tissues..103-104
V
表目錄
Table 1. Top 20 differentially expressed genes in mice heart comparing the
Control with HFD after RNA-seq..............................................105-106
Table 2. Top 20 differentially expressed genes in mice heart comparing the
HFD with TRF (5 weeks) after RNA-seq..................................107-108
Table 3. Top 20 differentially expressed genes in mice heart comparing the
HFD with TRF (2 weeks) after RNA-seq ................................109-110
Table 4. Top 20 differentially expressed genes in mice heart comparing the
TRF (5 weeks) with TRF (2 weeks) after RNA-seq ........................ 111
Table 5. Top 20 differentially expressed genes in mice liver comparing the
Control with HFD after RNA-seq ............................................. 112-113
Table 6. Top 20 differentially expressed genes in mice liver comparing the
HFD with TRF (5 weeks) after RNA-seq.................................. 114-115
Table 7. Top 20 differentially expressed genes in mice liver comparing the
HFD with TRF (2 weeks) after RNA-seq.................................. 116-117
Table 8. Top 20 differentially expressed genes in mice liver comparing the
TRF (5 weeks) with TRF (2 weeks) after RNA-seq ................. 118-119




1.Men, L., et al., Cardiac Transcriptome Analysis Reveals Nr4a1 Mediated Glucose Metabolism Dysregulation in Response to High-Fat Diet. Genes (Basel), 2020. 11(7).
2.Duan, Y., et al., Inflammatory Links Between High Fat Diets and Diseases. Front Immunol, 2018. 9: p. 2649.
3.Rinella, M. and M.J.H. Charlton, The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health. 2016, Wiley Online Library. p. 19-22.
4.Chen, C.H., et al., Prevalence and risk factors of gallstone disease in an adult population of Taiwan: an epidemiological survey. 2006. 21(11): p. 1737-1743.
5.Lian, C.Y., et al., High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact, 2020. 330: p. 109199.
6.Ahmed, A., et al., Nonalcoholic fatty liver disease review: diagnosis, treatment, and outcomes. 2015. 13(12): p. 2062-2070.
7.Chalasani, N., et al., The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology, 2012. 55(6): p. 2005-23.
8.Loomba, R. and A.J. Sanyal, The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol, 2013. 10(11): p. 686-90.
9.Dietrich, P. and C. Hellerbrand, Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol, 2014. 28(4): p. 637-53.
10.Im, Y.R., et al., A Systematic Review of Animal Models of NAFLD Finds High-Fat, High-Fructose Diets Most Closely Resemble Human NAFLD. Hepatology, 2021. 74(4): p. 1884-1901.
11.Lebeaupin, C., et al., Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. 2018. 69(4): p. 927-947.
12.Wang, M. and R.J.J.N. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease. 2016. 529(7586): p. 326-335.
13.Li, X., et al., Hydrogen sulfide protects against acetaminophen‐induced acute liver injury by inhibiting apoptosis via the JNK/MAPK signaling pathway. 2019. 120(3): p. 4385-4397.
14.Luedde, T. and R. Schwabe, NF-kappaB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nature reviews Gastroenterology & hepatology. 2011; 8 (2): 108–18. Epub 2011/02/05. https://doi. org/10.1038/nrgastro. 2010.213 PMID: 21293511.
15.Lee, A.-H., et al., Regulation of hepatic lipogenesis by the transcription factor XBP1. 2008. 320(5882): p. 1492-1496.
16.Lebeaupin, C., et al., ER stress induces NLRP3 inflammasome activation and hepatocyte death. 2015. 6(9): p. e1879-e1879.
17.Zhang, J., et al., ER stress-induced inflammasome activation contributes to hepatic inflammation and steatosis. 2016. 7(5).
18.Jiang, F.J.C., E. Pharmacology, and Physiology, Autophagy in vascular endothelial cells. 2016. 43(11): p. 1021-1028.
19.Han, J., et al., Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. 2012. 8(5): p. 812-825.
20.Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy. 2021. 17(1): p. 1-382.
21.Ding, W.-X.J.W.J.o.B.C., Role of autophagy in liver physiology and pathophysiology. 2010. 1(1): p. 3.
22.Komatsu, M.J.T.J.o.B., Liver autophagy: physiology and pathology. 2012. 152(1): p. 5-15.
23.Zhao, J., Y. Hu, and J. Peng, Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy. Cell Mol Biol Lett, 2021. 26(1): p. 17.
24.Rodriguez-Navarro, J.A., et al., Inhibitory effect of dietary lipids on chaperone-mediated autophagy. 2012. 109(12): p. E705-E714.
25.Schnabl, B.J.C.o.i.g., Linking intestinal homeostasis and liver disease. 2013. 29(3): p. 264.
26.Peng, X.-X., et al., Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264. 7 macrophages. 2015. 10(1): p. 1-11.
27.Lau, E., D. Carvalho, and P.J.B.r.i. Freitas, Gut microbiota: association with NAFLD and metabolic disturbances. 2015. 2015.
28.Chiang, J.Y., J.M.J.A.J.o.P.-G. Ferrell, and L. Physiology, Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. 2020. 318(3): p. G554-G573.
29.Chen, J., M. Thomsen, and L.J.J.o.c.b. Vitetta, Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of nonalcoholic fatty liver disease and potential therapeutic implications of probiotics. 2019. 120(3): p. 2713-2720.
30.Chen, J., et al., Ratio of conjugated chenodeoxycholic to muricholic acids is associated with severity of nonalcoholic steatohepatitis. 2019. 27(12): p. 2055-2066.
31.Noeman, S.A., H.E. Hamooda, and A.A. Baalash, Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr, 2011. 3(1): p. 17.
32.Birse, R.T., et al., High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab, 2010. 12(5): p. 533-44.
33.Eckel, R.H., et al., 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014. 129(25 Suppl 2): p. S76-99.
34.Wali, J.A., et al., Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms-A Narrative Review. Nutrients, 2020. 12(5).
35.Tong, M., J.J.C.o.i.g. Sadoshima, and development, Mitochondrial autophagy in cardiomyopathy. 2016. 38: p. 8-15.
36.Kim, J.-a., Y. Wei, and J.R.J.C.r. Sowers, Role of mitochondrial dysfunction in insulin resistance. 2008. 102(4): p. 401-414.
37.Drosatos, K. and P.C.J.C.h.f.r. Schulze, Cardiac lipotoxicity: molecular pathways and therapeutic implications. 2013. 10(2): p. 109-121.
38.Sciarretta, S., et al., Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. 2012. 125(9): p. 1134-1146.
39.Tong, M., et al., Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. 2019. 124(9): p. 1360-1371.
40.Gray, L., et al., Body weight in early and mid-adulthood in relation to subsequent coronary heart disease mortality: 80-year follow-up in the Harvard Alumni Study. Arch Intern Med, 2011. 171(19): p. 1768-70; discussion 1770.
41.Park, Y.S. and J.S. Kim, Obesity phenotype and coronary heart disease risk as estimated by the Framingham risk score. J Korean Med Sci, 2012. 27(3): p. 243-9.
42.Borghetti, G., et al., Diabetic cardiomyopathy: current and future therapies. Beyond glycemic control. 2018: p. 1514.
43.Ibrahim, W.S., et al., Carvedilol diminishes cardiac remodeling induced by high-fructose/high-fat diet in mice via enhancing cardiac β-arrestin2 signaling. 2020. 25(4): p. 354-363.
44.Sánchez, G., et al., High-fat-diet-induced obesity produces spontaneous ventricular arrhythmias and increases the activity of ryanodine receptors in mice. 2018. 19(2): p. 533.
45.Sikder, K., et al., High fat diet upregulates fatty acid oxidation and ketogenesis via intervention of PPAR-γ. 2018. 48(3): p. 1317-1331.
46.Kondo, H., et al., Interleukin 10 Treatment Ameliorates High-Fat Diet-Induced Inflammatory Atrial Remodeling and Fibrillation. Circ Arrhythm Electrophysiol, 2018. 11(5): p. e006040.
47.Quan, N., et al., Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway. 2018. 115: p. 170-178.
48.Sun, X., et al., Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Diet-Induced Obese Mice. Diabetes, 2020. 69(6): p. 1292-1305.
49.Li, Y., et al., AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. 2014. 558: p. 79-86.
50.Shao, D., et al., Increasing Fatty Acid Oxidation Prevents High-Fat Diet–Induced Cardiomyopathy Through Regulating Parkin-Mediated Mitophagy. 2020. 142(10): p. 983-997.
51.van Bilsen, M., G.J. van der Vusse, and R.S.J.P.A. Reneman, Transcriptional regulation of metabolic processes: implications for cardiac metabolism. 1998. 437(1): p. 2-14.
52.Sikder, K., et al., High Fat Diet Upregulates Fatty Acid Oxidation and Ketogenesis via Intervention of PPAR-γ. Cell Physiol Biochem, 2018. 48(3): p. 1317-1331.
53.Chen, F., et al., Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation. 2017. 1863(12): p. 3128-3141.
54.Brown, J.E., et al., Intermittent fasting: a dietary intervention for prevention of diabetes and cardiovascular disease? 2013. 13(2): p. 68-72.
55.Dong, T.A., et al., Intermittent fasting: a heart healthy dietary pattern? 2020. 133(8): p. 901-907.
56.Jessica, J., Intermittent Fasting: Lose Weight Up To 6 Kgs in a Month if Done Correctly. 2021.
57.Varady, K.A., et al., Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. 2013. 12(1): p. 1-8.
58.Rose, E., Understanding Intermittent Fasting.
59.Gabel, K., et al., Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. 2018. 4(4): p. 345-353.
60.Wilkinson, M.J., et al., Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. 2020. 31(1): p. 92-104. e5.
61.Sutton, E.F., et al., Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. 2018. 27(6): p. 1212-1221. e3.
62.Sherman, H., et al., Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers. J Cell Mol Med, 2011. 15(12): p. 2745-59.
63.Gill, S., et al., Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science, 2015. 347(6227): p. 1265-9.
64.Tsai, J.Y., et al., Influence of dark phase restricted high fat feeding on myocardial adaptation in mice. J Mol Cell Cardiol, 2013. 55: p. 147-55.
65.Hu, D., et al., Time-restricted feeding causes irreversible metabolic disorders and gut microbiota shift in pediatric mice. Pediatr Res, 2019. 85(4): p. 518-526.
66.Zarrinpar, A., et al., Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab, 2014. 20(6): p. 1006-17.
67.Chaix, A., et al., Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab, 2019. 29(2): p. 303-319.e4.
68.Hatori, M., et al., Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab, 2012. 15(6): p. 848-60.
69.Patterson, R.E. and D.D. Sears, Metabolic Effects of Intermittent Fasting. Annu Rev Nutr, 2017. 37: p. 371-393.
70.Hoddy, K.K., et al., Intermittent Fasting and Metabolic Health: From Religious Fast to Time-Restricted Feeding. Obesity (Silver Spring), 2020. 28 Suppl 1(Suppl 1): p. S29-s37.
71.Patterson, R.E., et al., Intermittent Fasting and Human Metabolic Health. J Acad Nutr Diet, 2015. 115(8): p. 1203-12.
72.Allaf, M., et al., Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev, 2021. 1(1): p. Cd013496.
73.Antoni, R., et al., Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants. 2018. 119(5): p. 507-516.
74.Horne, B., et al., Randomized cross-over trial of short-term water-only fasting: metabolic and cardiovascular consequences. 2013. 23(11): p. 1050-1057.
75.Harvie, M., et al., The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. 2013. 110(8): p. 1534-1547.
76.Trepanowski, J.F., et al., Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: Secondary analysis of a randomized controlled trial. 2018. 37(6): p. 1871-1878.
77.Henderson, C.G., D.L. Turner, and S.J. Swoap, Health Effects of Alternate Day Fasting Versus Pair-Fed Caloric Restriction in Diet-Induced Obese C57Bl/6J Male Mice. Front Physiol, 2021. 12: p. 641532.
78.Williams, K.V., et al., The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes Care, 1998. 21(1): p. 2-8.
79.Klempel, M.C., et al., Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J, 2012. 11: p. 98.
80.Kroeger, C.M., et al., Improvement in coronary heart disease risk factors during an intermittent fasting/calorie restriction regimen: Relationship to adipokine modulations. Nutrition & Metabolism, 2012. 9(1): p. 98.
81.Harvie, M.N., et al., The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. International Journal of Obesity, 2011. 35(5): p. 714-727.
82.Teng, N.I., et al., Efficacy of fasting calorie restriction on quality of life among aging men. Physiol Behav, 2011. 104(5): p. 1059-64.
83.Hussin, N.M., et al., Efficacy of fasting and calorie restriction (FCR) on mood and depression among ageing men. J Nutr Health Aging, 2013. 17(8): p. 674-80.
84.Teng, N.I., et al., Improvement of metabolic parameters in healthy older adult men following a fasting calorie restriction intervention. Aging Male, 2013. 16(4): p. 177-83.
85.Cai, H., et al., Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. 2019. 19(1): p. 1-8.
86.Ahmadian, M., R.E. Duncan, and H.S. Sul, The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab, 2009. 20(9): p. 424-8.
87.Wang, S., et al., Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab, 2008. 95(3): p. 117-26.
88.Malinowski, B., et al., Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients, 2019. 11(3).
89.Gulcelik, N., et al., Adipocytokines and aging: adiponectin and leptin. 2013. 38(2): p. 203-210.
90.McAllister, M.J., et al., Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: a 4-week randomized pre-post pilot study. Nutr Res, 2020. 75: p. 32-43.
91.Moro, T., et al., Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med, 2016. 14(1): p. 290.
92.Regmi, P., et al., Early or delayed time-restricted feeding prevents metabolic impact of obesity in mice. 2021. 248(1): p. 75-86.
93.Yasumoto, Y., et al., Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. 2016. 65(5): p. 714-727.
94.Puchalska, P. and P.A. Crawford, Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab, 2017. 25(2): p. 262-284.
95.Yamauchi, T., et al., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. 2001. 7(8): p. 941-946.
96.Moro, T., et al., Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. 2016. 14(1): p. 1-10.
97.Meyer, L.K., et al., Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. 2013. 2(4): p. 217-226.
98.Nigro, E., et al., New insight into adiponectin role in obesity and obesity-related diseases. 2014. 2014.
99.Hatori, M., et al., Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. 2012. 15(6): p. 848-860.
100.Chaix, A., et al., Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. 2014. 20(6): p. 991-1005.
101.Aliasghari, F., et al., The effects of Ramadan fasting on body composition, blood pressure, glucose metabolism, and markers of inflammation in NAFLD patients: an observational trial. 2017. 36(8): p. 640-645.
102.Sun, S., et al., Time-restricted feeding suppresses excess sucrose-induced plasma and liver lipid accumulation in rats. 2018. 13(8): p. e0201261.
103.Johari, M.I., et al., A randomised controlled trial on the effectiveness and adherence of modified alternate-day calorie restriction in improving activity of non-alcoholic fatty liver disease. 2019. 9(1): p. 1-9.
104.Wilson, R.B., et al., Two-week isocaloric time-restricted feeding decreases liver inflammation without significant weight loss in obese mice with non-alcoholic fatty liver disease. 2020. 21(23): p. 9156.
105.Chung, H., et al., Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. 2016. 65(12): p. 1743-1754.
106.Woodie, L.N., et al., Restricted feeding for 9 h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. 2018. 82: p. 1-13.
107.Della Torre, S., et al., Amino acid-dependent activation of liver estrogen receptor alpha integrates metabolic and reproductive functions via IGF-1. 2011. 13(2): p. 205-214.
108.Della Torre, S., et al., An essential role for liver ERα in coupling hepatic metabolism to the reproductive cycle. 2016. 15(2): p. 360-371.
109.Hua, L., et al., Time‐restricted feeding improves the reproductive function of female mice via liver fibroblast growth factor 21. 2020. 10(6): p. e195.
110.Duncan, M., et al., Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. 2016. 167: p. 1-9.
111.Mari, A., et al., The Impact of Ramadan Fasting on Fatty Liver Disease Severity: A Retrospective Case Control Study from Israel. 2021. 23(2): p. 94-98.
112.Chaix, A., et al., Sex-and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice. 2021. 36(7): p. 109543.
113.Mehus, A.A., et al., Time-restricted feeding mice a high-fat diet induces a unique lipidomic profile. 2021. 88: p. 108531.
114.Canoy, D., Coronary heart disease and body fat distribution. Curr Atheroscler Rep, 2010. 12(2): p. 125-33.
115.Lavie, C.J., R.V. Milani, and H.O. Ventura, Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol, 2009. 53(21): p. 1925-32.
116.Tsai, J.-Y., et al., Influence of dark phase restricted high fat feeding on myocardial adaptation in mice. 2013. 55: p. 147-155.
117.Gill, S., et al., Time-restricted feeding attenuates age-related cardiac decline in Drosophila. 2015. 347(6227): p. 1265-1269.
118.Melkani, G.C. and S.J.T.J.o.p. Panda, Time‐restricted feeding for prevention and treatment of cardiometabolic disorders. 2017. 595(12): p. 3691-3700.
119.McAllister, M.J., et al., Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: A 4-week randomized pre-post pilot study. 2020. 75: p. 32-43.
120.Cienfuegos, S., et al., Effects of 4-and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. 2020. 32(3): p. 366-378. e3.
121.Wilkinson, M.J., et al., Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab, 2020. 31(1): p. 92-104.e5.
122.Schroder, J.D., et al., Effects of time-restricted feeding in weight loss, metabolic syndrome and cardiovascular risk in obese women. 2021. 19(1): p. 1-11.
123.Gabel, K. and K.A.J.T.J.o.P. Varady, Current research: effect of time restricted eating on weight and cardiometabolic health. 2022. 600(6): p. 1313-1326.
124.Mehlem, A., et al., Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. 2013. 8(6): p. 1149-1154.
125.Taylor, S.C. and A.J.B.r.i. Posch, The design of a quantitative western blot experiment. 2014. 2014.
126.Wolf, J.B.J.M.e.r., Principles of transcriptome analysis and gene expression quantification: an RNA‐seq tutorial. 2013. 13(4): p. 559-572.
127.Langmead, B. and S.L.J.N.m. Salzberg, Fast gapped-read alignment with Bowtie 2. 2012. 9(4): p. 357-359.
128.Wakil, S.J. and L.A.J.J.o.l.r. Abu-Elheiga, Fatty acid metabolism: target for metabolic syndrome. 2009. 50: p. S138-S143.
129.Ye, Y., et al., Time-Restricted Feeding Reduces the Detrimental Effects of a High-Fat Diet, Possibly by Modulating the Circadian Rhythm of Hepatic Lipid Metabolism and Gut Microbiota. Front Nutr, 2020. 7: p. 596285.
130.Ro, S.-H., et al., Autophagy in adipocyte browning: emerging drug target for intervention in obesity. 2019. 10: p. 22.
131.Castañeda, D., et al., Targeting Autophagy in Obesity-Associated Heart Disease. Obesity (Silver Spring), 2019. 27(7): p. 1050-1058.
132.De Cabo, R. and M.P.J.N.E.J.o.M. Mattson, Effects of intermittent fasting on health, aging, and disease. 2019. 381(26): p. 2541-2551.
133.Elliott, R., et al., Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism. 2014. 9(6): p. 1-11.
134.Carter, S., et al., The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. 2016. 122: p. 106-112.
135.Nicoll, R. and M.Y.J.I.j.o.m.s. Henein, Caloric restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: a review of the evidence. 2018. 19(3): p. 751.
136.Han, X. and J.J.A.P.S. Ren, Caloric restriction and heart function: is there a sensible link? 2010. 31(9): p. 1111-1117.
137.Rector, R.S., et al., Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. 2011. 300(5): p. G874-G883.
138.Xie, Z., et al., Analysis of transcriptome and metabolome profiles alterations in fatty liver induced by high-fat diet in rat. 2010. 59(4): p. 554-560.
139.Arumugam, T.V., et al., Multiomics Analyses Reveal Dynamic Bioenergetic Pathways and Functional Remodeling of the Heart During Intermittent Fasting. 2021.
140.Ng, G.Y.-Q., et al., Genome-wide transcriptome analysis reveals intermittent fasting-induced metabolic rewiring in the liver. 2019. 17(3): p. 1559325819876780.
141.Fann, D.Y.-W., et al., Positive effects of intermittent fasting in ischemic stroke. 2017. 89: p. 93-102.
142.Granado, M., et al., Caloric restriction attenuates aging-induced cardiac insulin resistance in male Wistar rats through activation of PI3K/Akt pathway. 2019. 29(1): p. 97-105.
143.Ma, L., et al., Long-term caloric restriction activates the myocardial SIRT1/AMPK/PGC-1α pathway in C57BL/6J male mice. 2020. 64.
144.Wahl, D. and T.J. LaRocca, Transcriptomic Effects of Healthspan-Promoting Dietary Interventions: Current Evidence and Future Directions. Front Nutr, 2021. 8: p. 712129.
145.Duszka, K., et al., Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. 2020. 9(7): p. 1708.
146.Duszka, K. and W.J.N. Wahli, Peroxisome proliferator-activated receptors as molecular links between caloric restriction and circadian rhythm. 2020. 12(11): p. 3476.
147.Johnstone, A.J.I.J.o.O., Fasting for weight loss: an effective strategy or latest dieting trend? 2015. 39(5): p. 727-733.
148.Rynders, C.A., et al., Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients, 2019. 11(10).
149.Masood, W., P. Annamaraju, and K.R.J.S. Uppaluri, Ketogenic diet. 2021.
150.Jagadish, S., et al., The Ketogenic and Modified Atkins Diet Therapy for Children With Refractory Epilepsy of Genetic Etiology. Pediatr Neurol, 2019. 94: p. 32-37.
151.Mohorko, N., et al., Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr Res, 2019. 62: p. 64-77.
152.Tendler, D., et al., The effect of a low-carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: a pilot study. 2007. 52(2): p. 589-593.
153.Kirk, E., et al., Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. 2009. 136(5): p. 1552-1560.
154.Perez-Guisado, J. and A.J.J.o.m.f. Munoz-Serrano, The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: a pilot study. 2011. 14(7-8): p. 677-680.
155.Schiavo, L., et al., A 4-week preoperative ketogenic micronutrient-enriched diet is effective in reducing body weight, left hepatic lobe volume, and micronutrient deficiencies in patients undergoing bariatric surgery: a prospective pilot study. 2018. 28(8): p. 2215-2224.
156.Mardinoglu, A., et al., An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. 2018. 27(3): p. 559-571. e5.
157.Teratani, T., et al., Lipoprotein lipase up‐regulation in hepatic stellate cells exacerbates liver fibrosis in nonalcoholic steatohepatitis in mice. 2019. 3(8): p. 1098-1112.
158.Miyamoto, J., et al., Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions. Proc Natl Acad Sci U S A, 2019. 116(47): p. 23813-23821.
159.Hofmekler, O., The Warrior Diet: Switch on Your Biological Powerhouse for High Energy, Explosive Strength, and a Leaner, Harder Body. 2007: Blue Snake Books.
160.Laza, V.J.H., Sports and R. Medicine, Intermittent fasting in athletes: PROs and CONs. 2020. 21(1): p. 52-58.
161.Tinsley, G.M., et al., Time-restricted feeding in young men performing resistance training: A randomized controlled trial. 2017. 17(2): p. 200-207.
162.Juge-Aubry, C.E., C.A.J.M. Meier, and C. Endocrinology, Immunomodulatory actions of leptin. 2002. 194(1-2): p. 1-7.
163.Yang, S.A., Exonic polymorphism (rs315952, Ser133Ser) of interleukin 1 receptor antagonist (IL1RN) is related to overweigh/obese with hypertension. J Exerc Rehabil, 2014. 10(5): p. 332-6.
164.Dezayee, Z.M.J.Z.J.o.M.S., Assessment of serum interleukin-1receptor antagonist (IL-1RN) levels in overweight-obese women and its relation to the cardiovascular risk using Framingham score. 2017. 21(1): p. 1608-1613.
165.Somm, E., et al., Decreased fat mass in interleukin-1 receptor antagonist–deficient mice: impact on adipogenesis, food intake, and energy expenditure. 2005. 54(12): p. 3503-3509.
166.Bujak, M. and N.G.J.A.i.e.t.e. Frangogiannis, The role of IL-1 in the pathogenesis of heart disease. 2009. 57(3): p. 165-176.
167.Tatsumi, T., et al., Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes. 2000. 35(5): p. 1338-1346.
168.Kozak, L., et al., The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. 1988. 263(25): p. 12274-12277.
169.Virtanen, K.A., et al., Functional brown adipose tissue in healthy adults. 2009. 360(15): p. 1518-1525.
170.Kooijman, S., et al., Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity. 2015. 112(21): p. 6748-6753.
171.Bartelt, A., et al., Brown adipose tissue activity controls triglyceride clearance. 2011. 17(2): p. 200-205.
172.Landsberg, L. and J.B.J.A.J.o.C.N. Young, Role of the sympathetic nervous system and catecholamines in the regulation of energy metabolism. 1983.
173.Landsberg, L., J.B.J.C.i.e. Young, and metabolism, The role of the sympathoadrenal system in modulating energy expenditure. 1984. 13(3): p. 475-499.
174.Himms-Hagen, J.J.N.E.J.o.M., Thermogenesis in brown adipose tissue as an energy buffer: implications for obesity. 1984. 311(24): p. 1549-1558.
175.Rothwell, N.J. and M.J.J.N. Stock, A role for brown adipose tissue in diet-induced thermogenesis. 1979. 281(5726): p. 31-35.
176.Zhang, L., et al., Activating cardiac E2F1 induces up-regulation of pyruvate dehydrogenase kinase 4 in mice on a short term of high fat feeding. 2012. 586(7): p. 996-1003.
177.Gudi, R., et al., Diversity of the pyruvate dehydrogenase kinase gene family in humans. 1995. 270(48): p. 28989-28994.
178.Sugden, M.C., M.J.J.A.o.p. Holness, and biochemistry, Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. 2006. 112(3): p. 139-149.
179.Mori, J., et al., ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. 2013. 304(8): p. H1103-H1113.
180.Roche, T.a., Y.J.C. Hiromasa, and m.l. sciences, Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. 2007. 64(7): p. 830-849.
181.Lakshmikanthan, S., et al., Rap1b in smooth muscle and endothelium is required for maintenance of vascular tone and normal blood pressure. 2014. 34(7): p. 1486-1494.
182.Ding, Y., et al., Rap1 deficiency-provoked paracrine dysfunction impairs immunosuppressive potency of mesenchymal stem cells in allograft rejection of heart transplantation. 2018. 9(3): p. 1-15.
183.Singh, B., et al., Endothelial Rap1 (Ras-association proximate 1) restricts inflammatory signaling to protect from the progression of atherosclerosis. 2021. 41(2): p. 638-650.
184.van Hooren, K.W., et al., The Epac-Rap1 signaling pathway controls cAMP-mediated exocytosis of Weibel-Palade bodies in endothelial cells. 2012. 287(29): p. 24713-24720.
185.Musovic, S. and C.S.J.S.r. Olofsson, Adrenergic stimulation of adiponectin secretion in visceral mouse adipocytes is blunted in high-fat diet induced obesity. 2019. 9(1): p. 1-12.
186.Jeyaraj, S.C., N.T. Unger, and M.A. Chotani, Rap1 GTPases: an emerging role in the cardiovasculature. Life Sci, 2011. 88(15-16): p. 645-52.
187.Blancas-Velazquez, A., et al., Diet-induced obesity and circadian disruption of feeding behavior. 2017. 11: p. 23.
188.Morris, C.J., et al., Circadian misalignment increases cardiovascular disease risk factors in humans. 2016. 113(10): p. E1402-E1411.
189.Song, S., et al., Myocardial Rev-erb-Mediated Diurnal Metabolic Rhythm and Obesity Paradox. 2022.
190.Mistry, P., et al., Circadian influence on the microbiome improves heart failure outcomes. 2020. 149: p. 54-72.
191.Dommel, S. and M.J.I.J.o.M.S. Blüher, Does CC motif chemokine ligand 2 (CCL2) link obesity to a pro-inflammatory state? 2021. 22(3): p. 1500.
192.Fisher, F.M. and E.J.A.R.P. Maratos-Flier, Understanding the physiology of FGF21. 2016. 78(1): p. 223-241.
193.Markan, K.R., et al., Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. 2014. 63(12): p. 4057-4063.
194.Planavila, A., et al., Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. 2013. 4(1): p. 1-12.
195.Sunaga, H., et al., Activation of cardiac AMPK-FGF21 feed-forward loop in acute myocardial infarction: Role of adrenergic overdrive and lipolysis byproducts. 2019. 9(1): p. 1-13.
196.Inagaki, T., et al., Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. 2007. 5(6): p. 415-425.
197.Badman, M.K., et al., Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. 2009. 150(11): p. 4931-4940.
198.Badman, M.K., et al., Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology, 2009. 150(11): p. 4931-40.
199.Planavila, A., et al., Fibroblast growth factor 21 protects the heart from oxidative stress. 2015. 106(1): p. 19-31.
200.Liang, X., et al., Vitamin A deficiency indicating as low expression of LRAT may be a novel biomarker of primary hypertension. 2021. 43(2): p. 151-163.
201.Lessard, A., et al., Loss of Hepatic Vitamin A Reserve Lowers Cardiac Function and Prevents Cardiac Calcium Overload Under Stress Conditions. 2021. 35.
202.Liang, G., et al., Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. 2002. 277(11): p. 9520-9528.
203.Shimano, H., et al., Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. 1997. 99(5): p. 846-854.
204.Aoyama, T., et al., Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). 1998. 273(10): p. 5678-5684.
205.Kersten, S., et al., Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. 1999. 103(11): p. 1489-1498.
206.Kroetz, D.L., et al., Peroxisome proliferator-activated receptor α controls the hepatic CYP4A induction adaptive response to starvation and diabetes. 1998. 273(47): p. 31581-31589.
207.Zhukova, N.V., et al., Effect of the prolonged high-fat diet on the fatty acid metabolism in rat blood and liver. 2014. 13(1): p. 1-8.
208.Antoni, R., et al., Effects of intermittent fasting on glucose and lipid metabolism. 2017. 76(3): p. 361-368.
209.Hashimoto, T., et al., Defect in peroxisome proliferator-activated receptor α-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. 2000. 275(37): p. 28918-28928.
210.Xu, J., et al., Peroxisome proliferator-activated receptor α (PPARα) influences substrate utilization for hepatic glucose production. 2002. 277(52): p. 50237-50244.
211.Gross, B., et al., PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. 2017. 13(1): p. 36-49.
212.Triggle, C.R., et al., The endothelium: influencing vascular smooth muscle in many ways. 2012. 90(6): p. 713-738.
213.Azemi, A.K., et al., Time-Restricted Feeding Improved Vascular Endothelial Function in a High-Fat Diet-Induced Obesity Rat Model. 2022. 9(5): p. 217.
214.Monga, S.P.J.G., β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. 2015. 148(7): p. 1294-1310.
215.Wang, J.-n., et al., Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. 2018. 674: p. 57-69.
216.Ackers, I., R.J.D. Malgor, and V.D. Research, Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. 2018. 15(1): p. 3-13.
217.Ma, Z.-G., et al., Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway. 2016. 22(6): p. 2092.
218.Clevers, H. and R.J.C. Nusse, Wnt/β-catenin signaling and disease. 2012. 149(6): p. 1192-1205.
219.Beljaars, L., et al., WNT-5A regulates TGF-β-related activities in liver fibrosis. 2017. 312(3): p. G219-G227.
220.Miao, C.-g., et al., Wnt signaling in liver fibrosis: progress, challenges and potential directions. 2013. 95(12): p. 2326-2335.
221.Arellanes-Robledo, J., et al., Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells. 2013. 65: p. 1487-1496.
222.Zhang, F., et al., Curcumin raises lipid content by Wnt pathway in hepatic stellate cell. 2016. 200(2): p. 460-466.
223.Willebrords, J., et al., Structure, regulation and function of gap junctions in liver. 2015. 22(2-6): p. 29-37.
224.Sanyal, A., et al., Interplay between obesity-induced inflammation and cGMP signaling in white adipose tissue. 2017. 18(1): p. 225-236.
225.Ding, R.B., J. Bao, and C.X. Deng, Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci, 2017. 13(7): p. 852-867.
226.Guo, W., et al., Cystathionine γ‐lyase deficiency aggravates obesity‐related insulin resistance via FoxO1‐dependent hepatic gluconeogenesis. 2019. 33(3): p. 4212-4224.
227.Haas, J.T., S. Francque, and B.J.A.r.o.p. Staels, Pathophysiology and mechanisms of nonalcoholic fatty liver disease. 2016. 78: p. 181-205.
228.Baiceanu, A., et al., Endoplasmic reticulum proteostasis in hepatic steatosis. 2016. 12(12): p. 710-722.
229.Mosinski, J., et al., Gastric bypass surgery is protective from high‐fat diet‐induced non‐alcoholic fatty liver disease and hepatic endoplasmic reticulum stress. 2016. 217(2): p. 141-151.
230.Yang, W., et al., Alternate-day fasting protects the livers of mice against high-fat diet–induced inflammation associated with the suppression of Toll-like receptor 4/nuclear factor κB signaling. 2016. 36(6): p. 586-593.
231.Lebeaupin, C., et al., Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol, 2018. 69(4): p. 927-947.
232.Chen, X., et al., Hepatic ATF6 increases fatty acid oxidation to attenuate hepatic steatosis in mice through peroxisome proliferator–activated receptor α. 2016. 65(7): p. 1904-1915.
233.Zeng, L., et al., ATF6 modulates SREBP2‐mediated lipogenesis. 2004. 23(4): p. 950-958.
234.Wilson, R.B., et al., Two-Week Isocaloric Time-Restricted Feeding Decreases Liver Inflammation without Significant Weight Loss in Obese Mice with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci, 2020. 21(23).
235.Cullinan, S.B., et al., Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. 2003. 23(20): p. 7198-7209.
236.Cullinan, S.B. and J.A.J.J.o.B.C. Diehl, PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. 2004. 279(19): p. 20108-20117.
237.Oyadomari, S., et al., Dephosphorylation of translation initiation factor 2α enhances glucose tolerance and attenuates hepatosteatosis in mice. 2008. 7(6): p. 520-532.
238.Font de Mora, J., et al., Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. 1997. 17(10): p. 6068-6075.
239.Kim, S.-W., et al., Regulation of adipogenesis by a transcriptional repressor that modulates MAPK activation. 2001. 276(13): p. 10199-10206.
240.Collins, Q.F., et al., p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. 2006. 281(34): p. 24336-24344.
241.Qiao, L., O.A. MacDougald, and J.J.J.o.B.C. Shao, CCAAT/enhancer-binding protein α mediates induction of hepatic phosphoenolpyruvate carboxykinase by p38 mitogen-activated protein kinase. 2006. 281(34): p. 24390-24397.
242.Wang, Y., et al., Prostaglandin F2α facilitates hepatic glucose production through CaMKIIγ/p38/FOXO1 signaling pathway in fasting and obesity. 2018. 67(9): p. 1748-1760.
243.Gao, D., et al., The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. 2010. 285(39): p. 29965-29973.
244.Herzig, S., et al., CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. 2001. 413(6852): p. 179-183.
245.Puigserver, P., et al., Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. 2001. 8(5): p. 971-982.
246.She, Y., et al., Time-restricted feeding attenuates gluconeogenic activity through inhibition of PGC-1α expression and activity. 2021. 231: p. 113313.
247.Kwak, D.H., et al., Aristolochia manshuriensis Kom inhibits adipocyte differentiation by regulation of ERK1/2 and Akt pathway. 2012. 7(11): p. e49530.
248.Prusty, D., et al., Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. 2002. 277(48): p. 46226-46232.
249.Aubert, J., et al., Role of pathways for signal transducers and activators of transcription, and mitogen-activated protein kinase in adipocyte differentiation. 1999. 56(5): p. 538-542.
250.Cornelius, P., O.A. MacDougald, and M.D.J.A.r.o.n. Lane, Regulation of adipocyte development. 1994. 14(1): p. 99-129.
251.Sellers, J., et al., Fasting-Induced Upregulation of MKP-1 Modulates the Hepatic Response to Feeding. Nutrients, 2021. 13(11).
252.Ramos, V.d.M., et al., Autophagy in hepatic steatosis: a structured review. 2021: p. 801.
253.Hernández–Gea, V., et al., Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. 2012. 142(4): p. 938-946.
254.Yang, L., et al., Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. 2010. 11(6): p. 467-478.
255.Meng, Q., et al., IRS1/PI3K/AKT pathway signal involved in the regulation of glycolipid metabolic abnormalities by Mulberry (Morus alba L.) leaf extracts in 3T3-L1 adipocytes. 2020. 15(1): p. 1-11.
256.Huang, R., et al., Deacetylation of nuclear LC3 drives autophagy initiation under starvation. 2015. 57(3): p. 456-466.
257.Esteves, A.R., et al., The role of Beclin-1 acetylation on autophagic flux in Alzheimer’s disease. 2019. 56(8): p. 5654-5670.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊