|
1.Adam, Z. (2003). LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res, 31, 3370-3374. 2.Alderton, W. K., Cooper, C. E., & Knowles, R. G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochemical Journal, 357(3), 593-615. 3.Andreakis, N., D’aniello, S., Albalat, R., Patti, F. P., Garcia-Fernandez, J., Procaccini, G., Sordino, P., & Palumbo, A. (2010). Evolution of the nitric oxide synthase family in metazoans. Molecular biology and evolution, 28(1), 163-179. 4.Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., & Schaeffer, R. D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871-876. 5.Bennett, J. E., Dolin, R., & Blaser, M. J. (2019). Mandell, douglas, and bennett's principles and practice of infectious diseases E-book. Elsevier Health Sciences. 6.Cantelli, G., Bateman, A., Brooksbank, C., Petrov, A. I., Malik-Sheriff, R. S., Ide-Smith, M., Hermjakob, H., Flicek, P., Apweiler, R., & Birney, E. (2022). The European Bioinformatics Institute (EMBL-EBI) in 2021. Nucleic acids research, 50(D1), D11-D19. 7.Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C. M., & Besteiro, S. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 315(5809), 207-212. 8.Carter, J. V., Pan, J., Rai, S. N., & Galandiuk, S. (2016). ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery, 159(6), 1638-1645. 9.Cheng, W.-H., Huang, K.-Y., Huang, P.-J., Hsu, J.-H., Fang, Y.-K., Chiu, C.-H., & Tang, P. (2015). Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasites & vectors, 8(1), 393. 10.Chiang, C. H., Wu, C. C., Lee, L. Y., Li, Y. C., Liu, H. P., Hsu, C. W., Lu, Y. C., Chang, J. T., & Cheng, A. J. (2016). Proteomics analysis reveals involvement of Krt17 in areca nut-induced oral carcinogenesis. J Proteome Res, 15(9), 2981-2997. 11.Christensen, H. (2018). Introduction to Bioinformatics in Microbiology. Springer. 12.Coordinators, N. R. (2018). Database resources of the national center for biotechnology information. Nucleic acids research, 46(Database issue), D8. 13.Correa-Aragunde, N., Foresi, N., & Lamattina, L. (2013). Structure diversity of nitric oxide synthases (NOS): the emergence of new forms in photosynthetic organisms. Frontiers in plant science, 4, 232. 14.Crane, B. R., Sudhamsu, J., & Patel, B. A. (2010). Bacterial nitric oxide synthases. Annual review of biochemistry, 79, 445-470. 15.DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40(1), 82-92. 16.Dyall, S. D., & Johnson, P. J. (2000). Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. Current opinion in microbiology, 3(4), 404-411. 17.Foresi, N., Correa-Aragunde, N., Parisi, G., Caló, G., Salerno, G., & Lamattina, L. (2010). Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. The Plant Cell, tpc. 109.073510. 18.Foresi, N., Correa-Aragunde, N., Santolini, J., & Lamattina, L. (2016). Analysis of the expression and activity of nitric oxide synthase from Marine photosynthetic microorganisms. In Plant Nitric Oxide (pp. 149-162). Springer. 19.Franzen, O., Jerlström-Hultqvist, J., Castro, E., Sherwood, E., Ankarklev, J., Reiner, D. S., Palm, D., Andersson, J. O., Andersson, B., & Svärd, S. G. (2009). Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS pathogens, 5(8), e1000560. 20.Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S., & Mische, S. M. (1999). Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis, 20(3), 601-605. 21.Golderer, G., Werner, E. R., Leitner, S., Gröbner, P., & Werner-Felmayer, G. (2001). Nitric oxide synthase is induced in sporulation of Physarum polycephalum. Genes & Development, 15(10), 1299-1309. 22.Gould, S. B., Woehle, C., Kusdian, G., Landan, G., Tachezy, J., Zimorski, V., & Martin, W. F. (2013). Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. International journal for parasitology, 43(9), 707-719. 23.Harel, A., Bromberg, Y., Falkowski, P. G., & Bhattacharya, D. (2014). Evolutionary history of redox metal-binding domains across the tree of life. Proceedings of the National Academy of Sciences, 111(19), 7042-7047. 24.Harris, K. M. (2007). Determining the role of polyamine metabolism in two human pathogenicprotozoa: Tichomonas vaginalis and Giardia intestinalis. Cardiff University (United Kingdom). 25.Harris, K. M., Goldberg, B., Biagini, G. A., & Lloyd, D. (2006). Trichomonas vaginalis and Giardia intestinalis Produce Nitric Oxide and Display NO‐Synthase Activity. Journal of Eukaryotic Microbiology, 53, S182-S183. 26.Hirt, R. P., & Sherrard, J. (2015). Trichomonas vaginalis origins, molecular pathobiology and clinical considerations. Current opinion in infectious diseases, 28(1), 72-79. 27.Holden, J. K., Li, H., Jing, Q., Kang, S., Richo, J., Silverman, R. B., & Poulos, T. L. (2013). Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proceedings of the National Academy of Sciences, 201314080. 28.Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T. K., Bateman, A., Bernard, T., Binns, D., Bork, P., & Burge, S. (2011). InterPro in 2011: new developments in the family and domain prediction database. Nucleic acids research, 40(D1), D306-D312. 29.Jerlström-Hultqvist, J., Franzén, O., Ankarklev, J., Xu, F., Nohýnková, E., Andersson, J. O., Svärd, S. G., & Andersson, B. (2010). Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC genomics, 11(1), 1-15. 30.Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., & Potapenko, A. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. 31.Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S. C., Petrželková, R., Eme, L., Novák, L., Žárský, V., Barlow, L. D., & Herman, E. K. (2016). A eukaryote without a mitochondrial organelle. Current Biology, 26(10), 1274-1284. 32.Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y., Arakawa, T., Hara, A., Fukunishi, Y., & Konno, H. (2001). Functional annotation of a full-length mouse cDNA collection. Nature, 409(6821), 685-689. 33.Ke, C. H., Wang, Y. S., Chiang, H. C., Wu, H. Y., Liu, W. J., Huang, C. C., Huang, Y. C., & Lin, C. S. (2022). Xenograft cancer vaccines prepared from immunodeficient mice increase tumor antigen diversity and host T cell efficiency against colorectal cancers. Cancer Lett, 526, 66-75. 34.Kopp, J., Bordoli, L., Battey, J. N., Kiefer, F., & Schwede, T. (2007). Assessment of CASP7 predictions for template‐based modeling targets. Proteins: Structure, Function, and Bioinformatics, 69(S8), 38-56. 35.Li, J., Zheng, H., & Feng, C. (2018). Deciphering mechanism of conformationally controlled electron transfer in nitric oxide synthases. Frontiers in Bioscience-Landmark, 23(10), 1803-1821. 36.Lin, H.-C., Shui, H.-A., Huang, K.-Y., Lin, W.-Z., Chang, H.-Y., Lee, H.-J., Lin, Y.-C., Huang, Y.-S., Chen, G.-R., & Yang, Y.-T. (2022). Innovative Hybrid-Alignment Annotation Method for Bioinformatics Identification and Functional Verification of a Novel Nitric Oxide Synthase in Trichomonas vaginalis. Biology, 11(8), 1210. 37.Liu, H. L., & Chu, C. M. (2012a). Genome Annotation for Nitric Oxide Synthase of Trichomonas vaginalis by Smith-Waterman Algorithm based on the NCBI Protein Database [M.Sc. Thesis, National Defense Medical Center]. Taipei, Taiwan. 38.Loshchinina, E., & Nikitina, V. (2016). Role of the NO synthase system in response to abiotic stress factors for basidiomycetes Lentinula edodes and Grifola frondosa. Microbiology, 85(2), 165-171. 39.Madda, R., Chen, C. M., Wang, J. Y., Chen, C. F., Chao, K. Y., Yang, Y. M., Wu, H. Y., Chen, W. M., & Wu, P. K. (2020). Proteomic profiling and identification of significant markers from high-grade osteosarcoma after cryotherapy and irradiation. Sci Rep, 10(1), 2105. 40.Mariani, V., Biasini, M., Barbato, A., & Schwede, T. (2013). lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722-2728. 41.Markoš, A., Miretsky, A., & Müller, M. (1993). A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis. Journal of molecular evolution, 37(6), 631-643. 42.Messner, S., Leitner, S., Bommassar, C., Golderer, G., Gröbner, P., Werner, E. R., & Werner-Felmayer, G. (2009). Physarum nitric oxide synthases: genomic structures and enzymology of recombinant proteins. Biochemical Journal, 418(3), 691-700. 43.Morada, M., Manzur, M., Lam, B., Tan, C., Tachezy, J., Rappelli, P., Dessì, D., Fiori, P. L., & Yarlett, N. (2010). Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis. Microbiology, 156(12), 3734-3743. 44.Morrison, H. G., McArthur, A. G., Gillin, F. D., Aley, S. B., Adam, R. D., Olsen, G. J., Best, A. A., Cande, W. Z., Chen, F., & Cipriano, M. J. (2007). Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science, 317(5846), 1921-1926. 45.Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3), 443-453. 46.Nishimura, A., Kawahara, N., & Takagi, H. (2013). The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochemical and biophysical research communications, 430(1), 137-143. 47.Pearson, W. R. (2013). An introduction to sequence similarity (“homology”) searching. Current protocols in bioinformatics, 42(1), 3.1. 1-3.1. 8. 48.Price, M. N., Wetmore, K. M., Waters, R. J., Callaghan, M., Ray, J., Liu, H., Kuehl, J. V., Melnyk, R. A., Lamson, J. S., & Suh, Y. (2018). Mutant phenotypes for thousands of bacterial genes of unknown function. Nature, 557(7706), 503. 49.Promponas, V. J., Iliopoulos, I., & Ouzounis, C. A. (2015). Annotation inconsistencies beyond sequence similarity-based function prediction–phylogeny and genome structure. Standards in genomic sciences, 10(1), 108. 50.Rafferty, S. (2011). Nitric oxide synthases of bacteria and other unicellular organisms. Open Nitric Oxide J, 3, 25-32. 51.Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS computational biology, 11(12), e1004586. 52.Sarkar, T. S., Biswas, P., Ghosh, S. K., & Ghosh, S. (2014). Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph–host plant interactions. PloS one, 9(9), e107348. 53.Schnoes, A. M., Brown, S. D., Dodevski, I., & Babbitt, P. C. (2009). Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS computational biology, 5(12), e1000605. 54.Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 68(5), 850-858. 55.Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of molecular biology, 147(1), 195-197. 56.Smith, T. F., Waterman, M. S., & Fitch, W. M. (1981). Comparative biosequence metrics. Journal of molecular evolution, 18(1), 38-46. 57.Stuehr, D. J., & Haque, M. M. (2019). Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. British journal of pharmacology, 176(2), 177-188. 58.Surdel, M. C., Dutter, B. F., Sulikowski, G. A., & Skaar, E. P. (2016). Bacterial nitric oxide synthase is required for the Staphylococcus aureus response to heme stress. ACS infectious diseases, 2(8), 572-578. 59.Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., & Laydon, A. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic acids research, 50(D1), D439-D444. 60.VISCOGLIOSI, E., PHILIPPE, H., BAROIN, A., PERASSO, R., & BRUGEROLLE, G. (1993). Phylogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphological data. Journal of Eukaryotic Microbiology, 40(4), 411-421. 61.Wang, Z.-Q., Lawson, R. J., Buddha, M. R., Wei, C.-C., Crane, B. R., Munro, A. W., & Stuehr, D. J. (2007). Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase. Journal of Biological Chemistry, 282(4), 2196-2202. 62.Wu, C.-H., Siva, V. S., & Song, Y.-L. (2013). An evolutionarily ancient NO synthase (NOS) in shrimp. Fish & shellfish immunology, 35(5), 1483-1500. 63.Xiong, A.-S., Yao, Q.-H., Peng, R.-H., Duan, H., Li, X., Fan, H.-Q., Cheng, Z.-M., & Li, Y. (2006). PCR-based accurate synthesis of long DNA sequences. Nature protocols, 1(2), 791-797. 64.Xu, J., & Zhang, Y. (2010). How significant is a protein structure similarity with TM-score= 0.5? Bioinformatics, 26(7), 889-895. 65.Yan, Y., Tao, H., He, J., & Huang, S.-Y. (2020). The HDOCK server for integrated protein–protein docking. Nature protocols, 15(5), 1829-1852. 66.Yandell, M., & Ence, D. (2012). A beginner's guide to eukaryotic genome annotation. Nature Reviews Genetics, 13(5), 329. 67.Yang, Y. T., & Chu, C. M. (2017). Using Smith-Waterman alignment to annotate nitric oxide synthase in Trichomonas vaginalis. M.Sc. Thesis. National Defense Medical Center. 68.Zhang, Y., & Skolnick, J. (2004). Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4), 702-710. 69.Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kubler, J., Lozajic, M., Gabler, F., Soding, J., Lupas, A. N., & Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol., 430(15), 2237–2243.
|