跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許庭瑜
研究生(外文):HSU,TING-YU
論文名稱:面向層級情感分類於使用者評論之研究
論文名稱(外文):A Study of Aspect-Based Sentiment Analysis for User Reviews
指導教授:莊秀敏莊秀敏引用關係
指導教授(外文):CHUANG,HSIU-MIN
口試委員:黃展鵬孫世峰劉芳萍蔡宗憲
口試委員(外文):HUANG,CHAN-PENGSUN,SHIH-FENGLIU,FANG-PINGTSAI,TSUNG-HSIEN
口試日期:2022-01-20
學位類別:碩士
校院名稱:國防大學
系所名稱:資訊工程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:50
中文關鍵詞:情感分析面向層級情感分類深度學習
外文關鍵詞:Sentiment AnalysisAspect-level Sentiment AnalysisDeep Learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
1. 前言 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 3
2. 文獻探討 5
2.1 情感分析 5
2.2 實體擷取 7
2.2.1 意見對象擷取 8
2.2.2 面向詞擷取 8
2.3 面向層級情感分類 9
2.4 深度學習模型 13
2.5 標記策略 16
3. 研究方法 18
3.1 系統流程 18
3.2 資料準備階段 19
3.2.1 網路爬蟲 19
3.2.2 資料前處理 20
3.3 意見和非意見段落分類 21
3.4 意見對象擷取 24
3.5 面向層級情感分類 26
4. 實驗設計及結果 29
4.1 資料集 29
4.2 評估方法 30
4.3 實驗結果 32
4.3.1 意見與非意見段落分類效能 32
4.3.2 擷取意見對象效能 35
4.3.3 面向層級情感分類效能 37
5. 結論與未來工作 42
參考文獻 44
自傳 50
[1] https://win.dgbas.gov.tw/fies/a11.asp?year=106(2022.01.02)
[2] Pang, B., Lee, L., and Vaithyanathan, S., “Thumbs up?: Sentiment classification using machine learning techniques,” Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, Vol. 10, pp. 79–86, 2002.
[3] Liu, B., Sentiment Analysis and Opinion Mining, Morgan & Claypool, California, pp. 58–89, 2012.
[4] Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., and Manandhar, S., “SemEval-2014 Task 4: Aspect Based Sentiment Analysis,” Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27-35, 2014.
[5] Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., and Androutsopoulos, I., “SemEval-2015 Task 12: Aspect Based Sentiment Analysis,” Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495.
[6] Liu, B., Sentiment Analysis and subjectivity, Handbook of Natural Language Processing 2, pp. 627-666, 2010.
[7] Li, G.-R., and Chang, C.-H., “Semantic role labeling for opinion target extraction from chinese social network,” Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1042–1047, 2019.
[8] Schuster, M., and Paliwal, K. K., “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, Vol. 45, No. 11, pp. 2673–2681, 1997.
[9] Lafferty, J., McCallum, A., and Pereira, F. C. N., “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data,” Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289, 2001.
[10] Luo, H., Li, T., Liu, B., Wang, B., and Unger, H., “Improving Aspect Term Extraction with Bidirectional Dependency Tree Representation,” Proceedings of the 2019 IEEE/ACM Transactions on Audio, Speech, and Language Processing, pp. 1201-1212, 2019.
[11] Xiang, Y., He, H., and Zheng, J., “Aspect Term Extraction Based on MFE-CRF,” Information, Vol. 9, No. 8, pp. 198-212, 2018.
[12] Zhang, Q., and Shi, C., “Exploiting BERT with Global-Local Context and Label Dependency for Aspect Term Extraction,” 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 354–362, 2020.
[13] Xu, H., Liu, B., Shu, L., and Yu, P. S., “Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction,” Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Vol. 2, pp. 592–598, 2018.
[14] Zeng, B., Yang, H., Xu, R., Zhou, W., and Han, X., “LCF: A Local Context Focus Mechanism for Aspect-Based Sentiment Classification,” Applied Sciences, Vol. 9, No. 16, pp. 3389-3410, 2019.
[15] Caruana, R., “Multitask Learning,” Machine Learning, Vol. 28, No. 1, pp. 41-75, 1997.
[16] Yang, H., Zeng, B., Yang, J., Song, Y., and Xu, R., “A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction,” Neuro computing, Vol. 419, pp. 344–356, 2021.
[17] Luo, H., Li, T., Liu, B. and Zhang, J., “DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction,” Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 591–601, 2019.
[18] Li, X., Bing, L., Zhang, W., and Lam, W., “Exploiting BERT for End-to-End Aspect-based Sentiment Analysis,” Proceedings of the 5th Workshop on Noisy User-Generated Text (W-NUT 2019), pp. 34–41, 2019.
[19] Saeidi, M., Bouchard, G., Liakata, M., and Riedel, S., “SentiHood: Targeted Aspect Based Sentiment Analysis Dataset for Urban Neighbourhoods,” Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1546-1556, 2016.
[20] Wan, H., Yang, Y., Du, J., Liu, Y., Qi, K., and Pan, J. Z., “Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis,” Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 5, pp. 9122–9129, 2020.
[21] Hochreiter, S., and Schmidhuber, J., “Long short-term memory,” Neural computation, Vol. 9, No. 8, pp. 1735–1780, 1997.
[22] Pal, S., Ghosh, S., and Nag, A., “Sentiment Analysis in the Light of LSTM Recurrent Neural Networks,” International Journal of Synthetic Emotions, Vol. 9, pp. 33–39, 2018.
[23] Senevirathne, L., Demotte, P., Karunanayake, B., Munasinghe, U., and Ranathunga, S., “Sentiment Analysis for Sinhala Language using Deep Learning Techniques,” arXiv e-prints, Vol. 2011, No. 7280, pp. 1-12, 2020.
[24] Devlin, J., Chang, M. W., Lee, K. and Toutanova, K., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, pp. 4171–4186, 2019.
[25] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I., “Attention Is All You Need,” arXiv e-prints, Vol. 1706, No. 3762, pp. 1-15, 2017.
[26] Shen, Y., and Liu, J., “Comparison of Text Sentiment Analysis based on Bert and Word2vec,” 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), pp. 144–147, 2021.
[27] Mikolov, T., Chen, K., Corrado, G., and Dean, J., “Efficient Estimation of Word Representations in Vector Space,” arXiv e-prints, Vol. 1301, No. 3781, pp. 1-12, 2013.
[28] Lee, C.-C., Gao, Z., and Tsai, C.-L., “BERT-Based Stock Market Sentiment Analysis,” 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), pp. 1–2, 2020.
[29] Tang, D., Qin, B., and Liu, T., “Aspect Level Sentiment Classification with Deep Memory Network,” Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 214–224, 2016.
[30] Mitchell, M., Aguilar, J., Wilson, T., and Durme, B. V., “Open Domain Targeted Sentiment,” Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1643–1654, 2013.
[31] Li, X., Bing, L., Li, P., and Lam, W., “A Unified Model for Opinion Target Extraction and Target Sentiment Prediction,” Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, pp. 6714-6721, 2019.
[32] Zhang, M., Zhang, Y., and Vo, D. T., “Neural Networks for Open Domain Targeted Sentiment,” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 612-621, 2015.
[33] Ryan, M., Scraping With Python: Collecting More Data from the Modern Web, O’Reilly Media, Preface, 2018.
[34] https://pypi.org/project/requests/(2021.12.10)
[35] https://www.crummy.com/software/BeautifulSoup/bs4/doc/(2021.12.10)
[36] Sang, E. F. T. K., and Veenstra, J., “Representing text chunks,” Proceedings of the Ninth Conference on European Chapter of the Association for Computational Linguistics, pp. 173-179, 1999.
[37] Zhang, H., Gan, W., and Jiang, B., “Machine Learning and Lexicon Based Methods for Sentiment Classification: A Survey,” 2014 11th Web Information System and Application Conference, pp. 262-265, 2014.
[38] Sharma, A., and Dey, S., “A comparative study of feature selection and machine learning techniques for Sentiment analysis,” Proceedings of the 2012 ACM Research in Applied Computation Symposium, pp. 1-7, 2012.
[39] https://github.com/ldkrsi/jieba-zh_TW(2021.11.1)
[40] Augustyniak, Ł., Kajdanowicz, T., and Kazienko, P., “Aspect Detection using Word and Char Embeddings with (Bi)LSTM and CRF,” 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 43–50, 2019.
[41] Chen, T., Xu, R., He, Y., and Wang, X., “Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN,” Expert Systems with Applications, Vol. 72, pp. 221–230, 2017.
電子全文 電子全文(網際網路公開日期:20240501)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊