跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/17 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳慶福
研究生(外文):WU, CHIN-FU
論文名稱:探索智慧物聯網研究:文獻計量分析與主題建模方法
論文名稱(外文):Exploring Artificial Intelligence of Things Research: Bibliometric Analysis and Topic Modeling
指導教授:陳良駒陳良駒引用關係陳樂惠陳樂惠引用關係
指導教授(外文):CHEN, LIANG-CHUCHEN, LE-HUI
口試委員:王楨松陳樂惠鄭麗珍陳良駒
口試委員(外文):WANG,CHEN-SONGCHEN, LE-HUICHENG, LI-CHENCHEN, LIANG-CHU
口試日期:2022-05-11
學位類別:碩士
校院名稱:國防大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:160
中文關鍵詞:智慧物聯網文獻計量分析主題建模潛在狄利克雷分佈
外文關鍵詞:artificial intelligence of thingsbibliometric analysistopic modelinglatent dirichlet allocation
ORCID或ResearchGate:https://orcid.org/0000-0001-9626-6564
相關次數:
  • 被引用被引用:1
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
為清楚勾勒出智慧物聯網研究發展樣貌,本研究探索Web of Science 1975年至2021年5,436篇「智慧物聯網」為主題的文獻。經文獻計量分析發現:(1)文獻出版年份為2012-2021年,2012-2016年為生長期,2017-2021年為發展期;(2)《IEEE Internet of Things Journal》是AIoT議題最具影響力的期刊;(3)‪中國大陸、美國、印度發表篇數分居前3名,臺灣位居第9名;(4) AIoT文獻可區分「工業4.0管理、智慧城市治理及未來挑戰」等7個集群。
以潛在狄利克雷分佈(Latent Dirichlet allocation, LDA)發現文獻聚焦在「智慧醫療」等6個主題。綜觀文獻計量分析關鍵字共現聚類,以及LDA潛在主題重點,均關注智慧醫療、工業4.0、資通安全及隱私保護的議題。
就AIoT國防應用,提列「智慧物聯網多元軍事應用」等2項建議,並對國軍人事等8個業務工作面向,提供「人才招募客服聊天機器人」等21項AIoT可行方案,藉由導入智慧物聯網,提升智慧國防戰力,帶動全民支持及參與國防。
透過上述研究發現,以及文獻計量分析、LDA主題建模的分析過程,可有效探討智慧物聯網研究,迅速掌握領域研究樣貌,並且提供後續相關研究納為參考與指引。

In order to clearly outline the development of “Artificial Intelligence of Things (AIoT)” research, this study explores 5,436 AIoT related literatures in Web of Science from 1975 to 2021. Through bibliometric analysis, it is found that: (1) the publication year of the articles is 2012-2021, 2012-2016 is the growth period, and 2017-2021 is the development period; (2) “IEEE Internet of Things Journal” is the most influential journal on AIoT issues; (3) China, the U.S., and India are the top three publish the most journals. Taiwan is ranked 9th; (4) AIoT articles can be divided into 7 clusters, including “ industry 4.0, smart city management and future challenges”.
Based on the latent dirichlet allocation (LDA), the literature focuses on 6 topics, including smart healthcare. Keywords co-occurrence and latent topics, all focus on the issues of smart healthcare, industry 4.0, information security and privacy. About AIoT in national defense, 2 suggestions are listed, including “multiple military applications on AIoT”.
Through the above findings and analysis process, it is easy to explore AIoT research, and provide follow-up related research for reference and guidance.

謝辭 i
中文摘要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 xi
第一章、緒論 1
1.1研究背景與動機 1
1.2研究目的 4
1.3研究限制 5
1.4論文架構 5
第二章、文獻探討 7
2.1智慧物聯網 7
2.1.1起源 7
2.1.2網路構聯與運算 8
2.1.3智慧物聯網應用案例 11
2.2文獻計量分析 16
2.3主題建模 20
第三章、研究方法與研究架構 30
3.1研究架構 30
3.2資料蒐集階段 34
3.3詞彙處理階段 36
3.4資料分配階段 40
3.5演算分析階段 41
第四章、研究結果與分析 48
4.1文獻計量 48
4.1.1文獻年份統計 48
4.1.2文獻領域 50
4.1.3期刊統計 51
4.1.4作者統計、合著作者 54
4.1.5機構出版量、合著機構 57
4.1.6 出版地、合著出版地 62
4.1.7關鍵字共現聚類 65
4.2LDA主題建模 72
4.2.1 LDA分析題目、摘要、關鍵字 72
4.2.2 LDA分析關鍵字 79
第五章、智慧物聯網於國防應用之建議 90
5.1國際上的AI國家戰略、智慧國防 90
5.2國軍智慧國防 91
5.3研究發現對國軍智慧國防的建議 93
第六章、研究結論 103
6.1結論 103
6.1.1智慧物聯網-文獻計量 103
6.1.2智慧物聯網-主題建模 105
6.2研究建議 105
6.3研究貢獻 107
6.3.1學術貢獻 107
6.3.2實務貢獻 108
參考文獻 109
中文部分 109
英文部分 109
網路部份 137


表目錄
表2-1:AIoT研究文獻一覽表 14
表2-2:文獻計量分析AIoT文獻研究案例 19
表2-3:LDA在各領域研究案例 26
表2-4:LDA主題建模分析科學文獻研究案例表 27
表3-1:NLTK套件預設停用詞 39
表4-1:數據集出版篇數統計 49
表4-2:WoS研究領域統計排序 51
表4-3:期刊出版AIoT篇數排序 52
表4-4:期刊g-index高被引影響力 53
表4-5:g-index高被引影響力作者 54
表4-6:合著作者出版篇數排序 55
表4-7:學術研究機構出版量排序 57
表4-8:學術研究贊助機構篇數排序 58
表4-9:國防科技研究贊助機構篇數排序 60
表4-10:合著機構出版量排序 61
表4-11:出版地發表量排序 63
表4-12:出版地合著出版篇數排序 64
表4-13:高詞頻關鍵字 66
表4-14:關鍵字iot及其高度關聯的關鍵字 67
表4-15:AIoT數據集共現次數≧10且前10個高詞頻關鍵字 72
表4-16:題目、摘要、關鍵字的主題詞分佈 78
表4-17:關鍵字的主題詞分佈 85
表4-18:LDA主題重點對照表 87
表4-19:LDA主題建模與文獻計量分析成果一覽表 88
表5-1:智慧物聯網多元軍事應用建議項目 101
表6-1:文獻計量分析與LDA方法論比較 107

圖目錄
圖2-1:潛在主題n維度示意 21
圖2-2:LDA主題建模流程 22
圖2-3:LDA模型板塊符號示意 22
圖2-4:文檔-主題、主題-主題詞機率分佈示意 24
圖3-1:研究架構流程 31
圖3-2:文獻數據集示意 32
圖3-3:VOSviewer軟體操作介面示意圖 33
圖3-4:VOSviewer數據示意 33
圖3-5:Web of Science (WoS) 文獻資料庫網頁示意 35
圖3-6:原始文檔資料示意 37
圖3-7:LDA主題建模成果示意 45
圖3-8:LDA主題距離圖示意 45
圖4-1:數據集2012-2021年出版篇數 50
圖4-2:合著網路圖-以作者Mohsen Guizani為例 56
圖4-3:合著網路圖-作者Mohsen Guizani最常合作的作者 56
圖4-4:機構合著網路圖-以King Saud University為例 61
圖4-5:機構合著網路圖-King Saud University最常合作的機構 62
圖4-6:出版地合著網路圖-以中國大陸為例 64
圖4-7:出版地合著網路圖-中國大陸最常合作的出版地 65
圖4-8:關鍵字共現網路圖-iot及其高度關聯的關鍵字 67
圖4-9:AIoT數據集關鍵字共現網路 68
圖4-10:連貫性數據圖-題目、摘要、關鍵字進行LDA為例 73
圖4-11:題目、摘要、關鍵字的主題距離圖-以主題1為例 73
圖4-12:關鍵字的連貫性Coherence數據圖 80
圖4-13:關鍵字的主題距離圖-以主題4為例 81
圖5-1:美國國防部聯合人工智慧中心(JAIC)官網示意圖 91


中文部分

邵軒磊,(2019),機器學[習]:以文字探勘法探索習近平時期之大外宣戰略,中國大陸研究,第62卷第4期,第133-157頁。
温延傑、李伯倫、許家得,(2021),穿戴式科技與AI人工智慧應用於網球運動之探討,屏東大學體育,第7期,第85-95頁。
鍾寶弘、何維華、徐敬亭、蔚順華,(2020),2019未來科技展:新一代精準舉重訓練台,人文與社會科學簡訊,第21卷第2期,第31-40頁。
蘇孟宗、陳右怡,(2018),人工智慧驅策臺灣產業跨域創新,國土及公共治理季刊, 第6卷第4期, 第40-49頁。
許有進,(2018),臺灣發展人工智慧之挑戰與機會,國土及公共治理季刊,第6卷第4期,第28-39頁。

英文部分

Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., & Guizani, M. (2021). A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet of Things Journal, 8(7), 5476-5497. https://doi.org/10.1109/jiot.2020.3030072
Adhitya, Y., Prakosa, S. W., Köppen, M., & Leu, J.-S. (2020). Feature Extraction for Cocoa Bean Digital Image Classification Prediction for Smart Farming Application. Agronomy, 10(11). https://doi.org/10.3390/agronomy10111642
Ahmed, A. A., & Echi, M. (2021). Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras. IEEE Access, 9, 63283-63293. https://doi.org/10.1109/access.2021.3074319
Al-amri, R., Murugesan, R. K., Man, M., Abdulateef, A. F., Al-Sharafi, M. A., & Alkahtani, A. A. (2021). A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data. Applied Sciences, 11(12). https://doi.org/10.3390/app11125320
Al-Garadi, M. A., Mohamed, A., Al-Ali, A. K., Du, X., Ali, I., & Guizani, M. (2020). A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. IEEE Communications Surveys & Tutorials, 22(3), 1646-1685. https://doi.org/10.1109/comst.2020.2988293
Al-Handarish, Y., Omisore, O. M., Chen, J., Cao, X., Akinyemi, T. O., Yan, Y., & Wang, L. (2021). A Hybrid Microstructure Piezoresistive Sensor with Machine Learning Approach for Gesture Recognition. Applied Sciences, 11(16). https://doi.org/10.3390/app11167264
Al-Taleb, N., & Saqib, N. (2022). Towards a Hybrid Machine Learning Model for Intelligent Cyber Threat Identification in Smart City Environments. Applied Sciences, 12(4). https://doi.org/10.3390/app12041863
Alazba, A., Abouhagar, L., Al-Harbi, R., Al-Jamimi, H. A., Sultan, A., & Al-Zaidy, R. A. (2022). Detection of Research Trends using Dynamic Topic Modeling 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA).
Allam, Z., & Jones, D. S. (2020). On the Coronavirus (COVID-19) Outbreak and the Smart City Network: Universal Data Sharing Standards Coupled with Artificial Intelligence (AI) to Benefit Urban Health Monitoring and Management. Healthcare (Basel), 8(1). https://doi.org/10.3390/healthcare8010046
Araar, O., Amamra, A., Abdeldaim, A., & Vitanov, I. (2020). Traffic Sign Recognition Using a Synthetic Data Training Approach. International Journal on Artificial Intelligence Tools, 29(05). https://doi.org/10.1142/s021821302050013x
Ashton, K. (2009) That “Internet of Things” Thing. RFiD Journal, 22(7), 97-114.
Balamurali, B. T., Hee, H. I., Kapoor, S., Teoh, O. H., Teng, S. S., Lee, K. P., Herremans, D., & Chen, J. M. (2021). Deep Neural Network-Based Respiratory Pathology Classification Using Cough Sounds. Sensors (Basel), 21(16). https://doi.org/10.3390/s21165555
Balogh, S., Gallo, O., Ploszek, R., Špaček, P., & Zajac, P. (2021). IoT Security Challenges: Cloud and Blockchain, Postquantum Cryptography, and Evolutionary Techniques. Electronics, 10(21). https://doi.org/10.3390/electronics10212647
Barnawi, A., Chhikara, P., Tekchandani, R., Kumar, N., & Alzahrani, B. (2021). Artificial intelligence-enabled Internet of Things-based system for COVID-19 screening using aerial thermal imaging. Future Gener Comput Syst, 124, 119-132. https://doi.org/10.1016/j.future.2021.05.019
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012
Bastani, K., Namavari, H., & Shaffer, J. (2019). Latent Dirichlet allocation (LDA) for topic modeling of the CFPB consumer complaints. Expert Systems with Applications, 127, 256-271. https://doi.org/10.1016/j.eswa.2019.03.001
Blair, S. J., Bi, Y., & Mulvenna, M. D. (2019). Aggregated topic models for increasing social media topic coherence. Applied Intelligence, 50(1), 138-156. https://doi.org/10.1007/s10489-019-01438-z
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
Boje, C., Guerriero, A., Kubicki, S., & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114. https://doi.org/10.1016/j.autcon.2020.103179
Broadus, R. N. (1987). Toward a definition of “bibliometrics”. Scientometrics, 12(5), 373-379.
Cao, J., Xia, T., Li, J., Zhang, Y., & Tang, S. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72(7-9), 1775-1781. https://doi.org/10.1016/j.neucom.2008.06.011
Caputo, A., Pizzi, S., Pellegrini, M. M., & Dabić, M. (2021). Digitalization and business models: Where are we going? A science map of the field. Journal of Business Research, 123, 489-501. https://doi.org/10.1016/j.jbusres.2020.09.053
Chae, S. S., & Warde, W. D. (2006). Effect of using principal coordinates and principal components on retrieval of clusters. Computational Statistics & Data Analysis, 50(6), 1407-1417. https://doi.org/10.1016/j.csda.2005.01.013
Chang, C.-Y., Ko, K.-S., Guo, S.-J., Hung, S.-S., & Lin, Y.-T. (2020). CO Multi-Forecasting Model for Indoor Health and Safety Management in Smart Home. Journal of Internet Technology, 21(1), 273-284. https://doi.org/10.3966/160792642020012101023
Chen, C.-J., Huang, Y.-Y., Li, Y.-S., Chang, C.-Y., & Huang, Y.-M. (2020). An AIoT Based Smart Agricultural System for Pests Detection. IEEE Access, 8, 180750-180761. https://doi.org/10.1109/access.2020.3024891
Chen, H., Cai, M., Huang, K., Jin, S., & Xiao, Z. (2021). Classification and Evolution Analysis of Key Transportation Technologies Based on Bibliometrics. Scientific Programming, 2021, 1-13. https://doi.org/10.1155/2021/2977998
Chen, J., & Ran, X. (2019). Deep Learning With Edge Computing: A Review. Proceedings of the IEEE, 107(8), 1655-1674. https://doi.org/10.1109/jproc.2019.2921977
Chen, M.-C., Cheng, Y.-T., & Chen, R.-W. (2021). Improve the Accuracy of Fall Detection Based on Artificial Intelligence Algorithm. Computer Modeling in Engineering & Sciences, 128(3), 1103-1119. https://doi.org/10.32604/cmes.2021.015589
Chen, S. Y., Wei, L. F., Huang, M. H., & Ho, C. M. (2021). Academic Publication of Anesthesiology From a Bibliographic Perspective From 1999 to 2018: Comparative Analysis Using Subject-Field Dataset and Department Dataset. Front Med (Lausanne), 8, 658833. https://doi.org/10.3389/fmed.2021.658833
Chen, Y. M., Kao, Y., Hsu, C. C., Chen, C. J., Ma, Y. S., Shen, Y. T., Liu, T. L., Hsu, S. L., Lin, H. J., Wang, J. J., Huang, C. C., & Liu, C. F. (2021). Real-time interactive artificial intelligence of things-based prediction for adverse outcomes in adult patients with pneumonia in the emergency department. Acad Emerg Med, 28(11), 1277-1285. https://doi.org/10.1111/acem.14339
Chen, Z., Hu, G., Zheng, M., Song, X., & Chen, L. (2021). Bibliometrics of Machine Learning Research Using Homomorphic Encryption. Mathematics, 9(21). https://doi.org/10.3390/math9212792
Chen, Z., Shi, X., Zhang, W., & Qu, L. (2020). Understanding the Complexity of Teacher Emotions From Online Forums: A Computational Text Analysis Approach. Front Psychol, 11, 921. https://doi.org/10.3389/fpsyg.2020.00921
Chiu, P.-S., Chang, J.-W., Lee, M.-C., Chen, C.-H., & Lee, D.-S. (2020). Enabling Intelligent Environment by the Design of Emotionally Aware Virtual Assistant: A Case of Smart Campus. IEEE Access, 8, 62032-62041. https://doi.org/10.1109/access.2020.2984383
Chu, W. C.-C., Shih, C., Chou, W.-Y., Ahamed, S. I., & Hsiung, P.-A. (2019). Artificial Intelligence of Things in Sports Science: Weight Training as an Example. Computer, 52(11), 52-61. https://doi.org/10.1109/mc.2019.2933772
Colares, G. S., Dell'Osbel, N., Wiesel, P. G., Oliveira, G. A., Lemos, P. H. Z., da Silva, F. P., Lutterbeck, C. A., Kist, L. T., & Machado, E. L. (2020). Floating treatment wetlands: A review and bibliometric analysis. Sci Total Environ, 714, 136776. https://doi.org/10.1016/j.scitotenv.2020.136776
Dayan, I., Roth, H. R., Zhong, A., Harouni, A., Gentili, A., Abidin, A. Z., ... & Li, Q. (2021). Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med, 27(10), 1735-1743. https://doi.org/10.1038/s41591-021-01506-3
De Clercq, D., Wen, Z., & Song, Q. (2019). Innovation hotspots in food waste treatment, biogas, and anaerobic digestion technology: A natural language processing approach. Sci Total Environ, 673, 402-413. https://doi.org/10.1016/j.scitotenv.2019.04.051
Ding, Z., Liu, R., Li, Z., & Fan, C.(2020). A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management. Energies, 13(18). https://doi.org/10.3390/en13184621
Dong, B., Shi, Q., Yang, Y., Wen, F., Zhang, Z., & Lee, C. (2021). Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy, 79. https://doi.org/10.1016/j.nanoen.2020.105414
Dong, Y., Liu, Y., Yu, J., Qi, S., & Liu, H. (2021). Mapping research trends in diabetic retinopathy from 2010 to 2019: A bibliometric analysis. Medicine (Baltimore), 100(3), e23981. https://doi.org/10.1097/MD.0000000000023981
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
Droste, N., D'Amato, D., & Goddard, J. J. (2018). Where communities intermingle, diversity grows - The evolution of topics in ecosystem service research. PLoS One, 13(9), e0204749. https://doi.org/10.1371/journal.pone.0204749
Duraisamy, A., Subramaniam, M., & Rene Robin, C. R. (2021). An Optimized Deep Learning Based Security Enhancement and Attack Detection on IoT Using IDS and KH-AES for Smart Cities. Studies in Informatics and Control, 30(2), 121-131. https://doi.org/10.24846/v30i2y202111
Eck, N. J. v., & Waltman, L. (2020). VOSviewer Manual 1.6.16. Leiden: Univeristeit Leiden, 1(1), 1-53.
Effoduh, J. O. (2016). The Fourth Industrial Revolution by Klaus Schwab. The Transnational Human Rights Review 3. http://digitalcommons.osgoode.yorku.ca/thr/vol3/iss1/4
Elsaeidy, A. A., Jamalipour, A., & Munasinghe, K. S. (2021). A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a Smart City. Ieee Access, 9, 154864-154875. https://doi.org/10.1109/access.2021.3128701
Elsisi, M., Tran, M. Q., Mahmoud, K., Lehtonen, M., & Darwish, M. M. F. (2021). Deep Learning-Based Industry 4.0 and Internet of Things towards Effective Energy Management for Smart Buildings. Sensors (Basel), 21(4). https://doi.org/10.3390/s21041038
Fan, A., Doshi‐Velez, F., & Miratrix, L. (2019). Assessing topic model relevance: Evaluation and informative priors. Statistical Analysis and Data Mining: The ASA Data Science Journal, 12(3), 210-222. https://doi.org/10.1002/sam.11415
Fei, J., Yao, Q., Chen, M., Wang, X., Fan, J., & Yang, T. (2020). The Abnormal Detection for Network Traffic of Power IoT Based on Device Portrait. Scientific Programming, 2020, 1-9. https://doi.org/10.1155/2020/8872482
Fenty, J. (2004). Analyzing distances. The Stata Journal, 4(1), 1–26. https://doi:10.1177/1536867X0100400101
Ferasso, M., Beliaeva, T., Kraus, S., Clauss, T., & Ribeiro‐Soriano, D. (2020). Circular economy business models: The state of research and avenues ahead. Business Strategy and the Environment, 29(8), 3006-3024. https://doi.org/10.1002/bse.2554
Ge, M., Syed, N. F., Fu, X., Baig, Z., & Robles-Kelly, A. (2021). Towards a deep learning-driven intrusion detection approach for Internet of Things. Computer Networks, 186. https://doi.org/10.1016/j.comnet.2020.107784
Goap, A., Sharma, D., Shukla, A. K., & Rama Krishna, C. (2018). An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture, 155, 41-49. https://doi.org/10.1016/j.compag.2018.09.040
Guo, Y.-M., Huang, Z.-L., Guo, J., Li, H., Guo, X.-R., & Nkeli, M. J. (2019). Bibliometric Analysis on Smart Cities Research. Sustainability, 11(13). https://doi.org/10.3390/su11133606
Guo, Y.-M., Huang, Z.-L., Guo, J., Guo, X.-R., Li, H., Liu, M.-Y., Ezzeddine, S., & Nkeli, M. J. (2021). A bibliometric analysis and visualization of blockchain. Future Generation Computer Systems, 116, 316-332. https://doi.org/10.1016/j.future.2020.10.023
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
Han, W., Han, X., Zhou, S., & Zhu, Q. (2022, Jan 27). The Development History and Research Tendency of Medical Informatics: Topic Evolution Analysis. JMIR Med Inform, 10(1), e31918. https://doi.org/10.2196/31918
Haseeb, K., Almogren, A., Ud Din, I., Islam, N., & Altameem, A. (2020, Apr 27). SASC: Secure and Authentication-Based Sensor Cloud Architecture for Intelligent Internet of Things. Sensors (Basel), 20(9). https://doi.org/10.3390/s20092468
Hina, M., Ali, M., Javed, A. R., Ghabban, F., Khan, L. A., & Jalil, Z. (2021). SeFACED: Semantic-Based Forensic Analysis and Classification of E-Mail Data Using Deep Learning. IEEE Access, 9, 98398-98411. https://doi.org/10.1109/access.2021.3095730
Hu, B., Dong, X., Zhang, C., Bowman, T. D., Ding, Y., Milojević, S., Ni, C., Yan, E., & Larivière, V. (2015). A lead-lag analysis of the topic evolution patterns for preprints and publications. Journal of the Association for Information Science and Technology, 66(12), 2643-2656. https://doi.org/10.1002/asi.23347
Huang, Y., Nazir, S., Ma, X., Kong, S., Liu, Y., & Ahmad, M. (2021). Acquiring Data Traffic for Sustainable IoT and Smart Devices Using Machine Learning Algorithm. Security and Communication Networks, 2021, 1-11. https://doi.org/10.1155/2021/1852466
Humberto, M., Moura, F., & Giannotti, M. (2022). Incorporating children's views and perceptions about urban mobility: Implementation of the “philosophy with children” inquiry approach with young children. Travel Behaviour and Society, 26, 168-177. https://doi.org/10.1016/j.tbs.2021.10.003
Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Communications Surveys & Tutorials, 22(3), 1686-1721. https://doi.org/10.1109/comst.2020.2986444
Hwang, R.-H., Peng, M.-C., Nguyen, V.-L., & Chang, Y.-L. (2019). An LSTM-Based Deep Learning Approach for Classifying Malicious Traffic at the Packet Level. Applied Sciences, 9(16). https://doi.org/10.3390/app9163414
Islam, M. M., Poly, T. N., Alsinglawi, B., Lin, L. F., Chien, S. C., Liu, J. C., & Jian, W. S. (2021). Application of Artificial Intelligence in COVID-19 Pandemic: Bibliometric Analysis. Healthcare (Basel), 9(4). https://doi.org/10.3390/healthcare9040441
Jaitrong, T., & Nanthaamornphong, A. (2022). Classification of Tourism-Related Topics in Phuket: A Case Study. 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), 218-222.
Jan, M. A., Khan, F., Khan, R., Mastorakis, S., Menon, V. G., Alazab, M., & Watters, P. (2021). A Lightweight Mutual Authentication and Privacy-preservation Scheme for Intelligent Wearable Devices in Industrial-CPS. IEEE Trans Industr Inform, 17(8), 5829-5839. https://doi.org/10.1109/tii.2020.3043802
Janmaijaya, M., Shukla, A. K., Muhuri, P. K., & Abraham, A. (2021). Industry 4.0: Latent Dirichlet Allocation and clustering based theme identification of bibliography. Engineering Applications of Artificial Intelligence, 103. https://doi.org/10.1016/j.engappai.2021.104280
Jarneving, B. (2007). Bibliographic coupling and its application to research-front and other core documents. Journal of Informetrics, 1(4), 287-307. https://doi.org/10.1016/j.joi.2007.07.004
Jeflea, F. V., Danciulescu, D., Sitnikov, C. S., Filipeanu, D., Park, J. O., & Tugui, A. (2022). Societal Technological Megatrends: A Bibliometric Analysis from 1982 to 2021. Sustainability, 14(3). https://doi.org/10.3390/su14031543
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211. https://doi.org/10.1007/s11042-018-6894-4
Jiang, J. C., Kantarci, B., Oktug, S., & Soyata, T. (2020). Federated Learning in Smart City Sensing: Challenges and Opportunities. Sensors (Basel), 20(21). https://doi.org/10.3390/s20216230
Kang, H. J., Han, J., & Kwon, G. H. (2021, Jan 21). Determining the Intellectual Structure and Academic Trends of Smart Home Health Care Research: Coword and Topic Analyses. J Med Internet Res, 23(1), e19625. https://doi.org/10.2196/19625
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004
Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25. https://doi.org/10.1002/asi.5090140103
Kiba-Janiak, M., Marcinkowski, J., Jagoda, A., & Skowrońska, A. (2021). Sustainable last mile delivery on e-commerce market in cities from the perspective of various stakeholders. Literature review. Sustainable Cities and Society, 71. https://doi.org/10.1016/j.scs.2021.102984
Kochovski, P., Gec, S., Stankovski, V., Bajec, M., & Drobintsev, P. D. (2019). Trust management in a blockchain based fog computing platform with trustless smart oracles. Future Generation Computer Systems, 101, 747-759. https://doi.org/10.1016/j.future.2019.07.030
Kong, L., Liu, X.-Y., Sheng, H., Zeng, P., & Chen, G. (2020). Federated Tensor Mining for Secure Industrial Internet of Things. Ieee Transactions on Industrial Informatics, 16(3), 2144-2153. https://doi.org/10.1109/tii.2019.2937876
Kong, S., Tian, M., Qiu, C., Wu, Z., & Yu, J. (2021). IWSCR: An Intelligent Water Surface Cleaner Robot for Collecting Floating Garbage. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(10), 6358-6368. https://doi.org/10.1109/tsmc.2019.2961687
Kumar, K., & Cava, F. (2018). Principal coordinate analysis assisted chromatographic analysis of bacterial cell wall collection: A robust classification approach. Anal Biochem, 550, 8-14. https://doi.org/10.1016/j.ab.2018.04.008
Kumar, P., Kumar, R., Srivastava, G., Gupta, G. P., Tripathi, R., Gadekallu, T. R., & Xiong, N. N. (2021). PPSF: A Privacy-Preserving and Secure Framework Using Blockchain-Based Machine-Learning for IoT-Driven Smart Cities. IEEE Transactions on Network Science and Engineering, 8(3), 2326-2341. https://doi.org/10.1109/tnse.2021.3089435
Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research, 56(1-2), 508-517. https://doi.org/10.1080/00207543.2017.1351644
Lai, Y. C., Kan, Y. C., Lin, Y. C., & Lin, H. C. (2021). AIoT-Enabled Rehabilitation Recognition System-Exemplified by Hybrid Lower-Limb Exercises. Sensors (Basel), 21(14). https://doi.org/10.3390/s21144761
Lai, Y.-H., Wu, T.-C., Lai, C.-F., Yang, L. T., & Zhou, X. (2021). Cognitive Optimal-Setting Control of AIoT Industrial Applications With Deep Reinforcement Learning. Ieee Transactions on Industrial Informatics, 17(3), 2116-2123. https://doi.org/10.1109/tii.2020.2986501
Latif, S., Zou, Z., Idrees, Z., & Ahmad, J. (2020). A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Lightweight Random Neural Network. IEEE Access, 8, 89337-89350. https://doi.org/10.1109/access.2020.2994079
Lee, A. J., Jones, B. C., & DeBruine, L. M. (2019). Investigating the association between mating-relevant self-concepts and mate preferences through a data-driven analysis of online personal descriptions. Evolution and Human Behavior, 40(3), 325-335. https://doi.org/10.1016/j.evolhumbehav.2019.01.005
Lee, C.-H., Liu, C.-L., Trappey, A. J. C., Mo, J. P. T., & Desouza, K. C. (2021). Understanding digital transformation in advanced manufacturing and engineering: A bibliometric analysis, topic modeling and research trend discovery. Advanced Engineering Informatics, 50. https://doi.org/10.1016/j.aei.2021.101428
Lemay, D. J., Baek, C., & Doleck, T. (2021). Comparison of learning analytics and educational data mining: A topic modeling approach. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100016
Li, D., Luo, Z., & Cao, B. (2021). Blockchain-based federated learning methodologies in smart environments. Cluster Comput, 1-15. https://doi.org/10.1007/s10586-021-03424-y
Li, L., Ota, K., & Dong, M. (2018). Deep Learning for Smart Industry: Efficient Manufacture Inspection System With Fog Computing. Ieee Transactions on Industrial Informatics, 14(10), 4665-4673. https://doi.org/10.1109/tii.2018.2842821
Lin, P.-J., & Ho, C.-T. (2020). Smart Lock Security System Based on Artificial Internet of Things. 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), 2020, 79-81, doi:10.1109/ECICE50847.2020.9302010.
Lin, Y. B., Lee, F. Z., Chang, K. C., Lai, J. S., Lo, S. W., Wu, J. H., & Lin, T. K. (2021). The Artificial Intelligence of Things Sensing System of Real-Time Bridge Scour Monitoring for Early Warning during Floods. Sensors (Basel), 21(14). https://doi.org/10.3390/s21144942
Linus Luotsinen、Daniel Oskarsson、Peter Svenmarck、Ulrika Wickenberg Bolin (2020). Explainable Artificial Intelligence: Exploring XAI Techniques in Military Deep Learning Applications. Swedish Defence Research Agency Report Summary, 54.
Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2020). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research. https://doi.org/https://doi.org/10.1016/j.jbusres.2020.11.001
Loureiro, S. M. C., Guerreiro, J., Eloy, S., Langaro, D., & Panchapakesan, P. (2019). Understanding the use of Virtual Reality in Marketing: A text mining-based review. Journal of Business Research, 100, 514-530. https://doi.org/10.1016/j.jbusres.2018.10.055
Luo, F., Li, R. Y. M., Crabbe, M. J. C., & Pu, R. (2022). Economic development and construction safety research: A bibliometrics approach. Safety Science, 145. https://doi.org/10.1016/j.ssci.2021.105519
Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. P. (2018). Machine learning for internet of things data analysis: a survey. Digital Communications and Networks, 4(3), 161-175. https://doi.org/10.1016/j.dcan.2017.10.002
Malhotra, P., Singh, Y., Anand, P., Bangotra, D. K., Singh, P. K., & Hong, W. C. (2021). Internet of Things: Evolution, Concerns and Security Challenges. Sensors (Basel), 21(5). https://doi.org/10.3390/s21051809
Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Computer Science Review, 27, 16-32. https://doi.org/10.1016/j.cosrev.2017.10.002
Marín-Tordera, E., Masip-Bruin, X., García-Almiñana, J., Jukan, A., Ren, G.-J., & Zhu, J. (2017). Do we all really know what a fog node is? Current trends towards an open definition. Computer Communications, 109, 117-130. https://doi.org/10.1016/j.comcom.2017.05.013
Mas-Verdu, F., Garcia-Alvarez-Coque, J.-M., Nieto-Aleman, P. A., & Roig-Tierno, N. (2021). A systematic mapping review of European Political Science. European Political Science, 20(1), 85-104. https://doi.org/10.1057/s41304-021-00320-2
Miao, H., Wang, Y., Li, X., & Wu, F. (2022). Integrating Technology-Relationship-Technology Semantic Analysis and Technology Roadmapping Method: A Case of Elderly Smart Wear Technology. IEEE Transactions on Engineering Management, 69(1), 262-278. https://doi.org/10.1109/tem.2020.2970972
Mimno, D., Wallach, H., Talley, E., Leenders, M., & McCallum, A. (2011). Optimizing semantic coherence in topic models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 262-272.
Min, Q., Lu, Y., Liu, Z., Su, C., & Wang, B. (2019). Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry. International Journal of Information Management, 49, 502-519. https://doi.org/10.1016/j.ijinfomgt.2019.05.020
Mohammadi, M., Al-Fuqaha, A., Guizani, M., & Oh, J.-S. (2018). Semisupervised Deep Reinforcement Learning in Support of IoT and Smart City Services. IEEE Internet of Things Journal, 5(2), 624-635. https://doi.org/10.1109/jiot.2017.2712560
Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. El Profesional de la Información, 29(1). https://doi.org/10.3145/epi.2020.ene.03
Muslikhin, M., Horng, J. R., Yang, S. Y., Wang, M. S., & Awaluddin, B. A. (2021). An Artificial Intelligence of Things-Based Picking Algorithm for Online Shop in the Society 5.0's Context. Sensors (Basel), 21(8). https://doi.org/10.3390/s21082813
Mustak, M., Salminen, J., Plé, L., & Wirtz, J. (2021). Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda. Journal of Business Research, 124, 389-404. https://doi.org/https://doi.org/10.1016/j.jbusres.2020.10.044
Nazarko, J., Ejdys, J., Gudanowska, A. E., Halicka, K., Kononiuk, A., Magruk, A., & Nazarko, L. (2022). Roadmapping in Regional Technology Foresight: A Contribution to Nanotechnology Development Strategy. IEEE Transactions on Engineering Management, 69(1), 179-194. https://doi.org/10.1109/tem.2020.3004549
Nicolas, C., Kim, J., & Chi, S. (2021). Natural language processing-based characterization of top-down communication in smart cities for enhancing citizen alignment. Sustainable Cities and Society, 66. https://doi.org/10.1016/j.scs.2020.102674
Nie, L., Wu, Y., Wang, X., Guo, L., Wang, G., Gao, X., & Li, S. (2022). Intrusion Detection for Secure Social Internet of Things Based on Collaborative Edge Computing: A Generative Adversarial Network-Based Approach. IEEE Transactions on Computational Social Systems, 9(1), 134-145. https://doi.org/10.1109/tcss.2021.3063538
Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., Packer, C., & Clune, J. (2018). Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc Natl Acad Sci U S A, 115(25), E5716-E5725. https://doi.org/10.1073/pnas.1719367115
Obadimu, A., Khaund, T., Mead, E., Marcoux, T., & Agarwal, N. (2021). Developing a socio-computational approach to examine toxicity propagation and regulation in COVID-19 discourse on YouTube. Information Processing & Management, 58(5). https://doi.org/10.1016/j.ipm.2021.102660
Olsen, T. L., & Tomlin, B. (2020). Industry 4.0: Opportunities and Challenges for Operations Management. Manufacturing & Service Operations Management, 22(1), 113-122.
Ozcan, S., Homayounfard, A., Simms, C., & Wasim, J. (2022). Technology Roadmapping Using Text Mining: A Foresight Study for the Retail Industry. IEEE Transactions on Engineering Management, 69(1), 228-244. https://doi.org/10.1109/tem.2021.3068310
Pandur, M. B., Dobša, J., Kronegger, L. (2020). Topic Modelling in Social Sciences: Case Study of Web of Science. In Central European Conference on Intelligent and Information Systems, 211-218.
Peneti, S., Sunil Kumar, M., Kallam, S., Patan, R., Bhaskar, V., & Ramachandran, M. (2021). BDN-GWMNN: internet of things (IoT) enabled secure smart city applications. Wireless Personal Communications, 119(3), 2469-2485.
Perez, J., Perez, A., Casillas, A., & Gojenola, K. (2018). Cardiology record multi-label classification using latent Dirichlet allocation. Comput Methods Programs Biomed, 164, 111-119. https://doi.org/10.1016/j.cmpb.2018.07.002
Prilianti, K. R., Anam, S., Brotosudarmo, T. H. P., & Suryanto, A. (2020). Real-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile application. Journal of Agricultural Engineering, 51(4), 220-228. https://doi.org/10.4081/jae.2020.1082
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25(4), 348-349
Rahman, M. A., Rashid, M. M., Hossain, M. S., Hassanain, E., Alhamid, M. F., & Guizani, M. (2019). Blockchain and IoT-Based Cognitive Edge Framework for Sharing Economy Services in a Smart City. IEEE Access, 7, 18611-18621. https://doi.org/10.1109/access.2019.2896065
Rehman, E., Haseeb-ud-Din, M., Malik, A. J., Khan, T. K., Abbasi, A. A., Kadry, S., Khan, M. A., & Rho, S. (2022). Intrusion detection based on machine learning in the internet of things, attacks and counter measures. The Journal of Supercomputing, 78(6), 8890-8924. https://doi.org/10.1007/s11227-021-04188-3
Rodrigues, T. K., Suto, K., Nishiyama, H., Liu, J., & Kato, N. (2020). Machine Learning Meets Computation and Communication Control in Evolving Edge and Cloud: Challenges and Future Perspective. IEEE Communications Surveys & Tutorials, 22(1), 38-67. https://doi.org/10.1109/comst.2019.2943405
Rodriguez-Rodriguez, I., Rodriguez, J. V., Shirvanizadeh, N., Ortiz, A., & Pardo-Quiles, D. J. (2021, Aug 13). Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining. International journal of environmental research and public health, 18(16). https://doi.org/10.3390/ijerph18168578
Rong, G., Xu, Y., Tong, X., & Fan, H. (2021). An edge-cloud collaborative computing platform for building AIoT applications efficiently. Journal of Cloud Computing, 10(1). https://doi.org/10.1186/s13677-021-00250-w
Sánchez Sánchez, P. M., Fernández Maimó, L., Huertas Celdrán, A., & Martínez Pérez, G. (2021). AuthCODE: A privacy-preserving and multi-device continuous authentication architecture based on machine and deep learning. Computers & Security, 103. https://doi.org/10.1016/j.cose.2020.102168
Saqib, S., Ditta, A., Adnan Khan, M., Asad Raza Kazmi, S., & Alquhayz, H. (2021). Intelligent Dynamic Gesture Recognition Using CNN Empowered by Edit Distance. Computers, Materials & Continua, 66(2), 2061-2076. https://doi.org/10.32604/cmc.2020.013905
Saura, J. R., Palos-Sanchez, P., & Grilo, A. (2019). Detecting Indicators for Startup Business Success: Sentiment Analysis Using Text Data Mining. Sustainability, 11(3). https://doi.org/10.3390/su11030917
Scarpato, N., Pieroni, A., & Montorsi, M. (2021). SPUCL (Scientific Publication Classifier): A Human-Readable Labelling System for Scientific Publications. Applied Sciences, 11(19), 9154. https://www.mdpi.com/2076-3417/11/19/9154
Schiølin, K. (2020). Revolutionary dreams: Future essentialism and the sociotechnical imaginary of the fourth industrial revolution in Denmark. Social Studies of Science, 50(4), 542-566. https://doi.org/10.1177/0306312719867768
Shao, B., Li, X., & Bian, G. (2021). A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph. Expert Systems with Applications, 165. https://doi.org/10.1016/j.eswa.2020.113764
Sharifi, A., Allam, Z., Feizizadeh, B., & Ghamari, H. (2021). Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends. Sustainability, 13(13). https://doi.org/10.3390/su13137140
Shen, M., Tang, X., Zhu, L., Du, X., & Guizani, M. (2019). Privacy-Preserving Support Vector Machine Training Over Blockchain-Based Encrypted IoT Data in Smart Cities. IEEE Internet of Things Journal, 6(5), 7702-7712. https://doi.org/10.1109/jiot.2019.2901840
Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces, 63-70.
Singh, A., & Glinska-Newes, A. (2022). Modeling the public attitude towards organic foods: a big data and text mining approach. J Big Data, 9(1), 2. https://doi.org/10.1186/s40537-021-00551-6
Singh, S., Rathore, S., Alfarraj, O., Tolba, A., & Yoon, B. (2022). A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology. Future Generation Computer Systems, 129, 380-388. https://doi.org/https://doi.org/10.1016/j.future.2021.11.028
Singh, S. K., Rathore, S., & Park, J. H. (2020). BlockIoTIntelligence: A Blockchain-enabled Intelligent IoT Architecture with Artificial Intelligence. Future Generation Computer Systems, 110, 721-743. https://doi.org/10.1016/j.future.2019.09.002
Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265-269. https://doi.org/10.1002/asi.4630240406
Soomro, K., Bhutta, M. N. M., Khan, Z., & Tahir, M. A. (2019). Smart city big data analytics: An advanced review. WIREs Data Mining and Knowledge Discovery, 9(5). https://doi.org/10.1002/widm.1319
Su, Z., Wang, Y., Luan, T. H., Zhang, N., Li, F., Chen, T., & Cao, H. (2022). Secure and Efficient Federated Learning for Smart Grid With Edge-Cloud Collaboration. IEEE Transactions on Industrial Informatics, 18(2), 1333-1344. https://doi.org/10.1109/tii.2021.3095506
Svenmarck, P.; Luotsinen, L.; Nilsson, M.; Schubert, J. (2018). Possibilities and Challenges for Artificial Intelligence in Military Applications. In Proceedings of the NATO Big Data and Artificial Intelligence for Military Decision Making Specialists’ Meeting, Bordeaux, France.
Taneja, M., Byabazaire, J., Jalodia, N., Davy, A., Olariu, C., & Malone, P. (2020). Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle. Computers and Electronics in Agriculture, 171. https://doi.org/10.1016/j.compag.2020.105286
Teh, P. L., Piao, S., Almansour, M., Ong, H. F., & Ahad, A. (2022). Analysis of Popular Social Media Topics Regarding Plastic Pollution. Sustainability, 14(3). https://doi.org/10.3390/su14031709
Thakkar, A., & Chaudhari, K. (2020). Predicting stock trend using an integrated term frequency–inverse document frequency-based feature weight matrix with neural networks. Applied Soft Computing, 96. https://doi.org/10.1016/j.asoc.2020.106684
Tran, B. X., Ha, G. H., Nguyen, L. H., Vu, G. T., Hoang, M. T., Le, H. T., Latkin, C. A., Ho, C. S. H., & Ho, R. C. M. (2020). Studies of Novel Coronavirus Disease 19 (COVID-19) Pandemic: A Global Analysis of Literature. International journal of environmental research and public health, 17(11). https://doi.org/10.3390/ijerph17114095
Tran, B. X., Ha, G. H., Vu, G. T., Hoang, C. L., Nguyen, S. H., Nguyen, C. T., Latkin, C. A., Tam, W. W., Ho, C. S. H., & Ho, R. C. M. (2020). How have excessive electronics devices and Internet uses been concerned? Implications for global research agenda from a bibliometric analysis. J Behav Addict, 9(2), 469-482. https://doi.org/10.1556/2006.2020.00031
Tran, B. X., McIntyre, R. S., Latkin, C. A., Phan, H. T., Vu, G. T., Nguyen, H. L. T., Gwee, K. K., Ho, C. S. H., & Ho, R. C. M. (2019). The Current Research Landscape on the Artificial Intelligence Application in the Management of Depressive Disorders: A Bibliometric Analysis. International journal of environmental research and public health, 16(12). https://doi.org/10.3390/ijerph16122150
Tran, B. X., Nghiem, S., Afoakwah, C., Ha, G. H., Doan, L. P., Nguyen, T. P., Le, T. T., Latkin, C. A., Ho, C. S. H., & Ho, R. C. M. (2020). Global mapping of interventions to improve the quality of life of patients with cardiovascular diseases during 1990-2018. Health Qual Life Outcomes, 18(1), 254. https://doi.org/10.1186/s12955-020-01507-9
Tran, B. X., Nghiem, S., Sahin, O., Vu, T. M., Ha, G. H., Vu, G. T., Pham, H. Q., Do, H. T., Latkin, C. A., Tam, W., Ho, C. S. H., & Ho, R. C. M. (2019). Modeling Research Topics for Artificial Intelligence Applications in Medicine: Latent Dirichlet Allocation Application Study. J Med Internet Res, 21(11), e15511. https://doi.org/10.2196/15511
Tsai, M.-F., & Huang, J.-Y. (2020). Predicting Canine Posture With Smart Camera Networks Powered by the Artificial Intelligence of Things. Ieee Access, 8, 220848-220857. https://doi.org/10.1109/access.2020.3042539
Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of Artificial Intelligence and Machine learning in smart cities. Computer Communications, 154, 313-323. https://doi.org/10.1016/j.comcom.2020.02.069
Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053-1070. https://doi.org/10.1007/s11192-017-2300-7
Vu, H. Q., Li, G., & Law, R. (2019). Discovering implicit activity preferences in travel itineraries by topic modeling. Tourism Management, 75, 435-446. https://doi.org/10.1016/j.tourman.2019.06.011
Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629-635. https://doi.org/10.1016/j.joi.2010.07.002
Wang, J., Lim, M. K., Wang, C., & Tseng, M.-L. (2021). The evolution of the Internet of Things (IoT) over the past 20 years. Computers & Industrial Engineering, 155. https://doi.org/10.1016/j.cie.2021.107174
Wang, W., Liu, H., Lin, W., Chen, Y., & Yang, J.-A. (2020). Investigation on Works and Military Applications of Artificial Intelligence. IEEE Access, 8, 131614-131625. https://doi.org/10.1109/access.2020.3009840
Wang, W., Xia, F., Nie, H., Chen, Z., Gong, Z., Kong, X., & Wei, W. (2021). Vehicle Trajectory Clustering Based on Dynamic Representation Learning of Internet of Vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3567-3576. https://doi.org/10.1109/tits.2020.2995856
Wang, Y., Zhang, F., Wang, J., Liu, L., Wang, B., & Chaudhry, S. A. (2021). A Bibliometric Analysis of Edge Computing for Internet of Things. Security and Communication Networks, 2021, 1-10. https://doi.org/10.1155/2021/5563868
Wei, F., Vijayakumar, P., Kumar, N., Zhang, R., & Cheng, Q. (2021). Privacy-Preserving Implicit Authentication Protocol Using Cosine Similarity for Internet of Things. IEEE Internet of Things Journal, 8(7), 5599-5606. https://doi.org/10.1109/jiot.2020.3031486
Wu, D., Yang, R., & Shen, C. (2020). Sentiment word co-occurrence and knowledge pair feature extraction based LDA short text clustering algorithm. Journal of Intelligent Information Systems, 56(1), 1-23. https://doi.org/10.1007/s10844-020-00597-7
White, H. D., & McCain, K. W. (1997). Visualization of Literatures. Annual Review of Information Science and Technology, 32, 99-168.
Williams, E. M., Levin, D., & McCulloh, I. (2020). Improving LDA Topic Modeling with Gamma and Simmelian Filtration 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).
Xie, Q., Zhang, X., Ding, Y., & Song, M. (2020). Monolingual and multilingual topic analysis using LDA and BERT embeddings. Journal of Informetrics, 14(3). https://doi.org/10.1016/j.joi.2020.101055
Xie, Y., Ning, C., & Sun, L. (2022). The twenty-first century of structural engineering research: A topic modeling approach. Structures, 35, 577-590. https://doi.org/10.1016/j.istruc.2021.11.018
Xu, R., Cheng, Y., Liu, Z., Xie, Y., & Yang, Y. (2020). Improved Long Short-Term Memory based anomaly detection with concept drift adaptive method for supporting IoT services. Future Generation Computer Systems, 112, 228-242. https://doi.org/10.1016/j.future.2020.05.035
Y. Song, Y. Zhu, G. Li, C. Feng, B. He and T. Yan. Side scan sonar segmentation using deep convolutional neural network. OCEANS 2017 - Anchorage, 2017, 1-4.
Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1-37. https://doi.org/10.1016/j.mser.2017.02.001
Yin, X., Liu, D., Zhou, L., Li, X., Xu, G., Liu, L., Li, S., Zhang, C., Wang, J., & Wang, Z. L. (2020). A Motion Vector Sensor via Direct‐Current Triboelectric Nanogenerator. Advanced Functional Materials, 30(34). https://doi.org/10.1002/adfm.202002547
Zale, A., Lasecke, M., Baeza-Hernandez, K., Testerman, A., Aghakhani, S., Munoz, R. F., & Bunge, E. L. (2021). Technology and psychotherapeutic interventions: Bibliometric analysis of the past four decades. Internet Interv, 25, 100425. https://doi.org/10.1016/j.invent.2021.100425
Zhang, H., Daim, T., & Zhang, Y. (2021). Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technological Forecasting and Social Change, 167. https://doi.org/10.1016/j.techfore.2021.120729
Zhang, T., Zhao, Y., Jia, W., & Chen, M.-Y. (2021). Collaborative algorithms that combine AI with IoT towards monitoring and control system. Future Generation Computer Systems, 125, 677-686. https://doi.org/10.1016/j.future.2021.07.008
Zhang, Y., Tao, J., Wang, J., Ding, L., Ding, C., Li, Y., Zhou, Q., Li, D., & Zhang, H. (2019). Trends in Diatom Research Since 1991 Based on Topic Modeling. Microorganisms, 7(8). https://doi.org/10.3390/microorganisms7080213
Zhao, F., Ren, X., Yang, S., Han, Q., Zhao, P., & Yang, X. (2021). Latent Dirichlet Allocation Model Training With Differential Privacy. IEEE Transactions on Information Forensics and Security, 16, 1290-1305. https://doi.org/10.1109/tifs.2020.3032021
Zhao, L., Tang, Z.-y., & Zou, X. (2019). Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis. Sustainability, 11(23). https://doi.org/10.3390/su11236648
Zhou, X., Liang, W., Wang, K. I. K., Wang, H., Yang, L. T., & Jin, Q. (2020). Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things. IEEE Internet of Things Journal, 7(7), 6429-6438. https://doi.org/10.1109/jiot.2020.2985082
Zhou, X., Wu, P., Zhang, H., Guo, W., & Liu, Y. (2019). Learn to Navigate: Cooperative Path Planning for Unmanned Surface Vehicles Using Deep Reinforcement Learning. IEEE Access, 7, 165262-165278. https://doi.org/10.1109/access.2019.2953326
Zhu, J., Cho, M., Li, Y., He, T., Ahn, J., Park, J., Ren, T.-L., Lee, C., & Park, I. (2021). Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy, 86. https://doi.org/10.1016/j.nanoen.2021.106035
Zou, X., Yue, W. L., & Vu, H. L. (2018). Visualization and analysis of mapping knowledge domain of road safety studies. Accid Anal Prev, 118, 131-145. https://doi.org/10.1016/j.aap.2018.06.010

網路部份

Alan Chen,(2021),天網近了,美陸軍年度會議展出裝備步槍的機器狗,科技新報,網址https://technews.tw/2021/10/13/ghost-robotic-and-sword-international-displaying-spur-robotic-dog-with-6-8-creedmore-rifle/ [visited in 2022/04/09]
Yi-Tzu,(2022),烏克蘭靠「臉部辨識軟體」辨識陣亡的俄士兵,準確率達 99.85%?,科技報橘,網址https://buzzorange.com/techorange/2022/03/31/ukraine-uses-facial-recognition-identify-russian-soldiers/?fbclid=IwAR3PCe22M_UFkumikdd_QqMXxNGy5RIZZC1ATXhrdsBB-tQwieNJbS2E-MU [visited in 2022/04/02]
三軍總醫院,(2021),三總「人工智慧實驗室」啟用 朝向智慧醫院目標邁進,網址https://wwwv.tsgh.ndmctsgh.edu.tw/newsedm/191/10000/24898/1385/205 [visited in 2022/04/09]
中央社,(2022),馬斯克「星鏈」低軌衛星助威,烏克蘭「無人機戰士」奇襲俄羅斯陣地,莫斯科當局盛怒,The News Lens關鍵評論,網址https://www.thenewslens.com/article/164317 [visited in 2022/04/09]
臺灣60Hz,(2021),物流黑科技首曝光! 直擊全台最大AI物流中心!,網址https://www.youtube.com/watch?v=vXKiFEFaJQo [visited in 2022/01/17]
行政院,(2018),臺灣的「AI小國大戰略」,網址https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/50a08776-e33a-4be2-a07c-a6e523f5031b [visited in 2022/04/09]
行政院,(2021),智慧國家方案(2021-2025年),行政院110年5月6日院臺科會字第1100165448號函核定,網址https://digi.ey.gov.tw/Page/2B8DF23893C623DE [visited in 2021/09/03]
李如璇,(2019),AI教育X教育AI-人工智慧教育及數位先進個人化、適性化學習時代來臨!,教育部即時新聞,網址https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=D4C4CD32CAE3FF5D [visited in 2022/04/09]
李家政,(2019),邁向智慧轉型,IBM 2019 Cloud & AI高峰會【創新對談2】-各產業如何發展資料驅動個人化應用,網址https://youtu.be/8MUxXcj3NGM?list=PLaQYbo8ioSNulZq-MLjqScaG5QrRs03d- [visited in 2021/09/03]
林薏禎,(2021),抗衡美中!英國發表十年AI戰略 目標成世界AI強權,鉅亨網,網址https://news.cnyes.com/news/id/4728278 [visited in 2022/04/09]
政治大學,(2021),111年「國防科技學術合作計畫」,網址https://ord.nccu.edu.tw/news/rd_research_c.php?Sn=1364 [visited in 2022/04/09]
范琪斐,(2022),線上資料庫掃臉認屍可行嗎?俄烏戰場成AI人臉辨識實驗室,誤認、錯殺等疑慮陷道德難題,TODAY 看世界,網址https://www.youtube.com/watch?v=eu4fzzCWNG4 [visited in 2022/04/23]
唐詩晴、黃鈺淳,(2022),AI鷹眼防弊系統 眼球追蹤防堵視線飄移,民視新聞網路,網址https://www.ftvnews.com.tw/news/detail/2022328W0118 [visited in 2022/03/28]
高雄市政府,(2020),高雄市政府110年度施政綱要,網址 https://rdec.kcg.gov.tw/cp.aspx?n=4C6C20CC5CB18A7E [visited in 2021/09/03]
國防報告書,(2021),國防部,網址https://www.mnd.gov.tw/PublishForReport.aspx?title=%E8%BB%8D%E4%BA%8B%E5%88%8A%E7%89%A9&Types=%E6%AD%B7%E5%B9%B4%E5%9C%8B%E9%98%B2%E5%A0%B1%E5%91%8A%E6%9B%B8%E5%B0%88%E5%8D%80&SelectStyle=%E6%AD%B7%E5%B9%B4%E5%9C%8B%E9%98%B2%E5%A0%B1%E5%91%8A%E6%9B%B8%E5%B0%88%E5%8D%80 [visited in 2022/04/09]
國家創新獎,(2020),建構MR心肺復甦術+AED教學系統,網址https://innoaward.taiwan-healthcare.org/award_detail.php?REFDOCTYPID=0nimiycqow7g4bru&NumID=0qlrpz320ymd2y07&REFDOCID=0qls4a5ph377cqqq [visited in 2022/04/09]
梁珮綺,(2021),假訊息指香蕉可預防中風 資策會開發AI攔截惡意傳播,中央社,網址https://www.cna.com.tw/news/ait/202111140029.aspx [visited in 2022/04/09]
郭俊良,(2020),基於ARIMA及人工智慧建立航空油料需求預測模型,國防部109年度「補助軍事院校教師(官)從事學術研究」,網址https://www.mnd.gov.tw/Publish.aspx?p=78839&title=%e6%94%bf%e5%ba%9c%e8%b3%87%e8%a8%8a%e5%85%ac%e9%96%8b&SelectStyle=%e6%a5%ad%e5%8b%99%e7%b5%b1%e8%a8%88%e5%8f%8a%e7%a0%94%e7%a9%b6%e5%a0%b1%e5%91%8a [visited in 2022/01/12]
郭俐伶,(2021),資策會研發 AI 假消息偵測技術 拿下有「科技界奧斯卡獎」之稱的R&D 100 Awards!,科技報橘,網址https://buzzorange.com/techorange/2021/10/29/iii-ai-technology/ [visited in 2022/04/09]
游凱翔,(2018),國軍發明大王徐子圭 國機國造導入AI技術,中央社,網址https://www.casid.org.tw/NewsView01.aspx?NewsID=94632cad- e8c9-4fae-80df-57043f68d122 [visited in 2022/04/09]
蘇仲泓,(2022),捍衛海疆!快速布雷艇中隊成軍 海軍不對稱戰力大躍進,新新聞,網址https://www.casid.org.tw/NewsView01.aspx?NewsID=94632cad-e8c9-4fae-80df-57043f68d122 [visited in 2022/04/09]
蘇思云,(2021),東奧舉重郭婞淳奪金 科技部打造AI教練助攻,中央社, https://www.cna.com.tw/news/ait/202107290327.aspx [visited in 2021/09/03]
Aaron Boyd. (2020). The Pentagon's $800M Effort to Embed AI In Decisions in 'All Tiers'. Defense One. 網址https://www.defenseone.com/technology/2020/05/pentagons-800m-effort-let-ai-help-everyone/165523/ [visited in 2022/04/09]
Business Landscape. USA: McKinsey Digit. 網址 https://www.mckinsey.com.br/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Ten%20trends%20shaping%20the%20Internet%20of%20Things%20business%20landscape/Ten-trends-shaping-the-Internet-of-Things-business-landscape.pdf [visited in 2021/09/03]
Chelsia Rose Marcius. (2022). See ‘Spot’ Save: Robot Dogs Join the New York Fire Department. The New York Times. 網址https://www.nytimes.com/2022/03/17/nyregion/fdny-boston-dynamics-spot-robot.html [visited in 2022/04/09]
Daisuke Wakabayashi & Kate Conger. (2021). Google Wants to Work With the Pentagon Again, Despite Employee Concerns. The New York Times. 網址https://www.nytimes.com/2021/11/03/technology/google-pentagon-artificial-intelligence.html [visited in 2022/03/15]
Darryn John. (2022). U.S. Air Force testing SpaceX Starlink as a communications option for supporting F-35A fighter jet. Drive Tesla Canada. 網址https://driveteslacanada.ca/news/u-s-air-force-testing-spacex-starlink-as-a-communications-option-for-supporting-f-35a-fighter-jet/ [visited in 2022/04/09]
Gensim. (2022). Models.ldamodel–Latent Dirichlet Allocation, Gensim, 網址https://radimrehurek.com/gensim_3.8.3/models/ldamodel.html [visited in 2022/04/01]
GOV.UK. (2021a). National AI Strategy, 網址https://www.gov.uk/government/publications/national-ai-strategy [visited in 2022/04/09]
GOV.UK. (2021b). DSTL: The Science Inside. GOV.UK. 網址https://www.gov.uk/government/publications/dstl-the-science-inside/the-science-inside [visited in 2022/04/09]
International Data Corporation. (2020). IoT Growth Demands Rethink of Long-Term Storage Strategies, says IDC, IDC Asia/Pacific, 網址https://www.idc.com/getdoc.jsp?containerId=prAP46737220 [visited in 2021/09/03]
Joseph Trevithick. (2021). Here's How Fighter Pilots Could Control "Loyal Wingmen" Via A Tablet On Their Thigh. The Drive. 網址https://www.thedrive.com/the-war-zone/42282/heres-how-fighter-pilots-could-control-loyal-wingmen-via-a-tablet-on-their-thigh [visited in 2022/04/09]
WIKIPEDIA. (2022). Fourth Industrial Revolution, 網址https://en.wikipedia.org/wiki/Fourth_Industrial_Revolution [visited in 2022/5/18]
Lamarre, E., & May, B. (2019). Ten Trends Shaping the Internet of Things Business Landscape. USA: McKinsey Digit. 網址https://www.mckinsey.com.br/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Ten%20trends%20shaping%20the%20Internet%20of%20Things%20business%20landscape/Ten-trends-shaping-the-Internet-of-Things-business-landscape.pdf [visited in 2021/09/03]
Oriana Pawlyk. (2020). This Air Force Unit Is Getting the Military's First Robot Dogs. Military News. 網址https://www.military.com/daily-news/2020/11/12/air-force-unit-getting-militarys-first-robot-dogs.html [visited in 2022/04/09]
Patrick Tucker. (2021). Tough Conditions and Contested Communication Are Forcing the US Military To Reinvent AI. Defense One. 網址https://www.defenseone.com/technology/2021/05/how-tough-conditions-and-contested-communication-are-forcing-us-military-reinvent-ai/173833/ [visited in 2022/04/09]
Peter Burt. (2022). Skyborg: AI control of military drones begins to take off. Drone Wars UK. 網址https://dronewars.net/2022/01/03/skyborg-ai-control-of-military-drones-begins-to-take-off/ [visited in 2022/04/09]
Pyldavis API. (2022). Topic Models (e.g. LDA) visualization using D3. 網址https://pyldavis.readthedocs.io/en/latest/modules/API.html [visited in 2022/04/09]
Rich Haridy. (2022). Spot goes to Pompeii: Why a robot dog is patrolling ancient ruinst. New Atlas. 網址https://www.nytimes.com/2022/03/17/nyregion/fdny-boston-dynamics-spot-robot.html [visited in 2022/04/09]
Shashank Kapadia. (2019). Evaluate Topic Models: Latent Dirichlet Allocation (LDA), Towards Data Science, 網址https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0 [visited in 2022/04/03]
Stefano D'urso. (2021). The French Air Force Is Testing The New Rafale F4-1 Standard, The Aviationist, 網址https://theaviationist.com/2021/06/01/rafale-f4-standard/ [visited in 2022/04/03]
Tom Simonite. (2021). 3 Years After the Project Maven Uproar, Google Cozies to the Pentagon , Wired, 網址https://www.wired.com/story/3-years-maven-uproar-google-warms-pentagon/ [visited in 2022/03/15]
Web of Science. (2021). 網址https://images.webofknowledge.com/WOKRS535R111/help/zh_TW/WOS/hp_whatsnew_WoS.html [visited in 2021/09/03]
YellowBee's Wiki. (2020). Gensim LDA to Model News Topics,網址http://www.wiki.yelbee.top/2020/04/30/NLP/Gensim%20LDA%20to%20Model%20News%20Topics/ [visited in 2022/04/03]

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊