( 您好!臺灣時間:2023/02/06 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):CHEN, HONG-RU
論文名稱(外文):Preparation of Surface-Enhanced Raman Scattering Substrate and Its Application in Chemical Warfare Agent Detection
外文關鍵詞:Surface-Enhanced RamanFlexible substrateNanosilverChemical Warfare Agent
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
近年恐怖主義興起,典型的大規模化學武器攻擊已隨著時代更迭而改變,由於化學武器的大範圍殺傷力、材料取得容易、製造簡單等特性,已成為主張恐怖主義團體或個人意識所運用激進手段之一,因此對於遭受化學武器危害仍存在著一定風險,故對於提升我國軍化學兵偵(檢)測作業防禦量能仍至關重要。目前傳統的色譜分析方法對樣品具有破壞性,並且需要耗時的樣品製備,不利於平戰時化學兵快速偵(檢)測作業。本研究旨在利用表面增強拉曼光譜 (SERS)特性,使用銀奈米顆粒作為介質,附著於棉棒表層作為表面增強拉曼散射柔性基材,利用棉棒的沾染、擦拭以及吸附的特性,建立一種新穎、簡便、快速的檢測技術。透過拉曼儀器檢測神經性模擬戰劑DMMP(甲基磷酸二甲酯Dimethyl Methyl Phosphonate)、糜爛性模擬戰劑2-CEES(2-氯乙基乙基硫醚2-Chloroethyl ethyl sulfide) 及血液性模擬戰劑乙腈(Acetonitrile)等樣品,來評估 SERS 效果。經證實,使用硝酸銀(AgNO3)與硼氫化納(NaBH4)所產製出的奈米銀,與二乙烯三胺基丙基三甲氧基矽烷(ATS)反應後,可得到分散良好且穩定的奈米銀顆粒,作為 SERS 熱點來增強待測物分子的拉曼信號。此外,當奈米銀吸附於棉棒纖維結構實現了基材與介質之間良好的相互作用。該 SERS 方法對神經性模擬戰劑DMMP檢測限為 1 g/L、糜爛性模擬戰劑2-CEES檢測限為 60 g/L及血液性模擬戰劑乙腈檢測限為 60 g/L。結果表明,奈米銀與棉棒結合是一種實用的方法,期望本研究為化學兵部隊提升檢測作業效率,低成本及簡單方便的分析方式能夠全面提供至基層官兵運用。
With the rise of terrorism in recent years, the typical large-scale chemical weapons attack has changed with the times. Due to the large-scale lethality of chemical weapons, easy acquisition of materials, and simple manufacture, they have become a radical attack by terrorist groups or individuals. Therefore, there is still a certain risk of being harmed by chemical weapons, so it is still very important to improve the defense capacity of my country's military chemical reconnaissance (detection) operations. At present, traditional chromatographic analysis methods are destructive to samples and require time-consuming sample preparation, which is not conducive to the rapid detection (detection) operations of chemical troops in peacetime. The purpose of this study is to utilize the characteristics of surface-enhanced Raman spectroscopy (SERS), using silver nanoparticles as a medium, and attaching to the surface of a cotton swab as a flexible substrate for surface-enhanced Raman scattering. Establish a novel, simple and rapid detection technology. The Raman instrument was used to detect the neural simulated warfare agent DMMP (Dimethyl Methyl Phosphonate), the erosive simulated warfare agent 2-CEES (2-Chloroethyl ethyl sulfide) and the blood Samples such as acetonitrile, a combat agent, were simulated to evaluate the effect of SERS. It has been confirmed that the nano-silver produced by silver nitrate (AgNO3) and sodium borohydride (NaBH4) can be reacted with ATS to obtain well-dispersed and stable nano-silver particles, which can be used as SERS hot spots to enhance the analyte molecules. Raman signal. In addition, when the nanosilver was adsorbed on the cotton swab fiber structure, a good interaction between the substrate and the medium was achieved. The SERS method has a detection limit of 1 g/L for the neural simulated warfare agent DMMP, 60 g/L for the erosive simulated warfare agent 2-CEES and 60 g/L for the blood simulated warfare agent acetonitrile. The results show that the combination of nano-silver and cotton swabs is a practical method. It is expected that this research will improve the efficiency of detection operations for chemical troops, and the low-cost and simple and convenient analysis method can be fully applied to grass-roots officers and soldiers.
1. 緒論
1.1 前言
1.2 研究動機與目的
1.3 研究架構
2. 文獻探討
2.1 化學戰劑種類概述
2.2 化學戰劑檢測方式
2.2.1 LC/MS
2.2.2 GC/MS
2.2.3 HPLC
2.2.4 Raman
2.3.1 表面增強拉曼原理
2.3.2 表面增強拉曼介質
2.4 表面增強拉曼基材分類
3. 實驗
3.3.1 奈米銀粒子製備
4. 結果與討論
4.1 奈米銀粒子特徵分析
4.1.1 UV-Vis分析
4.1.2 XRD分析
4.1.3 FTIR分析
4.1.4 TEM分析
4.2 柔性表面散射基材特徵分析
4.2.1 SEM和EDX分析
4.2.2 XPS分析
4.3.1 DMMP靈敏性分析
4.3.2 DMMP再現性分析
4.3.3 DMMP穩定性分析
4.3.4 2-CEES靈敏性分析
4.3.5 ACN靈敏性分析
5. 結論

[2]文上賢,2012 “恐怖主義化學武器攻擊因應作為之研究” 核生化防護半年刊,國防部,第122-124頁。
[9]P´erez-Jim´enez A. I., Lyu D., Lu Z., Liu G. and Ren B., 2020, “Surface-enhanced Raman spectroscopy: benefits,trade-offs and future developments” , Journal of Royal Society Chemistry.
[10]Yilmaz H., Yilmaz D., Taskin I. C. and Culha M., 2022, “Pharmaceutical applications of a nanospectroscopic technique:Surface-enhanced Raman spectroscopy” , Journal of Advanced Drug Delivery Reviews, Vol. 184, pp. 169-409.
[11]Li M. W., Qiu Y. Y., Fan C. C. , Cui K. , Zhang Y. M. and Xiao Z. Y., 2018, “Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures” , Journal of Acta PharmaceuticaSinicaB, Vol. 8, pp. 381–389.
[12]Lafuente M., Sanz D., Urbiztondo M., Santamaría J., Pina M. P. and Mallada R., 2020, “Gas phase detection of chemical warfare agents CWAs with portable Raman” , Journal of Hazardous Materials, Vol. 384, pp. 121279.
[13]Lafuente M., Marchi S. D., Urbiztondo M., Pastoriza-Santos I., Pérez-Juste I. , Santamaría J., Mallada R. and Pina M., 2021, “Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air” , Journal of ACS Publications, Vol. 6, pp. 2241-2251.
[14]Hakonen A., Rindcevicius T., Schmidt M. S., Andersson P. O., Juhlin L., Svedendahl M., Boisen A. and Kall M., 2015, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesison” , Journal of Royal Society Chemistry.
[15]Lauridsen R. K., Rindzevicius T., Søren M., Johansen H. K., Berg R. W., Alstrøm T. S., Almdal K., Schmidt M. S. and Boisen A., 2015, “Towards quantitative SERS detection of hydrogen cyanide at ppb levelfor human breath analysis” , Journal of Sensing and Bio-Sensing Research, Vol. 5, pp. 84-89.
[16]Xu W., Bao H., Zhang H., Johansen H. K., Fu H., Zhao Q., Li Y. and Cai W., 2021, “Ultrasensitive surface-enhanced Raman spectroscopy detection of gaseoussulfur-mustard simulant based on thin oxide-coated gold nanocone arrays” , Journal of Hazardous Materials, Vol. 420, pp. 126668.
[17]Zhao Q., Liu G., Zhang H., Zhou F., Fu H., Zhao Q., Li Y. and Cai W., 2017, “SERS-based ultrasensitive detection of organophosphorus nerveagents via substrate’s surface modification” , Journal of Hazardous Materials, Vol. 324, pp. 194-202.
[18]Kim D. D., Kim J.H., Henzie J., Ko Y.S., Lim H., Kwon G. M., Na J., Kim H.J., Yamauchi Y. and You J., 2021, “Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates” , Journal of Chemical Engineering, Vol. 419, pp. 1385-8947.
[19]Tian X., Zhai P., Guo J., Yu Q., Xu L. Z., Yu X. H., Wang R. and Kong X. M., 2021, “Fabrication of plasmonic cotton gauze-Ag composite as versatile SERSsubstrate for detection of pesticides residue” , Journal of Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 257, pp. 1386-1425.
[20]Yang S. W., Fan W. L., Cheng H., Gong Z. J., Wang D. M., Fan M. K. and Huang B., 2020, “A dual functional cotton swab sensor for rapid on-site naked-eye sensing of nitro explosives on surfaces” , Journal of Microchemical, Vol. 159, pp. 26-265.
[21]Vered H. S., Hagai S., Amalia Z., Izhar R. and Alexander P., 2020, “Surface-enhanced Raman spectroscopy (SERS) fordetection of VX and HD in the gas phase using ahand-held Raman spectrometer” , Journal of Royal Society Chemistry.
[22]Bharathi M., Banerjee D., Barkakaty B. and Byram C., 2021, “Gold nanoparticle nanofibres as SERS substrate for detection of methylene blue and a chemical warfare simulant (methyl salicylate)” , Journal of researchgate, Vol. 44, pp. 103.
[23]Li S. Y., Ma W. H., Zhou Y., Chen X. H., Ma M. Y., Xu Y. H., Ding Z. and Wu X. H., 2013, “3-aminopropyltriethoxysilanes Modified Porous Silicon as a Voltammetric Sensor for Determination of Silver Ion” , Journal of electrochemsci, Vol. 8, pp. 1802-1812.
[24]Liu J., Si T., Zhang L. and Zhang Z., 2019, “Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides” , Journal of Nanomaterials (Basel), Vol. 9, pp. 1331.
[25]Roldán M. V., Pellegri N. S. and Sanctis O. A., 2012, “Optical response of silver nanoparticles stabilized by amines to LSPR based sensors” , Journal of Procedia Materials Science, Vol. 1, pp. 594-600.
[26]William O. R., Leonardo C. P. and Samuel P. H., 2010, “Remote Continuous Wave and Pulsed Laser Raman Detection of Chemical Warfare Agents Simulants and Toxic Industrial Compounds” , Journal of Sensing and Imaging, Vol. 11, pp. 131-145.
[27]Zhang S., Jia H. S., Song M. X., Shen H., Li D. F. and Li H. B., 2021, “Raman spectroscopy study of acetonitrile at low temperature” , Journal of Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 20, pp. 1386-1425.

第一頁 上一頁 下一頁 最後一頁 top