跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林文彬
研究生(外文):LIN, WEN‑BIN
論文名稱:基於統計特徵之數位影像藏密分析技術
論文名稱(外文):Study of Statistical Feature-based Steganalysis for Digital Images
指導教授:賴泰宏張克勤張克勤引用關係
指導教授(外文):LAI, TAI‑HUNGCHANG, KO-CHIN
口試委員:左瑞麟黃炳森洪敏雄李仁軍劉江龍蔡宗憲張克勤賴泰宏
口試委員(外文):TSO, RAY-LINHUANG, PING-SHENGHUNG, MIN-HSIUNGLEE, JEN-CHUNLIU, CHIANG-LUNGTSAI, CHUNG-HSIENCHANG, KO-CHINLAI, TAI-HUNG
口試日期:2022-04-29
學位類別:博士
校院名稱:國防大學
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:148
中文關鍵詞:藏密技術藏密分析技術像素值差異藏密法
外文關鍵詞:steganographysteganalysispixel-value differencing steganography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
針對空間域藏密技術中基於像素值差異(Pixel Value Differencing, PVD)藏密法之低藏密量影像,現有相對應的特定藏密分析技術,偵密效能尚有精進空間;針對可廣泛偵密多種藏密法之通用藏密分析技術,普遍使用已知的藏密特徵訓練分類器,再檢測已知藏密技術,無法滿足偵測未知藏密技術之需求。因此,本論文針對PVD藏密法與其改良型藏密法,分別提出特定藏密分析技術;針對基於PVD與基於最低有效位元取代法(Least Significant Bit, LSB)藏密法等多種藏密技術,提出通用藏密分析檢測策略。
研究假設原始影像之像素差值具拉普拉斯分布(Laplace Distribution)特性,祕密訊息為隨機亂數產生的均勻分布位元字串,本研究基於統計特徵,針對PVD藏密法與改良型PVD藏密法,計算藏密前後影像像素差值的統計量(Statistics)差異,分別提出適用於低藏密量的特定藏密分析技術,實驗結果相較於現有藏密分析技術,均有較高的準確率與較低的誤判率;針對基於PVD與基於LSB藏密法多種藏密技術,將相鄰像素差值轉移機率的統計量差異視為特徵,透過多種特徵組合訓練,提出通用藏密分析檢測策略,實驗結果顯示,僅需要訓練少數已知的藏密特徵,即可以偵測未訓練的未知藏密技術,並且達到預期的準確率,符合實際偵密場景。
For low embedding images based on the pixel value differencing (PVD) method, specific steganalysis techniques can be further refined. For universal steganalysis techniques that can detect various steganography methods, training of classifiers with known features and techniques to meet the detection need of unknown methods are required. This study aimed to develop a specific steganalysis technique for existing and modified PVD steganography and a universal steganalysis technique for a variety of PVD- and least significant bit (LSB)-based methods. The PVD of the original images was assumed to have Laplace distribution features, and the secret information was assumed to be a uniformly distributed bit-stream generated by random numbers. Based on statistical features, specific steganography techniques are proposed, and the statistical difference of PVD between pre- and post-embedding images is calculated for low embedding images and modified PVD steganography. Compared with the results of the existing secret analysis techniques, the experimental results indicated that the proposed techniques have a higher accuracy and lower misjudgment rate. For many steganography techniques based on PVD and LSB, the statistical difference in the probability of transfer between adjacent pixels is considered a feature. Thus, a universal steganography detection strategy is proposed by training several combinations of features. Only a few known features are required to be trained to detect the untrained methods and achieve the expected accuracy, which is consistent with the actual detection scenario.
致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 ix
1. 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 4
2. 數位影像藏密法與藏密分析技術 5
2.1 前言 5
2.2 空間域藏密技術之安全性驗證 8
2.3 PVD藏密法之藏密分析技術 12
2.4 MPVD藏密法之藏密分析技術 21
2.5 MFPVD藏密法之藏密分析技術 25
2.6 多向PVD藏密法 28
2.7 結合LSB與PVD藏密法之藏密分析技術 29
2.8 結合邊緣吻合法與PVD藏密法 30
2.9 綜合分析 31
3. 研究假設與評量指標 33
3.1 研究假設 33
3.2 影像類型 34
3.3 藏密分析技術類型 35
3.4 藏密分析評量指標 35
4. 基於統計特徵之PVD藏密法分析技術 37
4.1 前言 37
4.2 分析PVD藏密技術 38
4.3 設計PVD藏密法分析技術 43
4.4 實驗結果與分析 45
5. 基於統計特徵之MPVD藏密法分析技術 66
5.1 前言 66
5.2 分析MPVD藏密技術 67
5.3 設計MPVD藏密法分析技術 70
5.4 實驗結果與分析 73
6. 基於統計特徵之通用藏密法分析技術檢測策略 85
6.1 前言 85
6.2 通用藏密法特徵分析 85
6.3 設計通用藏密分析檢測策略 88
6.4 實驗結果與分析 89
7. 結論與未來研究方向 119
7.1 結論 119
7.2 未來研究方向 120
參考文獻 121
[1] Anderson, R. J. and Petitcolas, F. A. P., “On the Limits of Steganography,” IEEE Journal on Selected Areas in Communications, Vol. 16, No. 4, pp. 474–481, 1998.
[2] GE Trade Secrets Case Raises Cybersecurity Questions – The Daily Gazette.
https://dailygazette.com/2018/08/04/ge-trade-secrets-case-raises-cybersecurity-questions/ (2021.5.2)
[3] Dalal, M. and Juneja, M., “Steganography and Steganalysis (in Digital Forensics): A Cybersecurity Guide,” Multimedia Tools and Applications, Vol. 80, No. 4, pp. 5723–5771, 2021.
[4] Bender, W., Gruhl, D., Morimoto, N., and Lu, A., “Techniques for Data Hiding,” IBM Systems Journal, Vol. 35, No. 3.4, pp. 313–336, 1996.
[5] Chan, C. K. and Cheng, L. M., “Hiding Data in Images by Simple LSB Substitution,” Pattern Recognition, Vol. 37, No. 3, pp. 469–474, 2004.
[6] Fridrich, J., Goljan, M., and Rui, Du., “Detecting LSB Steganography in Color, and Gray-Scale Images,” IEEE Multimedia, Vol. 8, No. 4, pp. 22–28, 2001.
[7] Westfeld, A. and Pfitzmann, A., “Attacks on Steganographic Systems,” in Information Hiding, Vol. 1768, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 61–76, 2000.
[8] Wu, D. C. and Tsai, W. H., “A Steganographic Method for Images by Pixel Value Differencing,” Pattern Recognition Letters, Vol. 24, No. 9–10, pp. 1613–1626, 2003.
[9] Hussain, M., Riaz, Q., Saleem, S., Ghafoor, A., and Jung, K. H., “Enhanced Adaptive Data Hiding Method Using LSB and Pixel Value Differencing,” Multimedia Tools and Applications, Vol. 80, No. 13, pp. 20381–20401, 2021.
[10] Sahu, A. K., Swain, G., Sahu, M., and Hemalatha, J., “Multi-Directional Block Based PVD and Modulus Function Image Steganography to Avoid FOBP and IEP,” Journal of Information Security and Applications, Vol. 58, p. 102808, 2021.
[11] Liu, H. H., Su, P. C., and Hsu, M. H., “An Improved Steganography Method Based on Least-Significant-Bit Substitution and Pixel-Value Differencing,” KSII Transactions on Internet and Information Systems, Vol. 14, No. 11, pp. 4537–4557, 2020.
[12] Swain, G., “Two New Steganography Techniques Based on Quotient Value Differencing with Addition-Subtraction Logic and PVD with Modulus Function,” Optik, Vol. 180, pp. 807–823, 2019.
[13] Hameed, M. A., Hassaballah, M., Aly, S., and Awad, A. I., “An Adaptive Image Steganography Method Based on Histogram of Oriented Gradient and PVD-LSB Techniques,” IEEE Access, Vol. 7, pp. 185189–185204, 2019.
[14] Kalita, M., Tuithung, T., and Majumder, S., “An Adaptive Color Image Steganography Method Using Adjacent Pixel Value Differencing and LSB Substitution Technique,” Cryptologia, Vol. 43, No. 5, pp. 414–437, 2019.
[15] Sahu, A. K. and Swain, G., “An Optimal Information Hiding Approach Based on Pixel Value Differencing and Modulus Function,” Wireless Personal Communications, Vol. 108, No. 1, pp. 159–174, 2019.
[16] Swain, G., “Digital Image Steganography Using Eight-Directional PVD against RS Analysis and PDH Analysis,” Advances in Multimedia, Vol. 2018, pp. 1–13, 2018.
[17] Liu, H. H., Lin, Y. C., and Lee, C. M., “A Digital Data Hiding Scheme Based on Pixel-Value Differencing and Side Match Method,” Multimedia Tools and Applications, Vol. 78, No. 9, pp. 12157–12181, 2019.
[18] Swain, G., “A Data Hiding Technique by Mixing MFPVD and LSB Substitution in a Pixel,” Information Technology And Control, Vol. 47, No. 4, pp. 714–727, 2018.
[19] Hussain, M., Wahab, A. W. A., Javed, N., and Jung, K. H., “Recursive Information Hiding Scheme through LSB, PVD Shift, and MPE,” IETE Technical Review, Vol. 35, No. 1, pp. 53–63, 2018.
[20] Pradhan, A., Sekhar, K. R., and Swain, G., “Digital Image Steganography Using LSB Substitution, PVD, and EMD,” Mathematical Problems in Engineering, Vol. 2018, pp. 1–11, 2018.
[21] Li, Z. and He, Y., “Steganography with Pixel-Value Differencing and Modulus Function Based on PSO,” Journal of Information Security and Applications, Vol. 43, pp. 47–52, 2018.
[22] Swain, G., “High Capacity Image Steganography Using Modified LSB Substitution and PVD against Pixel Difference Histogram Analysis,” Security and Communication Networks, Vol. 2018, pp. 1–14, 2018.
[23] Swain, G., “Adaptive and Non-Adaptive PVD Steganography Using Overlapped Pixel Blocks,” Arabian Journal for Science and Engineering, Vol. 43, No. 12, pp. 7549–7562, 2018.
[24] Pevny, T., Bas, P., and Fridrich, J., “Steganalysis by Subtractive Pixel Adjacency Matrix,” IEEE Transactions on Information Forensics and Security, Vol. 5, No. 2, pp. 215–224, 2010.
[25] Fridrich, J. and Kodovsky, J., “Rich Models for Steganalysis of Digital Images,” IEEE Transactions on Information Forensics and Security, Vol. 7, No. 3, pp. 868–882, 2012.
[26] Holub, V. and Fridrich, J., “Random Projections of Residuals for Digital Image Steganalysis,” IEEE Transactions on Information Forensics and Security, Vol. 8, No. 12, pp. 1996–2006, 2013.
[27] Solak, S. and Altınışık, U., “Image Steganography Based on LSB Substitution and Encryption Method: Adaptive LSB+3,” Journal of Electronic Imaging, Vol. 28, No. 04, p. 1, 2019.
[28] Mielikainen, J., “LSB Matching Revisited,” IEEE Signal Processing Letters, Vol. 13, No. 5, pp. 285–287, 2006.
[29] Luo W., Huang F., and Huang J., “Edge Adaptive Image Steganography Based on LSB Matching Revisited,” IEEE Transactions on Information Forensics and Security, Vol. 5, No. 2, pp. 201–214, 2010.
[30] Zhang, X. and Wang, S., “Efficient Steganographic Embedding by Exploiting Modification Direction,” IEEE Communications Letters, Vol. 10, No. 11, pp. 781–783, 2006.
[31] Chao, R. M., Wu, H. C., Lee, C. C., and Chu, Y. P., “A Novel Image Data Hiding Scheme with Diamond Encoding,” EURASIP Journal on Information Security, Vol. 2009, pp. 1–9, 2009.
[32] Chang, C. C. and Tseng, H. W., “A Steganographic Method for Digital Images Using Side Match,” Pattern Recognition Letters, Vol. 25, No. 12, pp. 1431–1437, 2004.
[33] Hong, W. and Chen, T. S., “A Novel Data Embedding Method Using Adaptive Pixel Pair Matching,” IEEE Transactions on Information Forensics and Security, Vol. 7, No. 1, pp. 176–184, 2012.
[34] Dumitrescu, S., Wu X., and Wang Z., “Detection of LSB Steganography via Sample Pair Analysis,” IEEE Transactions on Signal Processing, Vol. 51, No. 7, pp. 1995–2007, 2003.
[35] Zhang, X. and Wang, S., “Vulnerability of Pixel-Value Differencing Steganography to Histogram Analysis and Modification for Enhanced Security,” Pattern Recognition Letters, Vol. 25, No. 3, pp. 331–339, 2004.
[36] Ker, A. D., “Steganalysis of LSB Matching in Grayscale Images,” IEEE Signal Processing Letters, Vol. 12, No. 6, pp. 441–444, 2005.
[37] Ker, A. D., “Steganalysis of Embedding in Two Least-Significant Bits,” IEEE Transactions on Information Forensics and Security, Vol. 2, No. 1, pp. 46–54, 2007.
[38] Shojae Chaeikar, S., Zamani, M., Abdul Manaf, A. B., and Zeki, A. M., “PSW Statistical LSB Image Steganalysis,” Multimedia Tools and Applications, Vol. 77, No. 1, pp. 805–835, 2018.
[39] Rawat, R., Singh, B., Sur, A., and Mitra, P., “Steganalysis for Clustering Modification Directions Steganography,” Multimedia Tools and Applications, Vol. 79, No. 3–4, pp. 1971–1986, 2020.
[40] Li, B., Wang, M., Li, X., Tan, S., and Huang, J., “A Strategy of Clustering Modification Directions in Spatial Image Steganography,” IEEE Transactions on Information Forensics and Security, Vol. 10, No. 9, pp. 1905–1917, 2015.
[41] Chhikara, S. and Kumar, R., “An Information Theoretic Image Steganalysis for LSB Steganography,” Acta Cybernetica, Vol. 24, No. 4, pp. 593–612, 2020.
[42] Johnvictor, A. C., Rangaswamy, R., Chidambaram, G., and Durgamahanthi, V., “Unsupervised Optimization for Universal Spatial Image Steganalysis,” Wireless Personal Communications, Vol. 102, No. 1, pp. 1–18, 2018.
[43] Holub, V., Fridrich, J., and Denemark, T., “Universal Distortion Function for Steganography in an Arbitrary Domain,” EURASIP Journal on Information Security, Vol. 2014, No. 1, p. 1, 2014.
[44] Chutani, S. and Goyal, A., “Improved Universal Quantitative Steganalysis in Spatial Domain Using ELM Ensemble,” Multimedia Tools and Applications, Vol. 77, No. 6, pp. 7447–7468, 2018.
[45] Pevný, T., Filler, T., and Bas, P., “Using High-Dimensional Image Models to Perform Highly Undetectable Steganography,” in Information Hiding, Vol. 6387, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 161–177, 2010.
[46] Sedighi, V., Cogranne, R., and Fridrich, J., “Content-Adaptive Steganography by Minimizing Statistical Detectability,” IEEE Transactions on Information Forensics and Security, Vol. 11, No. 2, pp. 221–234, 2016.
[47] Singhal, A. and Bedi, P., “Multi-Class Blind Steganalysis Using Deep Residual Networks,” Multimedia Tools and Applications, Vol. 80, No. 9, pp. 13931–13956, 2021.
[48] Holub, V. and Fridrich, J., “Designing Steganographic Distortion Using Directional Filters,” 2012 IEEE International Workshop on Information Forensics and Security (WIFS), in 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje - Tenerife, Spain, pp. 234–239, 2012.
[49] Li, B., Wang, M., Huang, J., and Li, X., “A New Cost Function for Spatial Image Steganography,” 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, pp. 4206–4210, 2014.
[50] Kalaichelvi, V., Meenakshi, P., Vimala Devi, P., Manikandan, H., Venkateswari, P., and Swaminathan, S., “A Stable Image Steganography: A Novel Approach Based on Modified RSA Algorithm and 2–4 Least Significant Bit (LSB) Technique,” Journal of Ambient Intelligence and Humanized Computing, Vol. 12, No. 7, pp. 7235–7243, 2021.
[51] Gutub, A. and Al-Shaarani, F., “Efficient Implementation of Multi-Image Secret Hiding Based on LSB and DWT Steganography Comparisons,” Arabian Journal for Science and Engineering, Vol. 45, No. 4, pp. 2631–2644, 2020.
[52] Lu, T. C., Yang, P. C., and Jana, B., “Improving the Reversible LSB Matching Scheme Based on the Likelihood Re-Eecoding Strategy,” Entropy, Vol. 23, No. 5, p. 577, 2021.
[53] Sahu, A. K. and Swain, G., “Reversible Image Steganography Using Dual-Layer LSB Matching,” Sensing and Imaging, Vol. 21, No. 1, p. 1, 2020.
[54] Chen, X. and Hong, C., “An Efficient Dual-Image Reversible Data Hiding Scheme Based on Exploiting Modification Direction,” Journal of Information Security and Applications, Vol. 58, p. 102702, 2021.
[55] Leng, H. S., Lee, J. F., and Tseng, H. W., “A High Payload EMD-Based Steganographic Method Using Two Extraction Functions,” Digital Signal Processing, Vol. 113, p. 103026, 2021.
[56] Leng, H. S., Tsai, C. J., and Wu, T. J., “A Multilayer Steganographic Method Using Improved Exploiting Modification Directions Scheme,” IEEE Access, Vol. 10, pp. 468–485, 2022.
[57] Atta, R., Ghanbari, M., and Elnahry, I., “Advanced Image Steganography Based on Exploiting Modification Direction and Neutrosophic Set,” Multimedia Tools and Applications, Vol. 80, No. 14, pp. 21751–21769, 2021.
[58] Ranjani, J. J. and Zaid, F., “Pseudo Magic Cubes: A Multidimensional Data Hiding Scheme Exploiting Modification Directions for Large Payloads,” Computers & Electrical Engineering, Vol. 89, p. 106928, 2021.
[59] Saha, S., Chakraborty, A., Chatterjee, A., Dhargupta, S., Ghosal, S. K., and Sarkar, R., “Extended Exploiting Modification Direction Based Steganography Using Hashed-Weightage Array,” Multimedia Tools and Applications, Vol. 79, No. 29–30, pp. 20973–20993, 2020.
[60] Shen, S., Huang, L., and Yu, S., “A Novel Adaptive Data Hiding Based on Improved EMD and Interpolation,” Multimedia Tools and Applications, Vol. 77, No. 10, pp. 12563–12579, 2018.
[61] Qu, Z., Cheng, Z., Liu, W., and Wang, X., “A Novel Quantum Image Steganography Algorithm Based on Exploiting Modification Direction,” Multimedia Tools and Applications, Vol. 78, No. 7, pp. 7981–8001, 2019.
[62] Wang, C. M., Wu, N. I., Tsai, C. S., and Hwang, M. S., “A High Quality Steganographic Method with Pixel-Value Differencing and Modulus Function,” Journal of Systems and Software, Vol. 81, No. 1, pp. 150–158, 2008.
[63] Chang, K. C., Chang, C. P., Huang, P. S., and Tu, T. M., “A Novel Image Steganographic Method Using Tri-Way Pixel-Value Differencing,” Journal of Multimedia, Vol. 3, No. 2, pp. 37–44, 2008.
[64] Wu, H. C., Wu, N. I., Tsai, C. S., and Hwang, M. S., “Image Steganographic Scheme Based on Pixel-Value Differencing and LSB Replacement Methods,” IEE Proceedings - Vision, Image and Signal Processing, Vol. 152, No. 5, pp. 611–615, 2005.
[65] Zhang, H., Zhang, T., and Chen, H., “Revisiting Weighted Stego-Image Steganalysis for PVD Steganography,” Multimedia Tools and Applications, Vol. 78, No. 6, pp. 7479–7497, 2019.
[66] Sabeti, V., Samavi, Sh., Mahdavi, M., and Shirani, Sh., “Steganalysis of Embedding in Difference of Image Pixel Pairs by Neural Network,” The ISC International Journal of Information Security, Vol. 1, No. 1, 2009.
[67] Sabeti, V., Samavi, S., Mahdavi, M., and Shirani, S., “Steganalysis and Payload Estimation of Embedding in Pixel Differences Using Neural Networks,” Pattern Recognition, Vol. 43, No. 1, pp. 405–415, 2010.
[68] Bui, C. N., Lee, H. Y., Joo, J. C., and Lee, H. K., “Steganalysis Method Defeating the Modified Pixel-Value Differencing Steganography,” International Journal of Innovative Computing, Information and Control, Vol. 6, pp. 3193–3203, 2010.
[69] Joo, J. C., Lee, H. Y., and Lee, H. K., “Improved Steganographic Method Preserving Pixel-Value Differencing Histogram with Modulus Function,” EURASIP Journal on Advances in Signal Processing, Vol. 2010, No. 1, p. 249826, 2010.
[70] Joo, J. C., Lee, H. Y., Bui, C. N., Yoo, W. Y., and Lee, H. K., Steganalytic Measures for the Steganography Using Pixel-Value Differencing and Modulus Function,” in Advances in Multimedia Information Processing - PCM 2008, Vol. 5353, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 476–485, 2008.
[71] Joo, J. C., “Histogram Estimation-Scheme-Based Steganalysis Defeating the Steganography Using Pixel-Value Differencing and Modulus Function,” Optical Engineering, Vol. 49, No. 7, p. 077001, 2010.
[72] Pradhan, A., Sekhar, K. R., and Swain, G., “Adaptive PVD Steganography Using Horizontal, Vertical, and Diagonal Edges in Six-Pixel Blocks,” Security and Communication Networks, Vol. 2017, pp. 1–13, 2017.
[73] Kang, S., Park, H., and Park, J. I., “Combining LSB Embedding with Modified Octa-PVD Embedding,” Multimedia Tools and Applications, Vol. 79, No. 29–30, pp. 21155–21175, 2020.
[74] Jung, K. H., “Data Hiding Scheme Improving Embedding Capacity Using Mixed PVD and LSB on Bit Plane,” Journal of Real-Time Image Processing, Vol. 14, No. 1, pp. 127–136, 2018.
[75] Singh, S., “Adaptive PVD and LSB Based High Capacity Data Hiding Scheme,” Multimedia Tools and Applications, Vol. 79, No. 25–26, pp. 18815–18837, 2020.
[76] Sabeti, V., Samavi, S., Mahdavi, M., and Shirani, S., “Steganalysis of Pixel-Value Differencing Steganographic Method,” 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, in 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, pp. 292–295, 2007.
[77] BOSS.
http://www.agents.cz/boss/BOSSFinal/index.php?mode=VIEW&tmpl=materials(2020.6.30)
[78] BOWS2. http://bows2.ec-lille.fr/BOWS2OrigEp3.tgz (2020.6.30)
[79] UCID.
https://qualinet.github.io/databases/image/uncompressed_colour_image_database_ucid/ (2020.6.30).
[80] NRCS. http://photogallery.nrcs.usda.gov/ (2020.6.30)
[81] Introduction to Data Compression. Elsevier, 2006.
[82] Fridrich, J. and Goljan, M., On Estimation of Secret Message Length in LSB Steganography in Spatial Domain, San Jose, CA, p. 23, 2004.
[83] Ker, A. D. and Böhme, R., “Revisiting Weighted Stego-Image Steganalysis,” San Jose, CA, p. 681905, 2008.
[84] Lin, W. B., Lai, T. H., and Chang, K. C., “Statistical Feature-Based Steganalysis for Pixel-Value Differencing Steganography,” EURASIP Journal on Advances in Signal Processing, Vol. 2021, No. 1, p. 87, 2021.
[85] Lin, W. B., Lai, T. H., and Chou, C. L., “Chi-Square-Based Steganalysis Method against Modified Pixel-Value Differencing Steganography,” Arabian Journal for Science and Engineering, Vol. 46, No. 9, pp. 8525–8533, 2021.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊