跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高智皇
研究生(外文):KAO,CHIH-HUANG
論文名稱:工作流體自在潤濕性對迴路式熱管性能 影響提升之研究
論文名稱(外文):Investigating the Influence of Self-Rewetting Wettability on Working Fluid Application to Loop Heat Pipe Performance Enhancement
指導教授:李亞偉李亞偉引用關係
指導教授(外文):LEE, YA-WEI
口試委員:李亞偉吳聖俊楊建裕林唯耕王啟川李彥宏李永隆張天立
口試日期:2022-07-29
學位類別:博士
校院名稱:國防大學
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:112
中文關鍵詞:二丁醇自再潤濕流體迴路式熱管表面張力添加物濃度
外文關鍵詞:2-ButanollSRF( Self-rewetting Fluid)LHP (Loop Heat Pipe)surface tensionAdditive Concentration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在運用自再潤濕流體(Self-Rewetting Fluid),改善迴路式熱管內毛細結構(鎳材)在高密度功率時,毛細結構內部孔洞容易形成蒸氣薄膜,導致毛細結構內部會呈現乾涸現象自再潤濕流體在近常溫時,表面張力值較低,流體潤濕能力提升,同時具備溫度上升時,在特定溫度其表面張力反轉上升,呈現表面張力逆向梯度之特徵,此時會形成表面張力主導之驅動流,順利補充工作流體於加熱端,避免乾涸。
本文首先評估與選擇自再潤濕流體,提出合適於前述問題的自再潤濕流體,包含丁醇(Butanol)、戊醇(Pentanol)、已醇(Hexanol)和二丁醇(2–Butanol)之四種水溶液。針對四種不同醇類添加物之水溶液,配置不同濃度之自再潤濕流體,量測表面張力隨溫度之變化,發現各別添加物之自再潤濕流體,均指出表面張力隨溫度上升,呈現不同的兩種行為,一種為較低溫度時之變化範圍,表面張力較低並隨溫度上升,表面張力下降;另一種為特定溫度後,表面張力隨溫度上升呈現上升。較低溫度範圍,表面張力隨添加物濃度提高而下降,最低的表面張力發生在二丁醇 22 %。在特定溫度後,表面張力隨溫度上升而提高,相對較低溫區,表面張力趨勢逆而上升,本文之表面張力逆向梯度最大,發現亦在 22 %二丁醇水溶液。
迴路式熱管性能測試結果顯示,各別添加物水溶液,均呈現隨添加物濃度上升,熱傳性能提高,其中當工作流體二丁醇 22 %,最大熱傳量為1050W(熱通量為 42 W/cm2),相較於純水為工作流體時的 250 W ,提升已超過 300 %,而最低系統總熱阻也從 0.632 W/℃ 降至 0.138 W/℃,幾乎為原先之 1/5,自再潤濕流體具有明顯的提升迴路式熱管性能之潛力。
The purpose of this study is to apply Self-rewetting fluid to improve the wick structure (nickel material) inside the loop heat pipe, which is prone to form a vapor film in the porous of the wick structure at high power density, resulting in a dry-out phenomenon inside the wick structure. The self-rewetting fluid (SRF) has a lower surface tension value at room temperature, resulting in a higher fluid wettability. At the same time, when the temperature rises, the surface tension reverses at a specific temperature, showing the characteristic of reverse gradient of surface tension. This creates a surface tension-driven flow, which helps the relative low-temperature working fluids in the two-phase heat transfer device to flow actively to the heating end, delaying the dry-out phenomenon.
In this study, we first evaluated and selected the self-rewetting fluids, and proposed four self-lubricating fluids, including Butanol, Pentanol, Hexanol and 2-Butanol, which are suitable for the aforementioned problem. This study focus on four different type aqueous solution, configure different concentrations and measure the change of surface tension with temperature. It was found that the self-wetting fluids of each additive showed two different behaviors of surface tension with increasing temperature. One is the range of variation at lower
temperature, the surface tension is lower and decreases as the temperature rises.The other one is that the surface tension increases with the temperature after a specific temperature. In the lower temperature range, the surface tension decreases as the additive concentration increases, and the lowest surface tension occurs at 22 % 2-butanol. The surface tension increases with temperature. After a specific temperature, the surface tension increases with the increase in temperature. The surface tension trend is reversed and increases compared to the
low temperature region. In this paper, the largest inverse gradient of surface tension was found in 22% 2-butanol solution.
The results of the loop heat pipe performance test showed that the heat transfer performance of each additive aqueous solution improved with the increase of additive concentration. When the working fluid is 22% 2-butanol,
the maximum heat transfer capacity is 1050 W (heat flux of 42 W/cm2), compared with pure water (250W) which is an improvement of over 300%. The lowest total system thermal resistance has been reduced from 0.632 W/°C to 0.138 W/°C,almost 1/5 of the original. The result shows that self-wetting fluids have significant potential to enhance the performance of loop heat pipe.
目錄
誌謝................. ..............................................................i
摘要................................................................................ii
Abstract. ........................... .............................................iii
目錄................................................................................ v
圖目錄.............................................................................. x
1. 緒論............................................................................. 1
1.1 研究動機 ....................................................................... 1
1.1.1 二相散熱元件之比較 ............................................................ 3
1.1.2 迴路式熱管的發展歷程 .......................................................... 8
1.1.3 迴路式熱管目前之問題 .......................................................... 11
1.2 文獻整理 ....................................................................... 14
1.3 研究目的 ....................................................................... 18
2. 操作原理與限制................................................................... 19
2.1 自再潤濕流體與馬蘭哥尼效應 ...................................................... 19
2.2 自再潤濕流體添加物之選擇與評估 .................................................. 20
2.3 醇類添加物之選擇 ............................................................... 21
2.4 四種醇類添加物之親、疏水性分析 .................................................. 23
2.5 迴路式熱管操作原理 ............................................................. 25
2.5.1 毛細限制 .................................................................... 27
2.5.2 啟動限制 .................................................................... 28
2.5.3 液體過冷限制 ................................................................. 29
2.5.4 補償室體積限制 ............................................................... 29
2.6 迴路式熱管熱阻分析 .............................................................. 30
2.6.1 蒸發器熱阻 ................................................................... 30
2.6.2 蒸汽段熱阻 ................................................................... 31
2.6.3 冷凝器熱阻 ................................................................... 32
2.7 毛細結構材質選擇 ............................................................... 35
3. 實驗設備與方法................................................................... 36
3.1 量測表面張力之儀器設備 .......................................................... 36
3.1.1 表面張力量測原理與方法 ........................................................ 36
3.1.2 實驗藥品 ..................................................................... 39
3.2 迴路式熱管的設計 ................................................................ 39
3.2.1 傳統工作流體及自再潤濕流體的選擇 ............................................... 40
3.2.2 毛細結構材料 ................................................................. 42
3.2.3 管材之選擇 ................................................................... 42
3.2.4 傳輸管路之設計 ............................................................... 42
3.2.5 冷凝器之設計 ................................................................. 43
3.2.6 補償室之設計 ................................................................. 43
3.3 迴路式熱管的製作 ............................................................... 44
3.3.1 毛細結構製作設備 ............................................................. 44
3.3.2 毛細結構製作流程 ............................................................. 45
3.3.3 系統毛細結構參數量測試設備 .................................................... 47
3.3.4 毛細結構參數量測 ............................................................. 47
3.3.4.1 有效孔徑 .................................................................. 48
3.3.4.2 孔隙率 .................................................................... 49
3.3.4.3 滲透度 .................................................................... 50
3.4 迴路式熱管的系統參數 ........................................................... 51
3.5 迴路式熱管系統熱測試設備 ....................................................... 52
3.6 迴路式熱管系統安裝步驟 ......................................................... 54
3.7 迴路式熱管系統測試步驟 ......................................................... 55
3.8 性能測試 ...................................................................... 56
3.9 迴路式熱管之性能評估與誤差分析 .................................................. 56
4. 結果與討論...................................................................... 58
4.1 表面張力 ...................................................................... 58
4.1.1 表面張力量測結果 ............................................................. 58
4.2 毛細結構參數測試結果 ............................................................ 65
4.3 迴路式熱管性能測試 ............................................................. 67
4.3.1 己醇水溶液 ................................................................... 67
4.3.2 戊醇水溶液 .................................................................. 70
4.3.3 丁醇水溶液 .................................................................. 72
4.3.4 二丁醇水溶液 ................................................................ 75
4.3.5 不同醇類飽和濃度水溶液 ....................................................... 77
5. 結論............................................................................ 80
6. 附錄............................................................................ 87
6.1 附錄 A. 誤差分析................................................................ 87
6.2 電源供應器熱傳量的誤差: ........................................................ 88
6.3 水套熱傳量的誤差: .............................................................. 88
6.3.1 冷卻水套質量流率的誤差: ...................................................... 89
6.4 附錄 B.熱電偶校正曲線............................................................ 91
7. 發表論文......................................................................... 94
[1] Kanellos, M., 2003, “Moore's Law to Roll on for Another Decade,” CNET.
[2] U. S. Air Force Avionics Integrity Program Notes,1989.
[3] Hill, P., Peterson, C. R., and Peterson, C., 1992, “Evaporation Boiling Phenomena on Thin Capillary Wick,” Mechanics and Thermodynamics of Propulsion.
[4] Gaugler R. S., 1942 ,“Structure of a Heat Pipe,”,US Patent NO. 2350348,U.S.A.,
[5] Avenas Y., Gillot C., Bricard A., and Schaeffer, C., 2002, “On the Use of Flat Heat Pipes as Thermal Spreaders in Power Electronics Cooling. ”,Annual Power Electronics Specialists Conference, Vol.2,pp.753-757.
[6] Grover, G. M., 1966, “Evaporation-Condensation Heat Transfer Device,” US Patent, No.3229759.
[7] Maidanik, J. F., “Heat Transfer Apparatus,” 1985, U.S. Patent No.4515209.
[8] Gerasimov, Y. F., Kiseev, V. M., and Maidanik, Y. F., 1974, “Heat Pipe,” USSR Inventor's Certificate ,449213.
[9] Pastukhov,V. G., Maidanik, Y. F.,Vershinin, C. V., and Korukov, M. A., 2002, “Miniature Loop Heat Pipes for Electronics Cooling” Applied Thermal Engineering, Vol.23, pp.1125–1135.
[10] Pastukhov, V. G. and Maidanik, Y. F., 2007, “Low-Noise Cooling System for PC on the Base of Loop Heat Pipes” Applied Thermal Engineering, Vol.27, pp.894–901.
[11] http://www.thermacore.com/ (2022.07.17)。
[12] Jouhara, H. and Meskimmon, R., 2010, “Experimental Investigation of Wraparound Loop Heat Pipe Heat Exchanger Used in Energy Efficient Air Handling Units.” Energy, Vol.35, pp.4592–4599.82
[13] Wang, Z. and Yang, W., 2013, “A Eeview on Loop Heat Pipe for Use in Solar Water Heating” Energy and Buildings, Vol.79, pp.143–154.
[14] Huang, B. J., Hsu. P. C., Tsai, R. J., and Hussain, M. M., 2015, “A Thermoelectric Generator Using Loop Heat Pipe and Design Match for Maximum Power Generation” Applied Thermal Engineering,Vol.91pp.1082-1091.
[15] Zhao, Y., Chang , S., Yang, B., Zhang,, W., and Leng, M.,2017 “ Experimental Study on the Thermal Performance of Loop Heat Pipe for the Aircraft Anti-icing System” International Journal of Heat and Mass Transfer, Vol.111,pp.795-803.
[16] Bernagozzi, M., Charmer, S., Georgoulas, A., Malavasi, I., Michè, N., and Marengo M., 2018, “Lumped Parameter Network Simulation of a Loop Heat Pipe for Energy Management Systems in Full Electric Vehicles”, Applied Thermal Engineering, Vol.141, pp.617-629.
[17] Anand, S., Kumar M. S., Balasubramanian K. R., Krishnan R. A., and Maheswari L., 2019, “An Experimental Study on Thermal Management of Moncentrated Photovoltaic Cell Using Loop Heat Pipe and Heat Sink,” Heat Transfer, Vol.48,pp.2456-2477.
[18] Pagnoni, F., Ayel, V., Bertin Y., Coulloux, J., and Zebian, M., 2021, “Loop Heat Pipe for Thermal Management of Aircraft Engine Equipment”, Journal of Thermophysics and Heat Transfer, Vol.35, pp.323-334.
[19] Prem, K., Gopinath, S., Debartha, C., and Sameer, K., 2022, “Copper Wick Based Loop Heat Pipe for Thermal Management of a High-Power LED Module”, Applied Thermal Engineering, Vol.211,pp.118459.
[20] Liao, Q. and Zhao, T. S., 1999, “Evaporative Heat Transfer in a Capillary Structure Heated by a Grooved Block,” Journal of Thermophysics and Heat Transfer, Vol. 13, pp. 126-133.
[21] Tsai, Y. S., Chang, Y. M., Chan, J. H., Wu, S. C., and Chen, Y. M., 2005,“Enhancemnt Of Thermal Performce In a Sintered Iniature Heat Pipe,” Journal of the Chinese Institute of Engineers,”Vol. 28, pp. 359-363.
[22] Wu, S. C., Hsieh, B. H., Yeh, C. C., and Chen, Y. M., 2009, “Investigation of the Polymer Wick Structure Applied to Loop Heat Pipe,” IEEE IMPACT,”, Vol. 978, pp. 368-371.
[23] Wu, S. C., Huang, C. J., Chen, S. H., and Chen, Y. M., 2013, “Manufacturing and Testing of the Double - Layer Wick Structure in a Loop Heat Pipe, ”International Journal of Heat and Mass Transfer, Vol. 56, pp. 709-714.
[24] Wu, S. C., Wang, D., and Chen, Y. M., 2014, “Investigating the Effect of Double-Layer Wick Thickness Ratio on Heat Transfer Performance of Loop Heat Pipe,” International Journal of Thermal Sciences, Vol. 86, pp.292-298.
[25] Wu, S. C., Gu, T. W., Wang, D., and Chen, Y. M., 2015, “Study of PTFE Wick Structure Applied to Loop Heat Pipe, ” Applied Thermal Engineering ,Vol. 81, pp. 51-57.
[26] Wu, S. C., Gao, J. H., Huang, Z. Y., Wang, D., Huang, C. J., Li, H. S., Su, S.J., and Lee, Y. W., 2013, “Effect of Increasing Wick Evaporation Area on Heat Transfer Performance for Loop Heat Pipes,” Advanced Materials
Research, Vol. 711, pp. 223-228.
[27] Wu, S. C., Wang, D., Gao, J. H., Huang, Z. Y., and Chen, Y. M., 2014,“Effect of the Number of Grooves on a Wick’s Surface on the Heat Transfer Performance of Loop Heat Pipe, ” Applied Thermal Engineering, Vol. 71,
pp. 371-377.
[28] Wu, S. C., Wang, D., Li, H. S., Lin, S. J., Hsu, C. T., and Chen, Y. M., 2013,“ Investigating the Use of Nanoscale Bilayers Assembly on Stainless Steel Plate to Improve Evaporation.” Applied Mechanics and Materials, Vols. 395- 396, pp. 718-725.
[29] Wu, S. C., Lin, Z. H., and Lo, C. K., 2022, “ Study of Super-Hydrophilic Nanoscale Bilayer Assembly Surface Modification and its Application to Enhance Evaporation.” Thermal Science and Engineering Progress, Vol. 27,
pp. 101133.
[30] Wu, S. C., 2015, “Study of Self-Rewetting Fluid Applied to Loop Heat Pipe, ” International Journal of Thermal Sciences. Vol. 98, pp. 374-380.
[31] Wu, S. C., Lee, T. J., Lin, W. J., and Chen, Y. M., 2017, “Study of Self-Rewetting Fluid Applied to Loop Heat Pipe with PTFE Wick, ”Applied Thermal Engineering. Vol 119, pp. 622-628.
[32] Zhang, N., 2001, “Innovative Heat Pipe Systems Using a New Working Fluid,”Nternational Communications in Heat and Mass Transfer, Vol. 28,pp.1025-1033.
[33] Abe, Y., 2006, “Self-Rewetting Fluids”, New York Academy of Sciences,Vol, 1077, pp.650-667,
[34] Francescantonio, N. D., Savino , R., and Abe, Y., 2008, “New Alcohol Solutions for Heat Pipes : Marangoni Effect and Heat Transfer Enhancement”, International Journal of Heat and Mass Transfer, Vol. 51,pp. 6199-6207.
[35] Morovati, M., Hindra, B., Shuji, E., and Masahiro, K., 2011, “Enhancement of Pool Boiling and Maximum Heat Flux in Self-Rewetting Fluids at Above Atmospheric Pressures”, Thermal Engineering Joint Conference, Vol.
1, pp. 1849- 1854.
[36] Launy, S. and Vallée, M., 2011, “State-of-the-Art Experimental Studies on Loop Heat Pipes”, Frontiers in Heat Pipes, Vol. 2,pp. 013003.85
[37] Hu,Y., Liu, T., Li, X., and Wang, S., 2014, “Heat Transfer Enhancement of Micro Oscillating Heat Pipes with Self- Rewetting Fluid”, International Journal of Heat and Mass Transfer, Vol. 70 , pp. 496-503.
[38] Naresh, Y., Vignesh, K. S., and Balaji, C., 2017, “Experimental Investigations of the Thermal Performance of Self-Rewetting Fluids in Internally Finned Wickless Heat Pipes”, Experimental Thermal and Fluid Science, Vol ,92, pp. 436-446
[39] Hu, Y., Huang, K., and Huang, J., 2018, “A Review of Boiling Heat Transfer and Heat Pipes Behavior with Self - Rewetting Fluids”, International Journal of Heat and Mass Transfer, Vol ,121. pp.107-118.
[40] Boubaker, R., Harmand, S., and Ouenzerfi, S., 2019, “Effect of Self-Rewetting Fluids on the Liquid/Vapor Phase Change in Aporous Media of Two-Phase Heat Transfer Devices”, International Journal of Heat and Mass Transfer , Vol ,136, pp.655–663.
[41] Zaaroura, I., Harmand, S., Carlier, J., Toubal, M., Fasquelle, A., and Nongaillard, B., 2021, “Thermal Performance of Self-Rewetting Gold Nano fluids : Application to Two - Phase Heat Transfer Devices”,
International Journal of Heat and Mass Transfer, Vol ,174.pp.121322.
[42] Gao, J. H., Wu, S. C., Lee, Y. W., Chou, T. L., and Chen, Y. C., 2022, “The Study of Novel Self-Rewetting Fluid Application to Loop Heat Pipe” Applied sciences, Vol.12,pp.3121.
[43] Marangoni, C. G. M., 1865, “Sull Expansiome Dell Goccie Di un Liquido Galleggianti Sulla Superficie di Altro Liquido,” Tipografia del Fratelli Fusi,Pavia.
[44] Abe Y., Iwasaki A., and Tanaka K., 2004, “Microgravity Experiments on Phase Change of Self-Rewetting Fluids,” Annals New Youk Academy of Sciences, Vol. 1027, pp. 269-285.
[45] Vochten, R. and Petre, G., 1973, “Study of the Heat of Reversible Adsorption at the Air-Solution Interface,” Colloid and Interface Science, Vol. 42, pp.320-327.
[46] Chernysheva, M. A., Vershinin, S. V., and Maydanik, Y. F., 2007,“Operating Temperature and Distribution of a Working Fluid in LHP,”International Journal of Heat and Mass Transfer, Vol. 50, pp. 2704-2713.
[47] Gernert, N. J., Baldassarre, G. J., and Gottschlich, J. M., 1996, “Fine Pore Loop Heat Pipe Wick Structure Development,” Proceeding of Aerospace Atlantic Conference, pp. 1-10.
[48] Wu, S. C., Huang, C. J., Yang, W. H., Chang, J. C., and Kung, C. C., 2012, “Effect of Sintering Temperature Curvein Wick Manufactured for Loop Heat Pipe,”World Academy of Science, Engineeringand Technology, Vol. 62, pp.
631-636.
[49] Maidanik, Y. F., 2005, “Loop Heat Pipes .”Applied Thermal Engineering,Vol. 25, pp. 635-657.
[50] Moffat, R. J., 1988 “Describing the Uncertainties in Experimental Results ,”Experimental Thermal and Fluid Science,Vol.1,pp.3-17.
電子全文 電子全文(網際網路公開日期:20270827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top