跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡旻瑜
研究生(外文):Tsai, Min-Yu
論文名稱:紅鳳菜花青素的儲存安定性和抗氧化活性
論文名稱(外文):Stability and antioxidant activity of anthocyanins extracted from Gynura bicolor during storage
指導教授:駱錫能駱錫能引用關係
指導教授(外文):Lou, Shyi-Neng
口試委員:邱思魁蔡震壽黃鈺茹陳彥卉
口試委員(外文):Chiou, Tze-KueiTsai, Jenn-ShouHuang, Yu-RuChen, Yen-Hui
口試日期:2022-07-21
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:94
中文關鍵詞:紅鳳菜花青素安定性抗氧化活性微膠囊化
外文關鍵詞:Gynura bicoloranthocyaninsstabilityantioxidant activitymicroencapsulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:0
紅鳳菜 (Gynura bicolor) 是宜蘭縣員山鄉雙連埤地區的重要農作物,其含有花青素,具有生理活性。然而,國內紅鳳菜花青素組成及其儲存安定性之研究報告尚極少見,因此本研究以乙醇萃取紅鳳菜的花青素,再利用 LC/MSn 進行鑑定分析其花青素,並探討其儲存安定性,以提供後續開發紅鳳菜成為健康產品之參考。結果顯示,紅鳳菜乙醇萃取物中主要的花青素含量最高為 bicolmalonin (679.4-720.0 mg/100 g dry weight),其次為 rubrocinerarin (256.4-259.5 mg/100 g dry weight),bicolmalonin II 和 rubrocinerarin II 的含量則較低,分別在 61.7-68.3 mg/100 g dry weight 和 13.9-14.8 mg/100 g dry weight 之間。主要為以 cyanidin 的花青素配質為主體,含有四個糖苷鍵 (六碳糖) 並鍵結不同量的 caffeic acid 及 malonic acid 的醯化基團。
將萃取液的凍乾粉末儲存於 4°C 和 25°C 下,顯示儲存至十八週時,總花青素和個別花青素均非常穩定,並無顯著的變化,色澤之 L 和 a 值亦無顯著變化,而 b 值有些微的下降。萃取液直接以液態形式儲存時,在pH 2.0 下,不論是 4°C 或 25°C,個別花青素僅維持一天,之後隨著儲存時間的延長持續下降至第 12 天,色澤則僅有 b 值緩緩下降,抗氧化活性則可維持至第九天。在 pH 3.0 下,個別花青素於第一天即下降,色澤則僅有 b 值急速下降,而抗氧化力於儲存 12 天內無顯著的變化。當儲存於pH 4.0 條件下,個別花青素同樣於第一天即下降,色澤的 b 值較低,且在儲存中已降為負值,顯示外觀色澤有明顯改變。抗氧化力則可維持約三天,整體安定性為 pH=2.0>3.0>4.0。
利用麥芽糊精與阿拉伯膠做為微膠囊壁材,進行萃取液的微膠囊化,結果顯示不論是在 4°C 或 40°C 的加速儲存試驗中,四種凝聚封裝法 (M20:麥芽糊精 20%、M15A5:麥芽糊精 15%+阿拉伯膠 5%、M10A10:麥芽糊精 10%+阿拉伯膠 10%、A15:阿拉伯膠 15%) 之總花青素含量皆可以維持至 12 週的穩定性,個別花青素的穩定性為 A15 >M20、M10A10 > M15A5,惟微膠囊化的產品 b 值較低,隨儲存時間的延長,明顯的下降。
綜合以上,顯示紅鳳菜萃取液中的花青素在凍乾模式和微膠囊化模式時儲存安定性佳,但是微膠囊化產品外觀色澤會有明顯變化,而以液態形式儲存時,其儲存安定性較差。

Gynura bicolor, the main planted area in Shuanglianpi area, Yuanshan Township, Ilan county, contain plenty of anthocyanins and have many functional activities. However, they are still very few studies about anthocyanins in Gynura bicolor and its storage stability in Taiwan. Therefore, the extraction of anthocyanins from Gynura bicolor by ethanol was carried out. Then, the ethanol extract will be analyzed by LC/MSn to elucidate the composition of anthocyanins. Furthermore, the storage stability of the extract will be also investigated. Thus, the obtained data can be used as basic knowledge to develop health products of Gynura bicolor. The results indicated that major anthocyanins, included bicolmalonin (679.4-720.0 mg/100 g dry weight), rubrocinerarin (256.4-259.5 mg/100 g dry weight), bicolmalonin II (61.7-68.3 mg/100 g dry weight) and rubrocinerarin II (13.9-14.8 mg/100 g dry weight), existed in ethanol extract of Gynura bicolor. These four anthocyanins are cyanidin derivatives with four glycoside linkage (hexoses) and esterified by various amount of caffeic acid and malonic acid.
The freeze-dried powder of the extract stored at 4°C and 25°C, separately. There were no significant different of total anthocyanidin content and individual anthocyanins observed during 18 weeks storage, while the b value of color decreased slightly. The extract stored in liquid form, instead of dry powder, was carried out in different pH range and at 4°C and 25°C. For the pH 2.0, the stability of individual anthocyanins could only retain 1 day. The content decreased during storage until 12 days. The b value of color decreased slowly, while the antioxidant activity remained stable until 9 days. For the pH 3.0, the content of individual anthocyanins descended rapidly in the first day, and the b value of color decreased also quickly. However, the antioxidant activity remained stable until 12 days. For the pH 4.0, the individual anthocyanins decreased rapidly in the first day. The b value of color was lower than that at pH 2.0 and 3.0 and it decreased to minus value during storage. This led to an obvious color change. The antioxidant activity could only retain in 3 days. Collectively, the stability of anthocyanins in liquid form was in the order of pH= 2.0>3.0>4.0.
In order to improve the stability of extract from Gynura bicolor, we used maltodextrin and gum Arabic as wall material to encapsulate the extract of Gynura bicolor. The encapsulated Gynura bicolor showed good stability of total anthocyanin content during 12 weeks storage both at 4°C and 40°C. Four coacervation encapsulation methods: (1) Maltodextrin 20% (M20); (2) Maltodextrin 15% + Gum Arabic 5% (M15A5); (3) Maltodextrin 10% + Gum Arabic 10% (M10A10); (4) Gum Arabic 15% (A15). The stability of individual anthocyanins is A15>M20, M10A10>M15A5. However, the b value of the product was low and decreased to minus value during storage. Collectively, the stability of extract from Gynura bicolor was better in form of freeze-dried powder and encapsulation than in form of liquid.


目錄
摘要 I
Abstract III
謝誌 V
目錄 VI
表目錄 VIII
圖目錄 X
附圖目錄 XI
壹、前言 1
貳、文獻回顧 3
一、紅鳳菜 3
(一) 簡介 3
(二) 產地分布與生長習性 3
(三) 紅鳳菜成份之探討 4
(三) 生理活性 5
(四) 色素萃取 6
二、花青素 (Anthocyanin) 6
(一) 簡介 6
(二) 花青素配質 (anthocyanidin) 種類 7
(三) 自然界中的型態 7
(四) 生理活性 8
(五) 穩定性 8
三、花青素安定性之改善方法-膠囊化 (Microencapsulation) 10
(一) 簡介 10
(二) 微膠囊技術 10
(三) 壁材選擇 14
參、 實驗架構 15
肆、材料與方法 16
一、實驗材料 16
二、實驗器材 16
(一) 試驗藥品 16
(二) 標準品 17
(三) 儀器設備 17
(四) 層析管柱 19
三、實驗方法 19
(一) 紅鳳菜 (Gynura bicolor) 萃取液之製備 19
(二) 紅鳳菜花青素標準品的製備 21
(三) 紅鳳菜花青素分析方法 22
(四) 統計方法 25
伍、結果與討論 26
一、紅鳳菜中花青素化合物之分析 26
二、分離與純化 27
三、紅鳳菜萃取液凍乾粉末之儲存安定性 28
四、紅鳳菜萃取液之儲存安定性 31
(一) 在 pH 2.0 時之變化 31
(二) 在 pH 3.0 時之變化 34
(三) 在 pH 4.0 時之變化 35
五、不同壁材凝聚封裝紅鳳菜萃取液之儲存安定性 37
(一) 在 4°C 儲存 37
(二) 在 40°C 儲存 40
陸、結論 43
柒、參考文獻 44
捌、表 58
玖、圖 79
拾、附圖 88



表目錄
表一、紅鳳菜萃取液經製備型管柱劃分為 I-IV 劃分物之各個花青素之面積比 58
表二、紅鳳菜萃取液粉末在不同溫度下儲藏之總花青素含量變化 59
表三、紅鳳菜萃取液粉末分別儲藏於 4°C 和 25°C 下的個別花青素變化 60
表四、紅鳳菜萃取液粉末在不同溫度下儲藏之色澤變化 61
表五、紅鳳菜萃取液在 pH 2.0 時分別儲藏於 4°C 和 25°C 下的個別花青素變化 62
表六、紅鳳菜萃取液在 pH 2.0 時分別儲藏於 4°C 和 25°C 下的色澤變化 63
表七、紅鳳菜萃取液在 pH 2.0 時分別儲藏於 4°C 和 25°C 下之 DPPH 活性 64
表八、紅鳳菜萃取液在 pH 3.0 時分別儲藏於 4°C 和 25°C 下的個別花青素變化 65
表九、紅鳳菜萃取液在 pH 3.0 時分別儲藏於 4°C 和 25°C 下的色澤變化 66
表十、紅鳳菜萃取液在 pH 3.0 時分別儲藏於 4°C 和 25°C 下之 DPPH 活性 67
表十一、紅鳳菜萃取液在 pH 4.0 時分別儲藏於 4°C 和 25°C 下的個別花青素變化 68
表十二、紅鳳菜萃取液在 pH 4.0 時分別儲藏於 4°C 和 25°C 下的色澤變化 69
表十三、紅鳳菜萃取液在 pH 4.0 時分別儲藏於 4°C 和 25°C 下之 DPPH活性 70
表十四、以不同壁材凝聚封裝處理紅鳳菜萃取液後儲存於 4°C 下之總花青素含量變化 71
表十五、紅鳳菜萃取液經 M20 處理後分別儲藏於 4°C 和 40°C 下的個別花青素變化 72
表十六、紅鳳菜萃取液經 M15A5 處理後分別儲藏於 4°C 和 40°C 下的個別花青素變化 73
表十七、紅鳳菜萃取液經 M10A10 處理後分別儲藏於 4°C 和 40°C 下的個別花青素變化 74
表十八、紅鳳菜萃取液經 A15 處理後分別儲藏於 4°C 和 40°C 下的個別花青素變化 75
表十九、以不同壁材凝聚封裝紅鳳菜萃取液後儲存於 4°C 之色澤變化 76
表二十、以不同壁材凝聚封裝紅鳳菜萃取液後儲存於 40°C 之總花青素含量變化 77
表二十一、以不同壁材凝聚封裝紅鳳菜萃取液後儲存於 40°C 之色澤變化 78


圖目錄
圖一、紅鳳菜萃取液中四個主要花青素。 79
圖二、peak 1 之正離子質譜圖 (MS1 及 MS2)。 80
圖三、peak 2 之正離子質譜圖 (MS1 及 MS2)。 81
圖四、peak 3 之正離子質譜圖 (MS1 及 MS2)。 82
圖五、peak 4 之正離子質譜圖 (MS1 及 MS2)。 83
圖六、紅鳳菜花萃取液中的花青素與酚類化合物之 HPLC 層析圖。 84
圖七、以 C18 固項萃取匣淨化紅鳳菜萃取液花青素之 HPLC 層析圖。 85
圖八、在波長 537 nm 中紅鳳菜萃取液經製備型管柱劃分為 I-IV 劃分物之 HPLC 層析圖。 86
圖九、紅鳳菜萃取液各劃分收集液 (I-III) 之 HPLC 層析圖。(detection at 537 nm) 87

附圖目錄
附圖一、紅鳳菜在批發市場的營銷趨勢圖 (1996-2022年)。 88
附圖二、花青素配質的基本結構式。 89
附圖三、花青素配質之化學結構。 90
附圖四、結合態花青素之結構。 91
附圖五、不同 pH 值的花青素 (主要化學形式)。 92
附圖六、微囊化形成的各種形態示意圖:(A) 微球、(B) 單層和單核微膠囊、(C) 多層和單核微膠囊、(D) 多層和多核微囊和 (E) 微粒。 93
附圖七、紅鳳菜花青素化學結構。 94

行政院農委會。2015。紅鳳菜紅得發紫,含鐵高真的補血。
(https://kids.coa.gov.tw/index.php) accessed date: 2022. 08. 13
行政院農委會。2022。當季好蔬果。(https://www.twfood.cc/) accessed date: 2022. 08. 13
行政院農委會委員台東區農業改良場。2019。原生蔬菜栽培繁殖及料理應用介紹。台東區農業改良場技術專刊。172(60):22-25。
任冰如、李維林。2002。紅鳳菜紅色素水溶液的穩定性試驗。植物資源與環境學報,11 (3):8-11。
呂明雄。1995。台灣農家要覽農作篇 (二)。財團法人豐年社編著。17-24頁
邱雅耘。2017。金柑類黃酮之酵素酯化及其產物之生物活性。國立宜蘭大學食品科學系學位論文。宜蘭。
黃愉婷。2005。與酚類共色對花青素穩定性及抗氧化力之影響。國立屏東科技大學食品科學系碩士論文。屏東。
蔡正宗、陳中文。1992。紅鳳菜花青素安定性之探討。食品科學期刊,19(3):310-323。
蔡正宗、陳中文、楊正憲。1995。紅鳳菜 (Gynura Bicolor) 所含兩種主要花色素苷之研究。食品科學期刊,22:(2):149-160。
劉嘉琪。2020。紅鳳菜的酚類與花青素組成及其抗氧化活性。國立宜蘭大學食品科學系學位論文。宜蘭。
Aditya, N. P., Espinosa, Y. G., & Norton, I. T. 2017. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnology Advances, 35(4), 450-457.
Alam, M. A., Subhan, N., Hossain, H., Hossain, M., Reza, H. M., Rahman, M. M., & Ullah, M. O. 2016. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutrition & Metabolism, 13(1), 1-13.
Albuquerque, B. R., Oliveira, M. B. P., Barros, L., & Ferreira, I. C. 2021. Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Critical Reviews in Food Science and Nutrition, 61(5), 805-835.
Ali, T., Kim, T., Rehman, S. U., Khan, M. S., Amin, F. U., Khan, M., Ikram., M & Kim, M. O. 2018. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Molecular Neurobiology, 55(7), 6076-6093
Alvarez-Suarez, J. M., Giampieri, F., Tulipani, S., Casoli,T., Di Stefano, G., González-Paramás, A. M., Santos-Buelga., C., Busco, F., Quiles, J. L., Cordero, M. D., Bompadre, S.. Mezzetti, B. & Battinoa, M. 2014. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. The Journal of Nutritional Biochemistry, 25(3), 289-294.
Alvarez-Suarez, J. M., Cuadrado, C., Redondo, I. B., Giampieri, F., González-Paramás, A. M., & Santos-Buelga, C. 2021. Novel approaches in anthocyanin research-Plant fortification and bioavailability issues. Trends in Food Science & Technology, 117, 92-105.
Anal, A. K., & Singh, H. 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18(5), 240-251.
Andersen, Ø. M., & Jordheim, M. 2013. Basic anthocyanin chemistry and dietary sources. Anthocyanins in Health and Disease, 1, 13-89.
Ávila, M., Hidalgo, M., Sánchez-Moreno, C., Pelaez, C., Requena, T., & de Pascual-Teresa, S. 2009. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, 42(10), 1453-1461.
Bakowska-Barczak, A. 2005. Acylated anthocyanins as stable, natural food colorants–a review. Polish Journal of Food and Nutrition Sciences, 14, 55.
Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. 2016. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182.
Barnes, J. S.; Nguyen, H. P.; Shen, S.; Schug, K. A. 2009. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A, 1216(23), 47284735.
Beikzadeh, S., Akbarinejad, A., Swift, S., Perera, J., Kilmartin, P. A., & Travas-Sejdic, J. 2020. Cellulose acetate electrospun nanofibers encapsulating Lemon Myrtle essential oil as active agent with potent and sustainable antimicrobial activity. Reactive and Functional Polymers, 157, 104769.
Benichou, A., Aserin, A., & Garti, N. 2004. Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Advances in Colloid and Interface Science, 108, 29-41.
Bhushani, J. A., & Anandharamakrishnan, C. 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 38(1), 21-33.
Bontempo, P., De Masi, L., Carafa, V., Rigano, D., Scisciola, L., Iside, C., Grassi , R., Maria Molinari, A., Aversano, R., Nebbioso, A., Carputo, D., & Altucci., L. 2015. Anticanceractivities of anthocyanin extract from genotyped Solanum tuberosum L.“Vitelotte”. Journal of Functional Foods, 19, 584-593.
Brouillard, R. 1982. Chemical structure of anthocyanins. Anthocyanins as Food Colors, 1-40.
Bueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. 2012. Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry, 42(2), 126-151.
Burin, V. M., Rossa, P. N., Ferreira‐Lima, N. E., Hillmann, M. C., & Boirdignon‐Luiz, M. T. 2011. Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. International Journal of Food Science & Technology, 46(1), 186-193.
Carvalho, V. V., Gonçalves, J. O., Silva, A., Cadaval Jr, T. R., Pinto, L. A., & Lopes, T. J. 2019. Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films. International Journal of Biological Macromolecules, 131, 905-911.
Castaneda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. 2009. Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871.
Chao, C. Y., Liu, W. H., Wu, J. J., & Yin, M. C. 2015. Phytochemical profile, antioxidative and anti-inflammatory potentials of Gynura bicolor DC. Journal of the Science of Food and Agriculture, 95(5), 1088-1093.
Chranioti, C., Nikoloudaki, A., & Tzia, C. 2015. Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydrate Polymers, 127, 252-263.
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. 2016. Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chemistry, 201, 14-22.
da Fonseca Machado, A. P., Rezende, C. A., Rodrigues, R. A., Barbero, G. F., e Rosa, P. D. T. V., & Martinez, J. 2018. Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technology, 340, 553-562.
Dangles, O., & Brouillard, R. 1992. A spectroscopic method based on the anthocyanin copigmentation interaction and applied to the quantitative study of molecular complexes. Journal of the Chemical Society, Perkin Transactions 2, (2), 247-257.
Dyrby, M., Westergaard, N., & Stapelfeldt, H. 2001. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chemistry, 72(4), 431-437.
Ersus, S., & Yurdagel, U. 2007. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80(3), 805-812.
Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. 2013. Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628-647.
Fang, Z. & Bhandari, B. 2011. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147.
Fossen, T., Cabrita, L., & Andersen, O. M. 1998. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chemistry, 63(4), 435-440.
Francis, F. J., & Markakis, P. C. 1989. Food colorants: anthocyanins. Critical Reviews in Food Science & Nutrition, 28(4), 273-314.
Fredes, C., Becerra, C., Parada, J., & Robert, P. 2018. The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules, 23(5), 1227.
Fukuoka, N., Suzuki, T., Minamide, K., & Hamada, T. 2014. Effect of shading on anthocyanin and non-flavonoid polyphenol biosynthesis of Gynura bicolor leaves in midsummer. HortScience, 49(9), 1148-1153.
Gancel, A. L., Feneuil, A., Acosta, O., Pérez, A. M., & Vaillant, F. 2011. Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44(7), 2243-2251.
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107-1121.
Giusti, M. M., & Wrolstad, R. E. 2003. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217-225.
Gouin, S. 2004. Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 15(7-8), 330-347.
He, J., & Giusti, M. M. 2010. Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1, 163-187.
He, F., Liang, N. N., Mu, L., Pan, Q. H., Wang, J., Reeves, M. J., & Duan, C. Q. 2012. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules, 17(2), 1483-1519.
Hsieh, S. L., Wu, C. C., Liu, C. H., & Lian, J. L. 2013. Effects of the water extract of Gynura bicolor (Roxb. & Willd.) DC on physiological and immune responses to Vibrio alginolyticus infection in white shrimp (Litopenaeus vannamei). Fish & Shellfish Immunology, 35(1), 18-25.
Iacobucci, G. A., & Sweeny, J. G. 1983. The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron, 39(19), 3005-3038.
Isik, B. S., Altay, F., & Capanoglu, E. 2018. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chemistry, 265, 260-273.
Jacquot, M., & Pernetti, M. 2004. Spray coating and drying processes. In Fundamentals of Cell Immobilisation Biotechnology. Springer, Dordrecht. 343-356.
Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. 2008. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816-835.
Jayme, M. L., Dunstan, D. E., & Gee, M. L. 1999. Zeta potentials of gum arabic stabilised oil in water emulsions. Food Hydrocolloids, 13(6), 459-465.
Jia, Z., Dumont, M. J., & Orsat, V. 2016. Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience, 15, 87-104.
Jimenez, N., Bohuon, P., Lima, J., Dornier, M., Vaillant, F., & Pérez, A. M. 2010. Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100-180°C). Journal of Agricultural and Food Chemistry, 58(4), 2314-2322.
Joye, I. J., & McClements, D. J. 2014. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19(5), 417-427.
Kennedy, J. A., & Waterhouse, A. L. 2000. Analysis of pigmented high-molecular-mass grape phenolics using ion-pair, normal-phase high-performance liquid chromatography. Journal of Chromatography A, 866(1), 25-34.
Khan, M. S., Ali, T., Kim, M. W., Jo, M. H., Chung, J. I., & Kim, M. O. 2019. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Molecular Neurobiology, 56(1), 671-687.
Khazaei, K. M., Jafari, S. M., Ghorbani, M., & Kakhki, A. H. 2014. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105, 57-62.
Kim, Y. D., & Morr, C. V. 1996. Microencapsulation properties of gum arabic and several food proteins: spray-dried orange oil emulsion particles. Journal of Agricultural and Food Chemistry, 44(5), 1314-1320.
Kittipongpittaya, K., Panya, A., McClements, D. J., & Decker, E. A. 2014. Impact of free fatty acids and phospholipids on reverse micelles formation and lipid oxidation in bulk oil. Journal of the American Oil Chemists' Society, 91(3), 453-462.
Krishnan, V., Ahmad, S., & Mahmood, M. 2015. Antioxidant potential in different parts and callus of Gynura procumbens and different parts of Gynura bicolor. BioMed Research International, 2015.
Konczak, I., & Zhang, W. 2004. Anthocyanins—more than nature's colours. Journal of Biomedicine and Biotechnology, 2004(5), 239.
Kuck, L. S., & Noreña, C. P. Z. 2016. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food chemistry, 194, 569-576.
Li, W. L., Ren, B. R., Min-Zhuo, Hu, Y., Lu, C. G., Wu, J. L., Chen, J. & Sun, S. 2009. The anti-hyperglycemic effect of plants in genus Gynura Cass. The American Journal of Chinese Medicine, 37(05), 961-966.
Lim, S., Xu, J., Kim, J., Chen, T. Y., Su, X., Standard, J., Carey, E., Griffin, J., Herndon, B., Katz, B., Tomich, J. & Wang, W. 2013. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Molecular Nutrition & Food Research, 57(11), 1908-1917.
Lin, J. Y., Liu, Y. L., Lin, B. F., Hsiao, C. C., & Tsai, S. J. 2004. Antioxidant, antimutagenic and immunomodulatory potentials of Gynura bicolar and Amaranthus gangetcaue. Taiwanese Journal of Agricultural Chemistry and Food Science, 42(4), 231-241.
Lin, Y. C., & Chou, C. C. 2009. Effect of heat treatment on total phenolic and anthocyanin contents as well as antioxidant activity of the extract from Aspergillus awamori-fermented black soybeans, a healthy food ingredient. International Journal of Food Sciences and Nutrition, 60(7), 627-636.
Liu, Y., Tan, D., Shi, L., Liu, X., Zhang, Y., Tong, C., Sond, D., & Hou, M. 2015. Blueberry anthocyanins-enriched extracts attenuate cyclophosphamide-induced cardiac injury. PLoS One, 10(7), e0127813.
Luo, C. L., Zhou, Q., Yang, Z. W., Wang, R. D., & Zhang, J. L. 2018. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). Food Chemistry, 241, 23-31.
Mahdavi, S. A., Jafari, S. M., Ghorbani, M., & Assadpoor, E. 2014. Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Drying Technology, 32(5), 509–518.
Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. 2016. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379-385.
Markaris, P., Livingston, G. E., & Fellers, C. R. 1957. Quantitative aspects of strawberry pigment degradation. Journal of Food Science, 22(2), 117-130.
Mao, L., Roos, Y. H., Biliaderis, C. G., & Miao, S. 2017. Food emulsions as delivery systems for flavor compounds: A review. Critical Reviews in Food Science and Nutrition, 57(15), 3173-3187.
Matsufuji, H., Kido, H., Misawa, H., Yaguchi, J., Otsuki, T., Chino, M., Takeda, M., & Yamagata, K. 2007. Stability to light, heat, and hydrogen peroxide at different pH values and DPPH radical scavenging activity of acylated anthocyanins from red radish extract. Journal of Agricultural and Food Chemistry, 55(9), 3692-3701.
Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., & Matsumoto, K. 2001. α-Glucosidase inhibitory action of natural acylated anthocyanins. 2. α-Glucosidase inhibition by isolated acylated anthocyanins. Journal of Agricultural and Food Chemistry, 49(4), 1952-1956.
Mazza, G., & Miniati, E. 2018. Anthocyanins in fruits, vegetables, and grains. CRC press.
McClements, D. J. 2010. Emulsion design to improve the delivery of functional lipophilic components. Annual Review of Food Science and Technology, 1(1), 241-269.
Mohammadalinejhad, S., & Kurek, M. A. 2021. Microencapsulation of anthocyanins—Critical review of techniques and wall materials. Applied Sciences, 11(9), 3936.
Noda, Y., Kneyuki, T., Igarashi, K., Mori, A., & Packer, L. 2000. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology, 148(2-3), 119-123.
Oliveira, A., Alexandre, E. M., Coelho, M., Gomes, M. H., Almeida, D. P., & Pintado, M. 2015. Effect of modified atmosphere on polyphenols during storage of pasteurized strawberry purées. LWT-Food Science and Technology, 60(1), 377-384.
Pai, P. Y., Mong, M. C., Yang, Y. C., Liu, Y. T., Wang, Z. H., & Yin, M. C. 2019. Anti-Diabetic Effects of Gynura Bicolor Aqueous Extract in Mice. Journal of Food Science, 84(6), 1631-1637.
Panya, A., Laguerre, M., Lecomte, J., Villeneuve, P., Weiss, J., McClements, D. J., & Decker, E. A. 2010. Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. Journal of Agricultural and Food Chemistry, 58(9), 5679-5684.
Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1), 3-11.
Pérez-Gregorio, M. R., Regueiro, J., González-Barreiro, C., Rial-Otero, R., & Simal-Gándara, J. 2011. Changes in antioxidant flavonoids during freeze-drying of red onions and subsequent storage. Food Control, 22(7), 1108-1113.
Pervin, M., Hasnat, M., Lee, Y., Kim, D., Jo, J., & Lim, B. 2014. Antioxidant activity and acetylcholinesterase inhibition of grape skin anthocyanin (GSA). Molecules, 19(7), 9403-9418.
Pina, F., Oliveira, J., & de Freitas, V. 2015. Anthocyanins and derivatives are more than flavylium cations. Tetrahedron, 71(20), 3107-3114.
Qiu, X. L., Guo, Y. X., & Zhang, Q. F. 2018. Chemical profile and antioxidant activity of Gynura bicolor DC. ethanolic extract. International Journal of Food Properties, 21(1), 407-415.
Quek, S. Y., Hadi, J., & Tanambell, H. 2019. Application of electrospinning as bioactive delivery system.
Rein, M. 2005. Copigmentation reactions and color stability of berry anthocyanins. University of Helsinki, Department of Applied Chemistry and Microbiology. EKT series, 1331, 88.
Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. 2020. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1-2), 235-258.
Robert, P., & Fredes, C. 2015. The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules, 20(4), 5875-5888.
Rodriguez‐Saona, L. E., & Wrolstad, R. E. 2001. Extraction, isolation, and purification of anthocyanins. Current Protocols in Food Analytical Chemistry, (1), F1-1.
Rozano, L., Abdullah Zawawi, M. R., Ahmad, M. A., & Jaganath, I. B. 2017. Computational analysis of Gynura bicolor bioactive compounds as dipeptidyl peptidase-IV inhibitor. Advances in Bioinformatics, 2017.
Rulkens, W. H., & Thijssen, H. A. C. 1972. Retention of volatile compounds in freeze- drying slabs of malto-dextrin. International Journal of Food Science & Technology, 7(1), 79-93.
Sakamura, S., Watanabe, S., & Obata, Y. 1963. The structure of the major anthocyanin in eggplant. Agricultural and Biological Chemistry, 27(9), 663-665.
Santana, R. C., Perrechil, F. A., & Cunha, R. L. 2013. High-and low-energy emulsifications for food applications: A focus on process parameters. Food Engineering Reviews, 5(2), 107-122.
Serris, G. S., & Biliaderis, C. G. 2001. Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. Journal of the Science of Food and Agriculture, 81(8), 691-700.
Shehata, T., Ogawara, K. I., Higaki, K., & Kimura, T. 2008. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. International Journal of Pharmaceutics, 359(1-2), 272-279.
Shimizu, Y., Imada, T., Zhang, H., Tanaka, R., Ohno, T., & Shimomura, K. 2010. Identification of novel poly-acylated anthocyanins from Gynura bicolor leaves and their antioxidative activity. Food Science and Technology Research, 16(5), 479-486.
Silva, P. T. D., Fries, L. L. M., Menezes, C. R. D., Holkem, A. T., Schwan, C. L., Wigmann, É. F., Bastos, J. D. O., & Silva, C. D. B. D. 2014. Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Ciência Rural, 44, 1304-1311.
Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. 2016. Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology, 9(1), 172-181.
Sun, J., Bai, W., Zhang, Y., Liao, X., & Hu, X. 2011. Identification of degradation pathways and products of cyanidin-3-sophoroside exposed to pulsed electric field. Food Chemistry, 126(3), 1203-1210.
Sutharut, J., & Sudarat, J. 2012. Total anthocyanin content and antioxidant activity of germinated colored rice. International Food Research Journal, 19(1).
Tamura, H., & Yamagami, A. 1994. Antioxidative activity of monoacylated anthocyanins isolated from Muscat Bailey A grape. Journal of Agricultural and Food Chemistry, 42(8), 1612-1615.
Taylor, T. M., Weiss, J., Davidson, P. M., & Bruce, B. D. 2005. Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7-8), 587-605.
Teoh, W. Y., Sim, K. S., Richardson, M., Stella, J., Abdul Wahab, N., & Hoe, S. Z. 2013. Antioxidant capacity, cytotoxicity, and acute oral toxicity of Gynura bicolor. Evidence-Based Complementary and Alternative Medicine, 2013.
Tolstoguzov, V. 2003. Some thermodynamic considerations in food formulation. Food Hydrocolloids, 17(1), 1-23.
Turchiuli, C., Fuchs, M., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. 2005. Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Science & Emerging Technologies, 6(1), 29-35.
Vanijajiva, O., & Kadereit, J. W. 2011. A revision of Gynura (Asteraceae: Senecioneae). Journal of Systematics and Evolution, 49(4), 285-314.
Wang, E.; Yin, Y.; Xu, C.; Liu, J. 2014. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. Journal of Chromatography A, 1327, 39-48.
Wang, M., Fu, Y., & Liu, H. 2015. Nutritional status and ion uptake response of Gynura bicolor DC. between Porous-tube and traditional hydroponic growth systems. Acta Astronautica, 113, 13-21.
Wang, H., Cao, G., & Prior, R. L. 1997. Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45(2), 304-309.
West, M. E., & Mauer, L. J. 2013. Color and chemical stability of a variety of anthocyanins and ascorbic acid in solution and powder forms. Journal of Agricultural and Food Chemistry, 61(17), 4169-4179.
Wu, C. C., Lii, C. K., Liu, K. L., Chen, P. Y., & Hsieh, S. L. 2013. Antiinflammatory activity of Gynura bicolor (紅鳳菜 Hóng Feng Cai) ether extract through inhibits nuclear factor kappa B activation. Journal of Traditional and Complementary Medicine, 3(1), 48-52.
Wu, C. C., Chang, W. L., Lu, C. H., Chang, Y. P., Wang, J. J., & Hsieh, S. L. 2015. Effects of extracts from Gynura bicolor (Roxb. & Willd.) DC. on iron bioavailability in rats. Journal of Food and Drug Analysis, 23(3), 425-432.
Yamaguchi, T., Takamura, H., Matoba, T., & Terao, J. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry, 62(6), 1201-1204.
Yang, L., Rong-Rong, C., Ji-Li, F., & Ke, Y. 2019. Total anthocyanins and cyanidin-3-O-glucoside contents and antioxidant activities of purified extracts from eight different pigmented plants. Pharmacognosy Magazine, 15(60), 124.
Yin, M. C., Wang, Z. H., Liu, W. H., & Mong, M. C. 2017. Aqueous extract of Gynura bicolor attenuated hepatic steatosis, glycative, oxidative, and inflammatory injury induced by chronic ethanol consumption in mice. Journal of Food Science, 82(11), 2746-2751.
Zhao, X., Ding, B. W., Qin, J. W., He, F., & Duan, C. Q. 2020. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chemistry, 326, 126960.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊