跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 19:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅文
研究生(外文):Muddineni Raveendra
論文名稱:使用遺傳演算法設計和實現長距離無線電應用之頻寬1:18單極 鞭型天線
論文名稱(外文):Design and Implementation of Monopole Whip Antenna with BWR 1:18 Using Genetic Algorithm for Long Distance Radio Applications
指導教授:邱建文邱建文引用關係
指導教授(外文):Chiu, Chien-Wen
口試委員:邱建文紀俞任陸瑞強王蒼容
口試委員(外文):Chiu, Chien-WenChi, Yu-JenLu, Ruei-ChangWang, Chun-Long
口試日期:2022-07-27
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:108
中文關鍵詞:超寬頻帶天線陷波電路配置傳輸線阻抗轉換器單極鞭型天線遺傳演算法
外文關鍵詞:Ultra-wideband antennaTrap circuit configurationTransmission line transformerMonopole whip antennaGenetic algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在實現具有阻抗轉換器和
(L/R) 並聯陷波電路配置的超寬頻
單極鞭型天線,以滿足長距離無線電應用的要求。 無線通訊 實驗室產學合作
廠商盟訊公司要求其手持單極鞭型天線的長度限制在 100 cm以內,但其工
作頻段必須覆蓋三頻 段 分 別是 30-88 MHz、 135-175 MHz和 380-520 MHz。
本文一開始將三個陷波電路插入鞭型單極輻射體中,並與寬頻帶傳輸線阻
抗轉換器結合以控制輸入阻抗。 吾人 在所需的工作頻段 使用 1:4之傳輸線阻
抗轉換器將高阻抗轉換到低阻抗,特別是在低 VHF 頻段,協助實現超寬頻
帶性能。在構建傳輸線阻抗轉換器後,本文使用端口擴展和 TRL 校準兩種
校準方法校準萃取量測 S參數並導入到 HFSS 模擬中以利模擬進行, ,1:4傳
輸線阻抗轉換器 其量測損耗約在 2-4 dB。
接下來本論文在沒有傳輸線阻抗轉換器的情況下對
30 MHz到 520 MHz的模擬結果進行實 驗驗證,然後在模擬模型中逐一將陷波電路加入到輻射
主體中,進行參數分析以了解每個被動元件對陷波配置的影響和價值,也 討
論 傳輸線阻抗轉換器對輸入阻抗的影響,以了解如何獲得超寬頻性能。最後,
透過可視化腳本 (Vbscript)使 HFSS模擬軟體結合 MATLAB軟體進行遺傳演
算法之 最佳化設計 ,在 30 MHz-520 MHz頻段間其駐波比 VSWR < 3和增
益 > -10 dBi的要求下,逐步優化超寬頻帶阻抗匹配和增益。
最後,使用網路分析儀測試優化後的實際天線,以驗證優化後的模擬結
果。所提出的鞭型單極天線經量測 S11可知 本設計具有從 30 MHz 到 520 MHz 非常寬帶的 適用 範圍,其增益也可以達到 -10 dBi 以上,本設計已能
符合產學合作廠商盟訊公司的規格要求。
A monopole whip antenna with an impedance transformer and three (L/R) parallel trap circuits inserted in the main radiator was designed to achieve ultra-wide performance for the requirement of long-distance radio applications. The whip length of the monopole antenna put on the handheld of the Unication Company is limited to less than 100 cm but its operating frequency band must cover tri-band, 30-88 MHz, 135-175 MHz, and 380-520 MHz. Three trap circuits were inserted into the radiator of the whip monopole to integrate with a broadband transmission line transformer (TLT) to control the original impedance. After constructing the transmission line transformer, the measured S parameter was extracted under two types of calibration methods, port extension, and TRL calibration. The measured insertion loss of the transformer is about -2 to -4 dB. Finally, the measured results of the TLT were employed in the simulation.
After experimenting to verify the simulation results from 30 MHz to 520 MHz in the case of no transmission line transformer, three trap circuit configurations were one-by-one added to the radiator in the simulation model. Parametric analysis is executed to know the influence and then applied to predict the value of each passive component on the trap configuration. The influence of the transmission line transformer on the input impedance was also studied to know how to obtain ultra-band performance.
Then, the Genetic Algorithm by HFSS combined with MATLAB through a visual script is applied step by step to optimize the impedance matching and gain under the requirement of VSWR < 3 and gain > -10 dBi at 30 MHz–520 MHz. Finally, the optimized physical antenna was constructed and tested by using VNA in the open site to verify the optimized simulation results. The measurement of the proposed whip monopole antenna validates it has very broadband covering from 30 MHz to 520 MHz and its gain can achieve above -10 dBi. It satisfies the requirement of the cooperated company.
Keywords: Ultra-wideband antenna, Trap circuit configuration, Transmission line transformer, Monopole whip antenna, Genetic algorithm.
Table of contents
摘要
ABSTRACT
ACKNOWLEDGMENT
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLE
Chapter 1 Introduction
1.1 Research Motivation
1.2 Literature Survey
1.3 Chapter Outline
Chapter 2 Design of a Wideband Monopole Whip Antenna Using TLT
2.1 Wideband Monopole Whip Antenna Design in HFSS
2.2 Whip Antenna Design with Horizontal Ground & Handset Ground
2.3 Theory for Transmission Line Transformer
2.4 TLT Utilization for Broadband Impedance Transform
2.5 Measurements of Transmission Line Transformer
2.6 Summary
Chapter 3 Parametric Analysis for the Antenna System
3.1 The original impedance of the monopole whip antenna
3.2 Implementation of L/R Trap Circuit Configurations
3.3 Proposed Monopole Whip Antenna Including TLT
3.4 Design of Lm
3.5 Summary
Chapter 4 Antenna Parameters Optimization Using Genetic Algorithm
4.1 Genetic Algorithm
4.2 MATLAB and HFSS Interface
4.3 Optimization of VSWR using GA
4.4 Multi-objective function for gain and VSWR optimization
4.5 Summary
Chapter 5 Conclusion
REFERENCE
Reference
[1] Major G. E. Washburn, conference group 12 individual research colonel kline SINCGARS-V [Online].
Available: https://www.globalsecurity.org/military/library/report/1985/WGE.htm
[2] K. Yegin, “Optimization of wire antennas via genetic algorithm and simplified real frequency technique, and penetration through apertures in axi – symmetric structures,” Ph.D dissertation, Clemson University, August 1999.
[3] K. Yegin and A. Q. Martin “Very broadband loaded monopole antennas,” IEEE Antennas and Propagation Society International Symposium, Montreal, QC, Canada, July 1997.
[4] S. D. Rogers, “Genetic Algorithm optimization and realization of broadband wire monopoles,” Ph.D. dissertation, Clemson University, Dec. 2000.
[5] S. D. Rogers, C. M. Butler, and A. Q. Martin, “Realization of genetic algorithm – optimized wire antenna with 5: 1 bandwidth,” Radio Sci., vol 36, no. 6, pp. 1315 – 1325, Dec. 2001.
[6] S. D. Rogers, C. M. Butler, and A. Q. Martin, “Design and realization of GA-optimized wire monopole and matching network with 20:1 bandwidth,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 3, pp. 493-502, March 2003.
[7] X. Ding, B. Z. Wang, G. Zheng, and X. M. Li, “Design and realization of a GA – optimized VHF/UHF antenna with on-body matching network,” vol. 9, pp. 303-306, April 2010.
[8] John R. Lewis, Little Mountain, South Carolina 29075 (US), “Low profile broad band monopole antenna with inductive/resistive networks,” European Patent Application, Application number: 00308972.9, April 2001.
[9] K. Yegin and A. Q. Martin “On the design of broad-band loaded wire antennas using the simplified real frequency technique and a genetic algorithm,” IEEE Transactions on Antennas Propagations, vol. 51, no. 2, pp. 220–228, April 2003.
[10] M. Bhar, A. Bong, E. Michielssen, and R. Mittra “Design of ultra-broadband loaded monopoles,” Proceeding of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Meeting, USA, pp. 1290–1293, 1994.
[11] G. Guannella, “New method of impedance matching in radio frequency circuits,” The Brown Boveri Review, Sept. 1944.
[12] C. L. Ruthroff, “Some broad-band transformers,” Proceedings of the IRE, vol. 47, no. 8, pp. 1337-1342, April 1959.
[13], S. C. Dutta Roy, “Optimum Design of exponential line transformer for wide band matching at low frequencies,” proceedings IEEE (newsletter), vol. 67, no. 11, pp. 1563-1564, Nov. 1979.
[14] J. Sevick, “Design and realization of broadband transmission line matching transformers,”, IEEE Emerging Practices in Technology,1989.
[15] J. Sevick, “Transmission line transformers,” Noble Publishing Corporation Atlanta, GA, (Handbook, 4th Edition), 2001.
[16] Introduction to genetic algorithm, Notion of Natural Selection. [Online]. Available:
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
[17] E. Siragusa, N. Haiminen, F. Utro, and L. Parida, “Linear time algorithms to construct populations fitting multiple constraint distributions at genomic scales,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, no. 4, pp. 1132-1142, Aug. 2019, doi: 10.1109/TCBB.2017.2760879.
[18] T. Badriyah, F. Setyorini, and N. Yuliawan, “The implementation of genetic algorithm and routing lee for PCB design optimization,” 2016th International Conference on Informatics and Computing (ICIC), pp. 148-153, 2016, doi: 10.1109/IAC.2016.7905706.
[19] A. Boag, E. Michielssen and R. Mittra, “Design of electrically loaded wire antennas using genetic algorithms,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 5, pp. 687-695, May 1996, doi: 10.1109/8.496255.
[20] Z. Altman, R. Mittra, and A. Boag, “New designs of ultra-wide-band communication antennas using a genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 10, pp. 1494-1501, Oct. 1997, doi: 10.1109/8.633856.
[21] S. Chakravarty, R. Mittra, and N. R. Williams, “Application of micro-genetic algorithm (MGA) to the synthesis of broadband microwave absorbers comprising multiple frequency selective surfaces embedded in dielectric and magnetic media,” IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), vol.4, pp. 692-695, 2001 doi: 10.1109/APS.2001.959560.
[22] M. Bod, M. A. Boroujeni, and K. M. Aghdam, “Broadband loaded monopole antenna with a novel on-body matching network,” AEU-International Journal of Electronics and Communications, vol. 70, no. 11, pp. 1551–1555, Nov. 2016. [23] M. Bod, M. A. Boroujeni, and K. M. Aghdam, “Design of a low‐cost broadband loaded dipole antenna for VHF/UHF frequency range” IET Microwaves, Antennas & Propagation, vol. 13, no. 12, pp. 1983-1988, 2019.
[24] P. L. Werner and D. H. Werner, “Design synthesis of miniature multiband monopole antennas with application to ground-based and vehicular communication systems,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 104-106, 2005, doi: 10.1109/LAWP.2005.846169.
[25] C. H. Chang, “Design of multiband loop antennas for smart phone applications,” master’s dissertation, National Ilan University, June 2010.
[26] P. Vainikainen, J. Ollikainen, O. Kivekas, and K. Kelander, “Resonator based analysis of the combination of mobile handset antenna and chassis,” IEEE Transactions on Antennas and Propagations, vol. 50, no. 10, pp. 1433 – 1444, Oct. 2002.
[27] P. Vainikainen, J. Ollikainen, O. Kivekas, and K. Kelander, “Bandwidth, SAR and efficiency of internal mobile phone antennas,” IEEE Transactions on Antennas and Propagations, vol. 46, no. 1, pp. 71 – 86, Feb. 2004.
[28] A. Fanti, L. Piattella, G. Scotti, P. Tommasino and A. Trifiletti, “Analysis and modelling of broad-band ferrite-based coaxial transmission-line transformers,” The 40th European Microwave Conference, pp. 353-356, 2010, doi: 10.23919/EUMC.2010.5616213.
[29] R. J. Sprungle and E. F. Kuester, “Design Trade-Offs in the Use of Exponentially Tapered Transmission Line Segments for Impedance Transformation,” IEEE Transactions on Microwave Theory and Techniques, 2022, doi: 10.1109/TMTT.2022.3184032.
[30] Z. Cheraiet, M.T. Benhabiles, M. L. Raiabi, “Interwound and Concentric 1:4 Transmission line transformer using coupled microstrip lines,” 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics modelling and optimization for RF, Microwave, and Terahertz Applications, 2017.
[31] S. P. Liu, “planar transmission line transformer using coupled microstrip lines,” IEEE MTT-S International Microwave Symposium Dig., pp. 789-792, June 1998.
[32] Genetic Algorithms – Introduction, Tutorials point. [Online]. Available : https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.
[33] Y. Rahmat – Samii and E. Michielssen, Eds., Electromagnetics optimization by genetic Algorithms. New Yark: Wiley 1999.
[34] Y. Hong, S. Kwong, Q. S. Ren, and X. Wang, “A comprehensive comparison between real population-based tournament selection and virtual population-based tournament selection,” 2007 IEEE Congress on Evolutionar Computation, pp. 445-452, 2007.
[35] Tournament Selection – Wikipedia. [Online].
Available: https://en.wikipedia.org/wiki/Tournament_selection
[36] H. Ouerfelli and A. Dammak, “The genetic algorithm with two-point crossover to solve the resource-constrained project scheduling problems,” 5th International Conference on Modelling, Simulation and Applied Optimization, pp. 1-4, April 2013.
[37] A. Bala and A. K. Sharma, “A comparative study of modified crossover operators,” Third International Conference on Image Information Processing (ICIIP), pp. 281-284, 2015, doi: 10.1109/ICIIP.2015.7414781.
[38] P. Sindhuja, “Automatic optimization of antenna using the pareto genetic algorithm” Master’s dissertation, Shizuoka University, Dec. 2015.
[39] S. H. Sun, B. Z. Wang, “Parameter optimization based on GA and HFSS,” Journal of Electronic Science and Technology of China, vol. 03, no. 1, March 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top