跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳丞軒
研究生(外文):WU, CHENG-XUAN
論文名稱:金屬-氧化鎵-半導體二極體式及氧化鎳電阻式氣體感測器之研製
論文名稱(外文):Fabrication of Metal-Gallium Oxide-Semiconductor Diode-Type Gas Sensors and Chemiresistive Nickel Oxide Gas Sensors
指導教授:蔡榮輝蔡榮輝引用關係
指導教授(外文):Jung-Hui Tsai
口試委員:黃嘉宏劉漢胤
口試委員(外文):Chia-Hong Huang
口試日期:2022-06-30
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:111
中文關鍵詞:奈米粒子氧化鎳氧化鎵氫氣感測器氨氣感測器蕭特基二極體
外文關鍵詞:NanoparticlesPalladiumPlatinumNickel OxideGallium OxideHydrogen SensorAmmonia SensorSchottky Diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
在本篇論文中,主要研究以氮化鎵/氮化鋁鎵/氮化鎵結構研製蕭特基式氣體感測器矽與砷化鎵等半導體相比,氮化鎵有著較寬的能隙、高電子遷移率和高崩潰電壓。且在氮化鎵/氮化鋁鎵接面存在二維電子氣(2DEG),使其有良好的感測能力。透過過氧化氫表面處理和射頻濺鍍高質量的氧化層(GaOx、Ga2O3),能夠大幅降低元件表面的漏電流,使感測倍率提升。
    首先,研究氧化鎵結構之鈀/氧化鎵/氮化鎵/氮化鋁鎵蕭特基二極體式氫氣感測器。利用射頻濺鍍將氧化鎵鍍於鈀感測層與氮化鎵之間,形成鈀/氧化鎵/氮化鎵/氮化鋁鎵的氫氣感測器,氧化鎵可使空氣中的穩態電流降低,使其氫氣感測性能大幅提升。其結果顯示,對1% 氫氣的靈敏度有5.49×106倍。本章節利用熱離子放射方程式描述在氫氣中電壓-電流特性­­,經由該方程式求得蕭特基能障。並可觀察不同氫氣濃度對蕭特基能障的影響。
    其次,我們將感測金屬換為鉑。並在最上層濺鍍上鉑奈米粒子,其結果顯示,對1000ppm 氨氣的靈敏度有337.44倍並可感測100ppb 氨氣。本章節利用熱離子放射方程式描述在氨氣中電壓-電流特性­­,經由該方程式求得蕭特基能障。並可觀察不同氨氣濃度對蕭特基能障的影響。
    最後,在指叉式電極鍍上氧化鎳薄膜當感測層,利用快速熱蒸鍍催化金屬奈米粒子(鉑),其結果顯示,對1000ppm 氨氣的靈敏度有2.56倍,並有快速的反應時間23秒及回復時間53秒,此元件對氨氣有良好的特性表現。
    最後,本研究分別使用能量色散X-射線光譜儀(EDS)、原子力分析顯微鏡(AFM)和掃描電子顯微鏡(SEM)來分析氧化鎳電阻式氣體感測器之結構,表面形貌、奈米粒子大小及元素組成。
Abstract
In this thesis, the main research is to developSchottky gas sensor with GaN/AlGaN/GaN structure. Compared with semiconductorssuch as silicon and gallium arsenide, gallium nitride has a wider energy gap,high electron mobility, and high breakdown voltage. In addition, there is a two-dimensional electrongas (2DEG) at the GaN/AlGaN junction, so that it has good sensing capability. Through the hydrogen peroxide surface treatment and RF sputtering ofhigh-quality oxide layers (GaOx, Ga2O3), the leakagecurrent on the surface of the device can be greatly reduced and the sensingrate can be improved.
First, the palladium/gallium oxide/galliumnitride/aluminum gallium nitride Schottky diode hydrogen sensor with galliumoxide structure is studied. Using RF sputtering to coat gallium oxide betweenthe palladium sensing layer and gallium nitride to form a hydrogen sensor ofpalladium/gallium oxide/gallium nitride/aluminum gallium nitride, gallium oxidecan reduce the base current in the air. Thus, its hydrogen sensing performance is greatlyimproved. The results show that the sensitivity at 1% hydrogen is 5.49×106. We use the thermionic emission equation to describe the voltage-currentcharacteristics in hydrogen and to abtain the Schottky energy barrier isobtained. The effect of different hydrogen concentrations on the Schottky energy barriercan be observed.
Second, we swapped the sensing metal for platinum. The top layer is sputtered with platinum nanoparticles. The results showthat the sensitivity to 1000ppm ammonia gas is 337.44. This chapter uses the thermionic emission equationto describe the voltage-current characteristics in ammonia to find the Schottkyenergy barrier.
Next, a nickel oxide film is plated on theinterdigitated electrode as a sensing layer and catalytic metal nanoparticles (Pt)are used for rapid thermal evaporation. The results show that the sensitivityto 1000ppm ammonia gas is 2.56.Finally, energy dispersive X-ray spectroscopy (EDS),atomic force analysis microscopy (AFM) and scanning electron microscopy (SEM)were used in this study to analyze the structure, surface morphology,nanoparticle size of the NiO resistive gas sensor and elementalcomposition.
Contents
 TOC \o "1-3" \u Abstract............................................................................................ PAGEREF _Toc106612721 \h III 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700320031000000
Table List........................................................................................ PAGEREF _Toc106612722 \h XV 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700320032000000
Figure Captions........................................................................... PAGEREF _Toc106612723 \h XVII 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700320033000000
Chapter 1 Introduction
1-1. Introduction to Hydrogen Sensors............................................................................ PAGEREF _Toc106612725 \h 1 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700320035000000
1-2. Hydrogen Sensing Mechanism of Schottky-Contact Sensor....................................... PAGEREF _Toc106612726 \h 4 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700320036000000
1-3. Ammonia Sensing Mechanism of Schottky-Contact Sensor....................................... PAGEREF _Toc106612727 \h 4 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700320037000000
1-4. Thesis Organization................................................................................................ PAGEREF _Toc106612728 \h 6 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700320038000000
Chapter 2 A Hydrogen Sensor Based on a Pd thin film/ Ga2O3/GaOx/GaN Structure
2-1 Introduction............................................................................................................ PAGEREF _Toc106612730 \h 7 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330030000000
2-2. Device fabrication.................................................................................................. PAGEREF _Toc106612731 \h 9 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330031000000
2-3 Experimental Result and Discussion....................................................................... PAGEREF _Toc106612732 \h 10 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330032000000
2-3-1 Material Analysis............................................................................................ PAGEREF _Toc106612733 \h 10 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330033000000
2-3-2 Electrical Characteristics and Analysis............................................................. PAGEREF _Toc106612734 \h 11 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330034000000
2-3-3. Hydrogen Sensing Performance...................................................................... PAGEREF _Toc106612735 \h 13 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330035000000
2-3-4. Analysis of Hydrogen Sensing Reaction.......................................................... PAGEREF _Toc106612736 \h 16 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330036000000
2-3-5. Selectivity of this device................................................................................. PAGEREF _Toc106612737 \h 18 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330037000000
2-4. Summary............................................................................................................. PAGEREF _Toc106612738 \h 18 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700330038000000
Chapter 3 An Ammonia Sensor & A Hydrogen Sensor Based on a Pt NP/Pt thin film/Ga2O3/GaOx/GaN Structure
3-1 Introduction.......................................................................................................... PAGEREF _Toc106612740 \h 20 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340030000000
3-2. Device Fabrication................................................................................................ PAGEREF _Toc106612741 \h 21 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340031000000
3-3. Experimental Result and Discussion...................................................................... PAGEREF _Toc106612742 \h 22 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340032000000
3-3-1. Material Analysis........................................................................................... PAGEREF _Toc106612743 \h 22 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340033000000
3-3-2. Electrical Characteristics and Analysis............................................................ PAGEREF _Toc106612744 \h 23 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340034000000
3-3-3. Ammonia Sensing Performance...................................................................... PAGEREF _Toc106612745 \h 26 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340035000000
3-3-4. Analysis of Ammonia Sensing Reaction.......................................................... PAGEREF _Toc106612746 \h 28 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340036000000
3-3-5. Selectivity of this device................................................................................. PAGEREF _Toc106612747 \h 30 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340037000000
3-4. Summary............................................................................................................. PAGEREF _Toc106612748 \h 31 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700340038000000
Chapter 4 Gas Sensors Based on Thermal Evaporated-Pt Nanoparticles (NPs) /Nickel Oxide (NiO)
4.1 Introduction........................................................................................................... PAGEREF _Toc106612750 \h 32 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350030000000
4.2       Experimental Processes................................................................................... PAGEREF _Toc106612751 \h 33 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350031000000
4.2.1 Device Fabrication........................................................................................... PAGEREF _Toc106612752 \h 33 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350032000000
4.2.2 Thermal Evaporated-Pt Nanoparticles............................................................... PAGEREF _Toc106612753 \h 34 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350033000000
4.2.3 Sensing Measurement...................................................................................... PAGEREF _Toc106612754 \h 34 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350034000000
4.2.4 Analytical Equipment...................................................................................... PAGEREF _Toc106612755 \h 35 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350035000000
4.3 Results and Discussion........................................................................................... PAGEREF _Toc106612756 \h 36 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350036000000
4.3.1 Ammonia Sensing Characteristic...................................................................... PAGEREF _Toc106612757 \h 36 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350037000000
4.3.2 Structural and Morphological Characteristics..................................................... PAGEREF _Toc106612758 \h 38 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350038000000
4.4 Summary............................................................................................................... PAGEREF _Toc106612759 \h 39 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700350039000000
Chapter 5 Conclusion and Future Works
5-1. Conclusion........................................................................................................... PAGEREF _Toc106612761 \h 40 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700360031000000
5-2. Future Works....................................................................................................... PAGEREF _Toc106612762 \h 41 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700360032000000
References........................................................................................ PAGEREF _Toc106612763 \h 42 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003100300036003600310032003700360033000000

TableList
Tab.2-1 Thecalculated values of Schottky barrier heights at different temperatures
                versus hydrogen concentration.
Tab. 2-2 The calculated values ofSchottky barrier height variation at different temperatures versus hydrogenconcentration.
Tab.2-3 SRvalues under different hydrogen concentrations at variable temperatures.
Tab. 2-4 comparison of hydrogensensing performance between this work andprevious reports.
Tab.2-5 The τa values underdifferent hydrogen concentrations at variable temperatures.
Tab. 2-6 The τb values under different hydrogen concentrations atvariable temperatures.
Tab. 3-1The calculated values of Schottky barrier heights at different temperaturesversus ammonia concentration.
Tab.3-2 The calculated values of Schottkybarrier height variation at different temperatures versus ammoniaconcentration.
Tab. 3-3 The SR values under different ammoniaconcentrations at variable temperatures.
Tab. 3-4 Acomparison of ammonia sensing performance between this work and previousreports.
Tab. 4.1 Sensing response of device to different ammonia concentrations atdifferent                operating temperatures.
Tab.4.2 Responsetime of device to different ammonia concentrations at different operating temperatures.
Tab. 4.3 Recovery time of device to different ammonia concentrations at differentoperating temperatures.
Tab. 4.4 Comparison of ammonia sensingperformance between the studied device and reported ammonia sensors.


Figure Captions
Fig. 1-1 Schematic diagram ofhydrogen adsorption, dissociation, and diffusedmechanism of Schottky sensors.
Fig. 1-2 (a) Energy band diagramfor Schottky diode in air (b) Therelated energy band diagrams in air and under introduced hydrogen gas.
Fig.1-3Schematic diagram of ammonia adsorption, dissociation, and diffused
          mechanism of Schottky sensors.
Fig. 1-4 (a) Energy band diagramfor Schottky diode in air (b) Therelated energy band diagrams in air and under introduced ammonia gas.
Fig.2-1 (a) The process flow and (b)schematic cross-sectional diagram of the studied Pd/Ga2O3/GaN/AlGaN/GaNMOS diode gas sensor.
Fig.2-2 (a) Top-viewSEM image. (b) EDS analysis of thestudied Pd/Ga2O3/GaN/AlGaN/GaNMOS diode.
Fig.2-3 Top-view atomic force microscopy(AFM) image of the studied Pd/Ga2O3/GaN/AlGaN/GaN.
Fig. 2-4 Hydrogensensing I-V characteristics measured in 1, 10, 100, 1000 ppm and 1% H2/airgas, for proposed Pd/Ga2O3/GaN/AlGaN/GaNdevice at (a) 300K (b) 343K (c) 373K (d) 393K (e) 443K (f) 493K
Fig.2-5 Schematic diagrams of the (a) hydrogensensing mechanism, (b) dissociation of hydrogen molecules on the surface of Pdthin film and (c) diffusion of hydrogen atoms through the Pd thin film for thestudied MOS diode.
Fig.2-6 The Schottky barrier height (∅B) as a function to the hydrogenconcentration at different operation temperature T.
Fig.2-9 Sensing response SR versus temperature T underthe negative applied voltage of VA = 0.6 V.
Fig.2-10 Sensing response SR versus applied voltageVA measured at 300K.
Fig.2-11 (a) Transient responses of the studied device under 1,10, 100, 1000 ppm, and 1% H2/air gas at 300K.
Fig. 2-12 Responsetime constants (τa)as a function of hydrogen concentration at various temperatures.
Fig. 2-13 Recoverytime constants (τb)as a function of hydrogen concentration at various temperatures.
Fig. 2-14 Threerepetitive dynamic response obtained upon the introduction and the removal of 1%H2/air gas for the studied device at 343K.
Fig. 2-15 The reciprocal logarithmic current variation1/ln(IH2/Iair)versus the reciprocal hydrogen partial pressure to the power of one-second at 300K,343K, 373K , 393K , 443K and 493K.
Fig.2-16 Theinterface coverage of hydrogen atoms θi as a function of the hydrogenconcentration CH2 at 300K, 343K, 373K , 393K , 443K and 493K.
Fig. 2-17 The logarithmic value of the equilibriumconstant Ke' as a function of the reciprocal absolute temperature.
Fig. 2-18 Sensing responses of Pd/Ga2O3/GaN/AlGaN/GaNdevice under different gas ambiences.
Fig. 3-1(a) Theprocess flow and (b) schematic cross-sectional diagram of the studied Pt NP/Pt/Ga2O3/GaN/AlGaN/GaNMOS diode ammonia gas sensor.
Fig. 3-2 Top-viewof SEM image.
Fig. 3-3 Top-viewof atomic force microscopy (AFM) image of the studied Pt NP/Pt/Ga2O3/GaN/AlGaN/GaN.
Fig. 3-4 EDSanalysis of the studied PtNP/Pt/Ga2O3/GaN/AlGaN/GaN MOS diode.

Fig. 3-5 Ammoniasensing I-V characteristics measured in 0.1, 1, 10, 100, and 1000 ppm NH3/airgas, for proposed PtNP/Pt/Ga2O3/GaN/AlGaN/GaNdevice at (a) 300K (b) 343K (c) 393K (d) 443K (e)493K.
Fig. 3-6 Schematicdiagrams of the (a) ammonia sensing mechanism, (b) dissociation of ammoniamolecules on the surface of Pt thin film, (c) spillover effect of ammoniamolecules on Pt NPs, (d) dissociation of hydrogen molecules on the surface ofPt thin film and (e) diffusion of hydrogen atoms through the Pt thin film forthe studied MOS diode.
Fig. 3-7 TheSchottky barrier height (∅B) as a function to the ammoniaconcentration at different operation temperature T.
Fig. 3-8 Sensingresponse SR versus temperature T under the applied voltage of VA= 0.4 V.
Fig. 3-9 Transientresponses of the studied device at 300K under 10, 100, and1000 ppm NH3/air gas.
Fig. 3-10 Threerepetitive dynamic response obtained upon the introduction and the removal of 1000ppm NH3/air gas for the studied device at 300K.
Fig. 3-11 The reciprocal logarithmiccurrent variation 1/ln(INH3/Iair) versus the reciprocalammonia partial pressure to the power of one-third at 25°C, 70°C, and 100°C.
Fig. 3-12 The interface coverage of hydrogen atoms θi as afunction of the ammonia concentration CNH3 at 300K, 343K, and 393K.
Fig. 3-13 The logarithmic value of the equilibriumconstant Ke' as a function of the reciprocal absolute temperature.
Fig. 3-14 Sensing responses of Pt NP/Pt/Ga2O3/GaN/AlGaN/GaN device under different gas ambiences.
Fig. 4-1 Schematic cross-sectional and top-view IDE diagrams of device.
Fig. 4-2 Fabrication process of device.
Fig. 4.3 The current-voltage (I-V) characteristics of device under differentammonia concentrations at (a) 250°C, (b) 275°C, (c) 300°C,(d) 325°C, and (e) 350°C.
Fig. 4-4   Sensing response versus (a) ammoniaconcentrations at 300°C and (b) temperature of the Pt NP/NiO device.
Fig. 4-5 The transient response curves of device under different ammoniaconcentrations at 300°C.
Fig. 4-6 Response time versus temperature & Recovery time versustemperature of device in 1000 ppm NH3/air.
Fig. 4-7   Logarithmic plot ofsensing response of device as a function of ammonia concentration at 300°C.
Fig. 4-8   Repeatability performance ofdevice under exposing to 1000 ppm NH3/air at 300°C.
Fig. 4-9   The AFM height profile of theas-deposited and annealed NiO thin film of device.
Fig. 4-10 The scanning electronmicroscopy (SEM) images of device magnified 100 k.
References
[1] Y. Wang, B. Liu, S. Xiao, H.Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, and T. Wang, "Highperformance and negative temperature coefficient of low temperature hydrogengas sensors using palladium decorated tungsten oxide," Journal of Materials Chemistry A, vol.3, pp. 1317-1324, 2015.
[2] S.K. Arya, S. Krishnan, H.Silva, S. Jean, and S. Bhansali, "Advances in materials for roomtemperature hydrogen sensors," Analyst,vol. 137, pp. 2743-2756, 2012.
[3] B. Johnston, M.C. Mayo, andA. Khare, "Hydrogen: the energy source for the 21st century," Technovation, vol. 25, pp. 569-585,2005.
[4] N.H. Al-Hardan, M.J.Abdullah, and A.A. Aziz, "Sensing mechanism of hydrogen gas sensor basedon RF-sputtered ZnO thin films," InternationalJournal of Hydrogen Energy, vol. 35, pp. 4428-4434, 2010.
[5] M.Z. Ahmad, V.B. Golovko,R.H. Adnan, F. Abu Bakar, J.-Y. Ruzicka, D.P. Anderson, G.G. Andersson, and W.Wlodarski, "Hydrogen sensing using gold nanoclusters supported on tungstentrioxide thin films," InternationalJournal of Hydrogen Energy, vol. 38, pp. 12865-12877, 2013.
[6] H.-Y. Nie, and Y. Nannichi,"Pd-on-GaAs Schottky contact: its barrier height and response tohydrogen," Japanese journal ofapplied physics, vol. 30, pp. 906, 1991.
[7] S. Sumida, S. Okazaki, S.Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, "Distributed hydrogendetermination with fiber-optic sensor," Sensors and Actuators B: Chemical, vol. 108, pp. 508-514, 2005.
[8] R. Boll, K.J. Overshott, W.Göpel, J. Hesse, and J. Zemel, Sensors, Magnetic Sensors: John Wiley &Sons; 2008.
[9] A. Mandelis, and C.Christofides, Physics, chemistry and technology of solid state gas sensordevices: John Wiley & Sons; 1993.
[10] P. Childs, J. Greenwood,and C. Long, "Review of temperature measurement," Review of scientific instruments, vol.71, pp. 2959-2978, 2000.
[11] O. Varghese, P. Kichambre,D. Gong, K. Ong, E. Dickey, and C. Grimes, "Gas sensing characteristics ofmulti-wall carbon nanotubes," Sensorsand Actuators B: Chemical, vol. 81, pp. 32-41, 2001.
[12] E. Snow, F. Perkins, E.Houser, S. Badescu, and T. Reinecke, "Chemical detection with asingle-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942-1945, 2005.
[13] Y. Joseph, B. Guse, A.Yasuda, and T. Vossmeyer, "Chemiresistor coatings from Pt-andAu-nanoparticle/nonanedithiol films: sensitivity to gases and solventvapors," Sensors and Actuators B:Chemical, vol. 98, pp. 188-195, 2004.
[14] K.-C. Ho, and Y.-H. Tsou,"Chemiresistor-type NO gas sensor based on nickel phthalocyanine thinfilms," Sensors and Actuators B:Chemical, vol. 77, pp. 253-259, 2001.
[15] R.R. Reston, and E.Kolesar, "Silicon-micromachined gas chromatography system used to separateand detect ammonia and nitrogen dioxide. I. Design, fabrication, andintegration of the gas chromatography system," Journal of Microelectromechanical Systems, vol. 3, pp. 134-146,1994.
[16] V.V. Sysoev, B.K. Button,K. Wepsiec, S. Dmitriev, and A. Kolmakov, "Toward the nanoscopic“electronic nose”: Hydrogen vs carbon monoxide discrimination with an array ofindividual metal oxide nano-and mesowire sensors," Nano letters, vol. 6, pp. 1584-1588, 2006.
[17] J.K. Abraham, B. Philip, A.Witchurch, V.K. Varadan, and C.C. Reddy, "A compact wireless gas sensorusing a carbon nanotube/PMMA thin film chemiresistor," Smart Materials and Structures, vol. 13,pp. 1045, 2004.
[18] N. Barsan, D. Koziej, andU. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B: Chemical, vol.121, pp. 18-35, 2007.
[19] G. Korotcenkov, "Therole of morphology and crystallographic structure of metal oxides in responseof conductometric-type gas sensors," MaterialsScience and Engineering: R: Reports, vol. 61, pp. 1-39, 2008.
[20] S. Semancik, R.E. Cavicchi,M. Wheeler, J. Tiffany, G. Poirier, R. Walton, J.S. Suehle, B. Panchapakesan,and D. DeVoe, "Microhotplate platforms for chemical sensor research,"Sensors and Actuators B: Chemical, vol.77, pp. 579-591, 2001.
[21] G. Korotcenkov, "Gasresponse control through structural and chemical modification of metal oxidefilms: state of the art and approaches," Sensors and Actuators B: Chemical, vol. 107, pp. 209-232, 2005.
[22] U. Lange, N.V.Roznyatovskaya, and V.M. Mirsky, "Conducting polymers in chemical sensorsand arrays," Analytica chimica acta,vol. 614, pp. 1-26, 2008.
[23] J. Stetter, and K. Blurton,"Selective Oxidation of Hydrogen in Carbon Monoxide/Air Streams.Application to Environmental Monitoring," Industrial & Engineering Chemistry Product Research andDevelopment, vol. 16, pp. 22-25, 1977.
[24] J. Stetter, and K. Blurton,"Portable high‐temperature catalytic reactor: Application to air pollutionmonitoring instrumentation," Reviewof Scientific Instruments, vol. 47, pp. 691-694, 1976.
[25] M. Holzinger, J. Maier, andW. Sitte, "Fast CO2-selective potentiometric sensor with open referenceelectrode," Solid State Ionics, vol.86, pp. 1055-1062, 1996.
[26] J. Růz̆ic̆ka, and E.Hansen, "A new potentiometric gas sensor-the air-gap electrode," Analytica Chimica Acta, vol. 69, pp.129-141, 1974.
[27] N. Miura, G. Lu, and N.Yamazoe, "High-temperature potentiometric/amperometric NOx sensorscombining stabilized zirconia with mixed-metal oxide electrode," Sensors and Actuators B: Chemical, vol.52, pp. 169-178, 1998.
[28] A. Azad, S. Akbar, S.Mhaisalkar, L. Birkefeld, and K. Goto, "Solid‐state gas sensors: Areview," Journal of theElectrochemical Society, vol. 139, pp. 3690-3704, 1992.
[29] T. Maruyama, S. Sasaki, andY. Saito, "Potentiometric gas sensor for carbon dioxide using solidelectrolytes," Solid State Ionics, vol.23, pp. 107-112, 1987.
[30] M. Holzinger, J. Maier, andW. Sitte, "Potentiometric detection of complex gases: application toCO2," Solid State Ionics, vol.94, pp. 217-225, 1997.
[31] N. Yamazoe, and N. Miura,"Potentiometric gas sensors for oxidic gases," Journal of electroceramics, vol. 2, pp. 243-255, 1998.
[32] B. Luther, S. Wolter, andS.E. Mohney, "High temperature Pt Schottky diode gas sensors on n-typeGaN," Sensors and Actuators B:Chemical, vol. 56, pp. 164-168, 1999.
[33] J. Schalwig, G. Müller, U.Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger,"Hydrogen response mechanism of Pt–GaN Schottky diodes," Applied Physics Letters, vol. 80, pp.1222-1224, 2002.
[34] O.K. Varghese, G.K. Mor, M.Paulose, and C.A. Grimes, "A titania nanotube-array room-temperaturesensor for selective detection of low hydrogen concentrations," MRS Online Proceedings Library Archive, vol.828, pp., 2004.
[35] H. Bai, and G. Shi,"Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
[36] I. Lundström, S.Shivaraman, C. Svensson, and L. Lundkvist, "A hydrogen− sensitive MOSfield− effect transistor," AppliedPhysics Letters, vol. 26, pp. 55-57, 1975.
[37] L.M. Lechuga, A. Calle, D.Golmayo, P. Tejedor, and F. Briones, "A new hydrogen sensor based on aPt/GaAs Schottky diode," Journal ofThe Electrochemical Society, vol. 138, pp. 159-162, 1991.
[38] H.-I. Chen, C.-K. Hsiung,and Y.-I. Chou, "Characterization of Pd–GaAs Schottky diodes prepared bythe electroless plating technique," Semiconductorscience and technology, vol. 18, pp. 620, 2003.
[39] H.J. Pan, K.W. Lin, K.H.Yu, C.C. Cheng, K.B. Thei, W.C. Liu, and H.I. Chen, "Highlyhydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogensensor,", Electronics Letters, Institution of Engineering andTechnology 2002, pp. 92-94.
[40] I.C. Yen, C. Chia-Ming, L.Wen-Chau, and C. Huey-Ing, "A new Pd-InP Schottky hydrogen sensorfabricated by electrophoretic deposition with Pd nanoparticles," IEEE Electron Device Letters, vol. 26,pp. 62-65, 2005.
[41] V. Battut, J.P. Blanc, andC. Maleysson, "Gas sensitivity of InP epitaxial thin layers," Sensors and Actuators B: Chemical, vol.44, pp. 503-506, 1997.
[42] H.-I. Chen, and Y.-I. Chou,"Evaluation of the perfection of the Pd–InP Schottky interface from theenergy viewpoint of hydrogen adsorbates," Semiconductor science and technology, vol. 19, pp. 39, 2003.
[43] H.-I. Chen, Y.-I. Chou, andC.-K. Hsiung, "Comprehensive study of adsorption kinetics for hydrogensensing with an electroless-plated Pd–InP Schottky diode," Sensors and Actuators B: Chemical, vol.92, pp. 6-16, 2003.
[44] V. Battut, J. Blanc, E.Goumet, V. Soulière, and Y. Monteil, "NO2 sensor based on InP epitaxialthin layers," Thin solid films, vol.348, pp. 266-272, 1999.
[45] M. Yousuf, B. Kuliyev, B.Lalevic, and T. Poteat, "Pd/ InP Schottky diode hydrogen sensors," Solid-State Electronics, vol. 25, pp.753-758, 1982.
[46] S. Roy, C. Jacob, and S.Basu, "Ohmic contacts to 3C-SiC for Schottky diode gas sensors," Solid-State Electronics, vol. 47, pp.2035-2041, 2003.
[47] F. Solzbacher, C. Imawan,H. Steffes, E. Obermeier, and M. Eickhoff, "A highly stable SiC basedmicrohotplate NO2 gas-sensor," Sensors and Actuators B: Chemical, vol. 78, pp. 216-220, 2001.
[48] A. Lloyd Spetz, L. Unéus,H. Svenningstorp, P. Tobias, L.G. Ekedahl, O. Larsson, A. Göras, S. Savage, C.Harris, P. Mårtensson, R. Wigren, P. Salomonsson, B. Häggendahl, P. Ljung, M.Mattsson, and I. Lundström, "SiC Based Field Effect Gas Sensors for IndustrialApplications," physica status solidi(a), vol. 185, pp. 15-25, 2001.
[49] F. Qiu, M. Matsumiya, W.Shin, N. Izu, and N. Murayama, "Investigation of thermoelectric hydrogensensor based on SiGe film," Sensorsand Actuators B: Chemical, vol. 94, pp. 152-160, 2003.
[50] Y. Gurbuz, W.P. Kang, J.L.Davidson, and D.V. Kerns, "Analyzing the mechanism of hydrogen adsorptioneffects on diamond based MIS hydrogen sensors," Sensors and Actuators B: Chemical, vol. 35, pp. 68-72, 1996.
[51] Y. Gurbuz, W.P. Kang, J.L.Davidson, D.L. Kinser, and D.V. Kerns, "Diamond microelectronic gassensors," Sensors and Actuators B:Chemical, vol. 33, pp. 100-104, 1996.
[52] Y. Gurbuz, W.P. Kang, J.L.Davidson, and D.V. Kerns, "Current conduction mechanism and gas adsorptioneffects on device parameters of the Pt/SnO/sub x//diamond gas sensor," IEEE Transactions on Electron Devices, vol.46, pp. 914-920, 1999.
[53] J. Kim, B.P. Gila, G.Y.Chung, C.R. Abernathy, S.J. Pearton, and F. Ren, "Hydrogen-sensitive GaNSchottky diodes," Solid-StateElectronics, vol. 47, pp. 1069-1073, 2003.
[54] J. Song, W. Lu, J.S. Flynn,and G.R. Brandes, "AlGaN/GaN Schottky diode hydrogen sensor performance athigh temperatures with different catalytic metals," Solid-state electronics, vol. 49, pp. 1330-1334, 2005.
[55] D. Qiao, L.S. Yu, S.S. Lau,J.M. Redwing, J.Y. Lin, and H.X. Jiang, "Dependence of Ni/AlGaN Schottkybarrier height on Al mole fraction," Journalof Applied Physics, vol. 87, pp. 801-804, 1999.
[56] A. Imre, E. Gontier-Moya,D.L. Beke, and B. Ealet, "Auger electron spectroscopy of the kinetics ofevaporation of palladium beaded films from sapphire substrate," Applied Physics A, vol. 67, pp. 469-473,1998.
[57] T.S. Huang, and J.G. Pang,"Thermal stability of the Pd-Al alloy Schottky contacts to n-GaAs," Materials Science and Engineering: B, vol.49, pp. 144-151, 1997.
[58] H.D. Tong, A.H.J. vandenBerg, J.G.E. Gardeniers, H.V. Jansen, F.C. Gielens, and M.C. Elwenspoek,"Preparation of palladium–silver alloy films by a dual-sputtering techniqueand its application in hydrogen separation membrane," Thin Solid Films, vol. 479, pp. 89-94, 2005.
[59] F. Edelman, C. Cytermann,R. Brener, M. Eizenberg, R. Weil, and W. Beyer, "Interfacial processes inthe Pd/a-Ge:H system," AppliedSurface Science, vol. 70-71, pp. 722-726, 1993.
[60] S. Uemiya, T. Endo, R.Yoshiie, W. Katoh, and T. Kojima, "Fabrication of Thin Palladium-SilverAlloy Film by Using Electroplating Technique," MATERIALS TRANSACTIONS, vol. 48, pp. 1119-1123, 2007.
[61] D. Baudrand, and J. Bengston,"Electroless plating processes: Developing technologies for electrolessnickel, palladium, and gold," MetalFinishing, vol. 93, pp. 55-57, 1995.
[62] J. Suehiro, S.-I. Hidaka,S. Yamane, and K. Imasaka, "Fabrication of interfaces between carbon nanotubesand catalytic palladium using dielectrophoresis and its application to hydrogengas sensor," Sensors and ActuatorsB: Chemical, vol. 127, pp. 505-511, 2007.
[63] L. Huang, C.S. Chen, Z.D.He, D.K. Peng, and G.Y. Meng, "Palladium membranes supported on porousceramics prepared by chemical vapor deposition," Thin Solid Films, vol. 302, pp. 98-101, 1997.
[64] T. Pluym, S. Lyons, Q.Powell, A. Gurav, T. Kodas, L. Wang, and H. Glicksman, "Palladium metaland palladium oxide particle production by spray pyrolysis," Materials research bulletin, vol. 28,pp. 369-376, 1993.
[65]C.-M. Chang, M.-H. Hon, and C. Leu, "Improvement in CO sensingcharacteristics by decorating ZnO nanorod arrays with Pd nanoparticles and therelated mechanisms," Rsc Advances, vol.2, pp. 2469-2475, 2012.
[66]H.-I. Chen, K.-C. Chuang, C.-H. Chang, W.-C. Chen, I.-P. Liu, and W.-C. Liu,"Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottkydiode," Sensors and Actuators B:Chemical, vol. 246, pp. 408-414, 2017.
[67]C.-C. Chen, H.-I. Chen, I.-P. Liu, H.-Y. Liu, P.-C. Chou, J.-K. Liou, and W.-C.Liu, "Enhancement of hydrogen sensing performance of a GaN-based Schottkydiode with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 211, pp. 303-309, 2015.
[68]D. Filippini and I. Lundström, "Hydrogen detection on bare SiO2between metal gates," J.Appl.Phys.,vol. 91, pp. 3896-3903, Feb. 2002. Doi: https://doi.org/10.1063/1.1450025
[69]I.P. Liu, C.H. Chang, Y.M. Huang, and K.W. Lin, "On the ammonia sensingperformance and transmission approach of a Platinum/Nickel oxide/GaN-basedmetal-oxide-semiconductor diode," IEEEJ. Electron Devices Soc., vol. 7, pp. 476-482, Apr. 2019. Doi:https://doi.org/10.1109/JEDS.2019.2908419
[70]I.P. Liu, C.H. Chang, and B.Y. Ke, "Ammonia sensing performance of aGaN-based semiconductor diode with a solution-processed Pt/GaOx Schottkycontact," ACS Applied ElectronicMaterials, vol. 1, pp. 1474-1481, Jul. 2019. Doi:https://doi.org/10.1021/acsaelm.9b00274
[71]H.Y. Chen and W.C. Liu, "Hydrogen sensing characteristics of ametal-oxide-semiconductor diode with bimetallic catalysts and a GaOₓdielectric," IEEE Trans. ElectronDevices, vol. PP, pp. 1-7, May. 2019. Doi:https://doi.org/10.1109/TED.2019.2917206
[72]Y. Yue, Y. Hao, J.F. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, "AlGaN/GaNMOS-HEMT with HfO2 dielectric and Al2O3interfacial passivation layer grown by atomic layer deposition," IEEE Electron Device Letters, vol. 29, pp. 838-840, Sep. 2008. Doi:https://doi.org/10.1109/LED.2008.2000949
[73]T.H. Tsai, J.R. Huang, K.W. Lin, W.C. Hsu, H.I. Chen, and W.C. Liu,"Improved hydrogen sensing characteristics of a Pt/SiO2/GaNSchottky diode," Sens. Actuators B,Chem., vol. 129, pp. 292-302, Jan. 2008. Doi:https://doi.org/10.1016/j.snb.2007.08.028
[74]B.S. Kang, H.T. Wang, F. Ren, B.P. Gila, C.R. Abernathy, S.J. Pearton, J.W.Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, and K.J. Linthicum, "pHsensor using AlGaN∕GaN high electron mobility transistors with Sc2O3in the gate region," Appl. Phys.Lett., vol. 91, pp. 012110, Jun. 2007. Doi:https://doi.org/10.1063/1.2754637
[75] C. F. Chang, T. H. Tsai, H. I. Chen, K. W.Lin, T. P. Chen, L. Y. Chen, Y. C. Liu, and W. C. Liu, "Hydrogen sensingproperties of a Pd/SiO2/AlGaN-based MOS diode," Electrochemistry Communications, vol.11, pp. 65-67, 2009.
[76] H. Hasegawa, and M. Akazawa, "Hydrogensensing characteristics and mechanism of Pd∕ Al Ga N∕ Ga N Schottky diodes subjected to oxygengettering," Journal of VacuumScience & Technology B: Microelectronics and Nanometer StructuresProcessing, Measurement, and Phenomena, vol. 25, pp. 1495-1503, 2007.
[77] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C.Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, "Ammonia Sensing Propertiesof a Pt/AlGaN/GaN Schottky Diode," IEEETransactions on Electron Devices, vol. 58, pp. 1541-1547, 2011. Doi:https://doi.org/10.1109/TED.2011.2115245
[78] L. M. Lechuga, A. Calle, D. Golmayo, and F.Briones, "The ammonia sensitivity of Pt/GaAs Schottky barrierdiodes," Journal of Applied Physics,vol. 70, pp. 3348-3354, 1991.
[79] A. Spetz, M. Armgarth, and I. Lundström,"Hydrogen and ammonia response of metal‐silicon dioxide‐silicon structureswith thin platinum gates," Journalof Applied Physics, vol. 64, pp. 1274-1283, 1988.
[80] C. W. Lin, H. I. Chen, T. Y. Chen, C. C.Huang, C. S. Hsu, R. C. Liu, and W. C. Liu, "On an indium–tin-oxide thinfilm based ammonia gas sensor," Sensorsand Actuators B: Chemical, vol. 160, pp. 1481-1484, 2011.
[81] Y. Li, S.H. Chan, and Q.Sun, "Heterogeneous catalytic conversion of CO2: a comprehensivetheoretical review," Nanoscale, vol.7, pp. 8663-8683, 2015.
[82] Y. Izumi, "Recentadvances in the photocatalytic conversion of carbon dioxide to fuels with waterand/or hydrogen using solar energy and beyond," Coordination Chemistry Reviews, vol. 257, pp. 171-186, 2013.
[83] S. Sumida, S. Okazaki, S.Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, "Distributed hydrogendetermination with fiber-optic sensor," Sensors and Actuators B: Chemical, vol. 108, pp. 508-514, 2005.
[84] S.-Y. Chiu, H.-W. Huang,T.-H. Huang, K.-C. Liang, K.-P. Liu, J.-H. Tsai, and W.-S. Lour,"Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensorswith symmetrically bi-directional sensing performance," Sensors and Actuators B: Chemical, vol.138, pp. 422-427, 2009.
[85] C.-H. Huang, J.-H. Tsai,T.-M. Tsai, K.-Y. Hsu, W.-C. Yang, H.-W. Huang, and W.-S. Lour, "HydrogenSensor with Pd Nanoparticles upon an Interfacial Layer with Oxygen," Applied Physics Express, vol. 3, pp.075001, 2010.
[86] M. Ali, V. Cimalla, V.Lebedev, V. Tilak, P.M. Sandvik, D.W. Merfeld, and O. Ambacher, "A Studyof Hydrogen Sensing Performance of Pt–GaN Schottky Diodes," IEEE Sensors Journal, vol. 6, pp.1115-1119, 2006.
[87] S.-W. Tan, J.-H. Tsai,S.-W. Lai, C. Lo, and W.-S. Lour, "Hydrogen-sensitive sensor withstabilized Pd-mixture forming sensing nanoparticles on an interlayer," International Journal of Hydrogen Energy, vol.36, pp. 15446-15454, 2011.
[88] Y.-L. Wang, F. Ren, U.Zhang, Q. Sun, C.D. Yerino, T.S. Ko, Y.S. Cho, I.H. Lee, J. Han, and S.J.Pearton, "Improved hydrogen detection sensitivity in N-polar GaN Schottkydiodes," Applied Physics Letters, vol.94, pp. 212108, 2009.
[89] S.-Y. Chiu, H.-W. Huang,T.-H. Huang, K.-C. Liang, K.-P. Liu, J.-H. Tsai, and W.-S. Lour,"Comprehensive investigation on planar type of Pd–GaN hydrogensensors," International Journal ofHydrogen Energy, vol. 34, pp. 5604-5615, 2009.
[90] B.S. Kang, S. Kim, F. Ren,B.P. Gila, C.R. Abernathy, and S.J. Pearton, "Comparison of MOS andSchottky W/Pt–GaN diodes for hydrogen detection," Sensors and Actuators B: Chemical, vol. 104, pp. 232-236, 2005.
[91] Y. Yue, Y. Hao, J. Zhang,J. Ni, W. Mao, Q. Feng, and L. Liu, " AlGaN/GaN MOS-HEMT WithHfO2DielectricandAl2O3Interfacial Passivation Layer Grown by Atomic Layer Deposition," IEEE Electron Device Letters, vol. 29,pp. 838-840, 2008.
[92] A. Rizzi, M. Kocan, J.Malindretos, A. Schildknecht, N. Teofilov, K. Thonke, and R. Sauer,"Surface and interface electronic properties of AlGaN(0001) epitaxiallayers," Applied Physics A, vol.87, pp. 505-509, 2007.
[93] H.-I. Chen, K.-C. Chuang,C.-H. Chang, W.-C. Chen, I.P. Liu, and W.-C. Liu, "Hydrogen sensingcharacteristics of a Pd/AlGaOx/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol.246, pp. 408-414, 2017.
[94] H. Hasegawa, and M. Akazawa, "Hydrogensensing characteristics and mechanism of Pd∕AlGaN∕GaN Schottky diodes subjected to oxygengettering," Journal of VacuumScience & Technology B: Microelectronics and Nanometer StructuresProcessing, Measurement, and Phenomena, vol. 25, pp. 1495-1503, 2007.
[95]Takayoshi Oshima, Takeya Okuno and Shizuo Fujita, “Ga2O3Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy forDeep-Ultraviolet Photodetectors,” JapaneseJournal of Applied Physics, vol. 46, no. 11, pp. 7217-7220, 2007.
[96]C. J. Kim, D. Kang, I. Song, J. C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J.C. Lee, and Y. Park, in Internal Electron Devices Meeting, pp. 11–13, 2006.
[97]Masataka Higashiwaki, Kohei Sasaki, Akito Kuramata, Takekazu Masui, andShigenobu Yamakoshi, “Gallium oxide (Ga2O3)metal-semiconductor field-effect transistors on single-crystal β-Ga2O3(010) substrates,” Appl. Phys. Lett.Vol. 100, no. 1, pp. 013504, 2012.
[98]Masataka Higashiwaki, Kohei Sasaki1, Hisashi Murakami, Yoshinao Kumagai,Akinori Koukitu, Akito Kuramata, Takekazu Masui, and Shigenobu Yamakoshi,“Recent progress in Ga2O3 power devices,” Semiconductor Science and Technology,vol. 31, no. 3, pp. 034001, 2016.
[99]Wan Sik Hwang, Amit Verma, Hartwin Peelaers, Vladimir Protasenko, SergeiRouvimov, Huili (Grace) Xing, Alan Seabaugh, Wilfried Haensch, Chris Van deWalle, Zbigniew Galazka, Martin Albrecht, Roberto Fornari, and Debdeep Jena,“High-voltage field effect transistors with wide-bandgap β-Ga2O3nanomembranes,” Applied Physics Letters,vol. 104, no. 20, pp. 203111, 2014.
[100]M Ogita, K Higo, Y Nakanishi, Y Hatanaka, “Ga2O3 thin film for oxygen sensor athigh temperature,” Applied SurfaceScience, vol. 175-176, no. 15, pp. 721-725, May 2001.
[101] C.-C. Chen, H.-I. Chen, I.P.Liu, H.-Y. Liu, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "Enhancement ofhydrogen sensing performance of a GaN-based Schottky diode with a hydrogenperoxide surface treatment," Sensorsand Actuators B: Chemical, vol. 211, pp. 303-309, 2015.
[102] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C.Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, "Ammonia Sensing Propertiesof a Pt/AlGaN/GaN Schottky Diode," IEEETransactions on Electron Devices, vol. 58, pp. 1541-1547, 2011. Doi: https://doi.org/10.1109/TED.2011.2115245
[103] C.H. Chang, W.C. Chen, J.S. Niu, B.Y. Ke,S.Y. Cheng, K.W. Lin, and W.C. Liu, "Ammonia sensing characteristics of aPlatinum (Pt) hybrid structure/GaN-based Schottky diode," IEEE Trans. Electron Devices, vol. 67,pp. 296-303, Jan. 2020. Doi: https://doi.org/10.1109/TED.2019.2953703
[104] B.Y. Ke and W.C. Liu, "Enhancement ofhydrogen sensing performance of a Pd nanoparticle/Pd film/GaOx/GaN-basedmetal–oxide– semiconductor diode," IEEETrans. Electron Devices, vol. 65, pp. 4577-4584, Oct. 2018. Doi: https://doi.org/10.1109/TED.2018.2865793
[105]E.L. Murphy, and R. Good Jr, "Thermionic emission, field emission, and thetransition region," Physical review,vol. 102, pp. 1464, 1956.
[106]A. Schmitz, A. Ping, M.A. Khan, Q. Chen, J. Yang, and I. Adesida,"Schottky barrier properties of various metals on n-type GaN," Semiconductor Science and Technology, vol.11, pp. 1464, 1996.
[107]T.H. Tsai, J.R. Huang, K.W. Lin, W.C. Hsu, H.I. Chen, and W.C. Liu,"Improved hydrogen sensing characteristics of a Pt/SiO2/GaNSchottky diode," Sens. Actuators B,Chem., vol. 129, pp. 292-302, Jan. 2008. Doi:https://doi.org/10.1016/j.snb.2007.08.028
[108]C. H. Chang, K. W. Lin, H. H. Lu, R. C. Liu, and W. C. Liu, "Hydrogensensing performance of a Pd/HfO2/GaOx/GaN basedmetal-oxide-semiconductor type Schottky diode," International Journal of Hydrogen Energy, vol. 43, pp. 19816-19824,2018.
[109]R.J. Silbey, and R.A. Alberty, Physical Chemistry, third ed., Wiley, New York,2001.
[110]Y. Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. C. Chang, H. I. Chen, and W. C.Liu, "Comprehensive investigation of hydrogen-sensing properties ofPt/InAlP-based Schottky diodes," Sensorsand Actuators B: Chemical, vol. 124, pp. 535-541, 2007.
[111]C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y.Chen, and W. C. Liu, "Hydrogen sensing characteristics of Pd- and Pt-Al0.3 Ga 0.7 As metal–semiconductor (MS) Schottky diodes," Semiconductor Science and Technology,vol. 19, pp. 778, 2004.
[112]T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, J.S. Wu, P.C. Chou, and W.C. Liu,"Characteristics of ZnO nanorods-based ammonia gas sensors with across-linked configuration," Sens.Actuators B, Chem., vol. 221, pp. 491-498, Dec. 2015. Doi:https://doi.org/10.1016/j.snb.2015.06.122
[113]S.K. Lee, D. Chang, and S.W. Kim, "Gas sensors based on carbonnanoflake/tin oxide composites for ammonia detection," J. Hazard. Mater., vol. 268, pp.110-114, Mar. 2014. Doi: https://doi.org/10.1016/j.jhazmat.2013.12.049
[114]S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B.Patil, "Room temperature ammonia gas sensor based on polyaniline-TiO2nanocomposite," IEEE Sens. J.,vol. 11, pp. 3417-3423, Dec. 2011. Doi:https://doi.org/10.1109/JSEN.2011.2160392
[115]C.S. Hsu, H.I. Chen, C.W. Lin, T.Y. Chen, C.C. Huang, P.C. Chou, and W.C. Liu,"Ammonia gas sensing performance of an Indium Tin oxide (ITO) based devicewith an underlying Au-nanodot layer," J.Electrochem. Soc., vol. 160, pp. B17-B22, Nov. 2012. Doi:https://doi.org/10.1149/2.072302jes
[116]P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu,"On the ammonia gas sensing performance of a RF sputtered NiO thin-filmsensor," IEEE Sens. J., vol. 15,pp. 3711-3715, Jul. 2015. Doi: https://doi.org/10.1109/JSEN.2015.2391286
[117]I.P. Liu, C.H. Chang, T.C. Chou, and K.W. Lin, "Ammonia sensingperformance of a platinum nanoparticle-decorated tungsten trioxide gassensor," Sens. Actuators B, Chem.,vol. 291, pp. 148-154, Jul. 2019. Doi: https://doi.org/10.1016/j.snb.2019.04.046
[118]B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, and S.J. Pearton,"Comparison of MOS and Schottky W/Pt–GaN diodes for hydrogendetection," Sens. Actuators B, Chem.,vol. 104, pp. 232-236, Jan, 2005. Doi:https://doi.org/10.1016/j.snb.2004.05.018
[119] I.P. Liu, C.H. Chang, Y.M. Huang, and K.W.Lin, "On the ammonia sensing performance and transmission approach of aPlatinum/Nickel oxide/GaN-based metal-oxide-semiconductor diode," IEEE J. Electron Devices Soc., vol. 7,pp. 476-482, Apr. 2019. Doi: https://doi.org/10.1109/JEDS.2019.2908419
[120]I.P. Liu, C.H. Chang, and B.Y. Ke, "Ammonia sensing performance of aGaN-based semiconductor diode with a solution-processed Pt/GaOx Schottkycontact," ACS Applied ElectronicMaterials, vol. 1, pp. 1474-1481, Jul. 2019. Doi:https://doi.org/10.1021/acsaelm.9b00274
[121]H.Y. Chen and W.C. Liu, "Hydrogen sensing characteristics of ametal-oxide-semiconductor diode with bimetallic catalysts and a GaOₓdielectric," IEEE Trans. ElectronDevices, vol. PP, pp. 1-7, May. 2019. Doi:https://doi.org/10.1109/TED.2019.2917206
[122]        H. Hasegawa and M. Akazawa,"Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottkydiodes subjected to oxygen gettering," J.Vac. Sci. Techn. B Microelectronics and Nanometer Structures, vol. 25, pp.,Apr. 2007. Doi: https://doi.org/10.1116/1.2750343
[123]T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, W. C.Liu, “Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode,” Sens. Actuators, B: Chem., vol. 155, pp.347-350, 2011.
[124] C.-C. Chen, H.-I. Chen, H.-Y.Liu, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "On a GaN-based ion sensitivefield-effect transistor (ISFET) with a hydrogen peroxide surfacetreatment," Sensors and Actuators B:Chemical, vol. 209, pp. 658-663, 2015.
[125] T. Travis, "Haber-boschprocess: exemplar of 20th century chemical
industry,"vol.,pp.581-585, 1993.
[126] H.M. ApSimon,B.M. Barker, and S. Kayin, "Modelling studies of the
atmospheric releaseand transport of ammonia in anticyclonic episodes," Atmos
.Environ., vol. 28, pp. 665-678, 1994.
[127] S. Yamulki, R.M. Harrison, andK.W.T. Goulding, "Ammonia surface-exchange above an agricultural field insoutheast england," Atmos. Environ.,vol. 30, pp. 109-118, 1996.
[128] D.D. Nguyen, D.V. Dang,and D.C. Nguyen, "Hydrothermal synthesis and NH3 gas sensing property ofWO3 nanorods at low temperature," Adv. Nat. Sci NanoSci., vol. 6, pp.035006, 2015.
[129] R. Pandeeswari, and B.G.Jeyaprakash, "High sensing response of β-Ga2O3 thin film towards ammoniavapours: influencing factors at room temperature," Sens. Actuators B,Chem., vol. 195, pp. 206-214, 2014.
[130] H.I. Chen, C.Y. Hsiao,W.C. Chen, C.H. Chang, T.C. Chou, I.P. Liu, K.W. Lin, and W.C. Liu,"Characteristics of a Pt/NiO thin film-based ammonia gas sensor,"Sens. Actuators B, Chem., vol. 256, pp. 962-967, 2018.
[131] I.P. Liu, C.H. Chang, T.C.Chou, and K.W. Lin, "Ammonia sensing performance of a platinumnanoparticle-decorated tungsten trioxide gas sensor," Sens. Actuators B,Chem., vol. 291, pp. 148-154, 2019.
[132] A. Sutka, M. Stingaciu, G.Mezinskis, and A. Lusis, "An alternative method to modify the sensitivityof p-type NiFe2O4 gas sensor," Journal of Materials Science, vol. 47, pp.2856-2863, 2012.
[133] Y. Shimizu, N. Kuwano, T.Hyodo, and M. Egashira, "High H2 sensing performance of anodicallyoxidized TiO2 film contacted with Pd," Sens. Actuators B, Chem., vol. 83,pp. 195-201, 2002.
[134] H.Y. Lai, and C.H. Chen,"Highly sensitive room-temperature CO gas sensors: Pt and Pdnanoparticle-decorated In2O3 flower-like nanobundles," Journal ofMaterials Chemistry, vol. 22, pp. 13204-13208, 2012.
[135] A. Umar, J.-H. Lee, and R.Kumar, "Highly sensitive ethanol gas sensors based on Ag-doped ZnOnanocones," Nanoscience and Nanotechnology Letters, vol. 8, pp. 241-246,2016.
[136] B.Y. Kim, J.S. Cho, J.W.Yoon, C.W. Na, C.S. Lee, J.H. Ahn, Y.C. Kang, and J.H. Lee, "Extremelysensitive ethanol sensor using Pt-doped SnO2 hollow nanospheres prepared bykirkendall diffusion," Sens. Actuators B, Chem., vol. 234, pp. 353-360,2016.
[137] I.P. Liu, C.H. Chang, T.C.Chou, and K.W. Lin, "Ammonia sensing performance of a platinumnanoparticle-decorated tungsten trioxide gas sensor," Sens. Actuators B,Chem., vol. 291, pp. 148-154, 2019.
[138] P.C. Chou, H.I. Chen, I.P.Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu, "On the Ammonia GasSensing Performance of a rf sputtered NiO thin-film sensor," IEEE Sens.J., vol. 15, pp. 3711-3715, 2015.
[139] M. Penza, M.A. Tagliente,L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, "Tungsten trioxide(WO3) sputtered thin films for a NOx gas sensor," Sens. Actuators B,Chem., vol. 50, pp. 9-18, 1998.
[140] C.N. Xu, N. Miura, Y.Ishida, K. Matsuda, and N. Yamazoe, "Selective detection of NH3 over NO incombustion exhausts by using Au and MoO3 doubly promoted WO3 element,"Sens. Actuators B, Chem., vol. 65, pp. 163-165, 2000.
[141] T.C. Chou, C.H. Chang, C.Lee, and W.C. Liu, "Ammonia sensing characteristics of a tungsten trioxidethin-film-based sensor," IEEE Trans. Electron Devices, vol. 66, pp.696-701, 2019.
[142] S. Khoobiar,"Particle to particle migration of hydrogen atoms on platinum—aluminacatalysts from particle to neighboring particles," J. Phys. Chem., vol.68, pp. 411-412, 1964.
[143] M. Boudart, M.A. Vannice,and J.E. Benson, "Adlineation, portholes and spillover," Z. Phys.Chem., vol. 64, pp. 171-177, 1969.
[144] K. Tsu, and M. Boudart,"Recombination of atoms at the surface of thermocouple probes," Can.J. Chem., vol. 39, pp. 1239-1246, 2011.
[145] C.R. Henry, C. Chapon, andC. Duriez, "Precursor state in the chemisorption of CO on supportedpalladium clusters," J. Chem. Phys., vol. 95, pp. 700-705, 1991.
[146] M. Bowker, “‘Seeing’ theactive site in catalysis. stm and molecular beam studies of surface reactions,”Studies in Surface Science and Catalysis, vol. 101, pp. 287-295, 1996.
[147] C.C Chang, T.C Chou, W.CChen, J.S. Niu, K.W. Lin, S.Y. Cheng, and W.C. Liu, "A highly sensitiveammonia (NH3) sensor based on a tungsten trioxide (WO3) thin film decoratedwith evaporated platinum (Pt) nanoparticles," IEEE Trans. ElectronDevices, vol. 67, pp. 1176-1182, 2020.
[148] S.K. Lee, D. Chang, andS.W. Kim, "Gas sensors based on carbon nanoflake/tin oxide composites forammonia detection," J. Hazard. Mater., vol. 268, pp. 110-114, 2014.
[149] S.G. Pawar, M.A. Chougule,S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B. Patil, "Roomtemperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite,"IEEE Sens. J., vol. 11, pp. 3417-3423, 2011.
[150] C. Rout, M. Hegde, A.Govindaraj, and C. Rao, "Ammonia sensors based on metal oxidenanostructures," Nanotechnology, vol. 18, pp. 205504, 2007.
[151] P. Van Tong, N.D. Hoa, N.Van Duy, D.T.T. Le, and N. Van Hieu, "Enhancement of gas-sensingcharacteristics of hydrothermally synthesized WO3 nanorods by surfacedecoration with Pd nanoparticles," Sens. Actuators B, Chem., vol. 223, pp.453-460, 2016.
[152] S.C. Naisbitt, K.F.E.Pratt, D.E. Williams, and I.P. Parkin, "A microstructural model ofsemiconducting gas sensor response: the effects of sintering temperature on theresponse of chromium titanate (CTO) to carbon monoxide," Sens. ActuatorsB, Chem., vol. 114, pp. 969-977, 2006.
[153] H. Steinebach, S. Kannan,L.Rieth, and F.Solzbacher, “H2 gas sensor performance of NiO at hightemperatures in gas mixtures,” Sens,Acruators B, vol.151, pp.162-168, 2010.
[154]J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, H. I. Chen, and W. C. Liu, "Investigationof hydrogen-sensing characteristics of a Pd/GaN Schottky diode," IEEE Sensors Journal, vol. 11, pp.1194-1200, 2010.
[155]Y. Y. Tsai, K. W. Lin, C. T. Lu, H.I. Chen, H. M. Chuang, C. Y. Chen, C.C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based schottkydiodes,” IEEE Trans. Electron Dev., vol.50, pp. 2532-2538, 2003.
[156]X. H. Wang, X. L. Wang, C. Feng, H.L. Xiao, C. B. Yang, J. X. Wang, B.Z. Wang, J. X. Ran, and C. M. Wang, “Hydrogen sensors based on AlGaN/AIN/GaNSchottky diodes,” Chin. Phys.Lett., vol. 25, pp. 266-269, 2008.
[157]F. K. Yam and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,”Appl. Surf. Sci., vol. 253,pp. 9525-9528, 2007.

[158] S. Y. Chiu, J.H. Tsai, H. W. Huang, K. C. Liang, T.H. Huang, K. P. Liu, T. M. Tsai, K. Y. Hsu,and W.S. Lour, “Hydrogensensors with double dipole layers using a Pd-mixture-Pd triple-layer sensingstructure,” Sens. Actuator B:Chem., vol. 141, pp. 532-537, 2009.[159]        P.C. Chou, H.I. Chen,I.P. Liu, C.W. Hung, C.C. Chen, J.K. Liou, and W.C. Liu, "Study of an electroless plating (EP)-based Pt/AlGaN/GaNSchottky diode-type ammonia sensor," Sens. Actuators B, Chem., vol. 203, pp. 258-262, Nov. 2014. Doi: https://doi.org/10.1016/j.snb.2014.06.113
電子全文 電子全文(網際網路公開日期:20270630)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊