跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮氏李
研究生(外文):NGUYEN THI LY
論文名稱:鋼鐵業的永續供應商選擇之綜合 DEA-球形模糊 MCDM策略:以越南案例研究
論文名稱(外文):An Integrated DEA-Spherical Fuzzy MCDM Approach for Sustainable Supplier Selection in Steel Industry: A Case Study from Vietnam
指導教授:王嘉男王嘉男引用關係
指導教授(外文):Chia-Nan Wang
口試委員:鄭舜仁徐賢斌張桂琥鍾毓驥王嘉男
口試日期:2022-05-28
學位類別:博士
校院名稱:國立高雄科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:85
中文關鍵詞:可持續供應商選擇多準則決策球形模糊集資料包絡分析法SF-AHPSF-WASPAS鋼鐵業越南
外文關鍵詞:Sustainable supplier selectionMCDMspherical fuzzyDEASF-AHPSF-WASPASsteel industryVietnam
DOI:10.3390/math10111897
ORCID或ResearchGate:https://www.researchgate.net/profile/Ly-Nguyen-75
Facebook:https://www.facebook.com/ly.nguyen.9421/
數位影音連結:A Novel Integrating Data Envelopment Analysis and Spherical Fuzzy MCDM Approach for Sustainable Supplier Selection in Steel Industry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
供應商選擇是供應鏈 (SC) 管理中的關鍵問題之一,由於它是多標準決策問題,很大程度上取決於決策者的遠見。永續供應鏈管理考慮環境、經濟和社會因素,最近在 供應鏈 管理評估過程中得到認可。供應商作為 供應鏈 的基礎,在永續供應鏈管理的發展中發揮著至關重要的作用。 因此,本研究的目標是在越南的案例研究中確定鋼鐵製造業的永續供應鏈管理。雖然有些標準可使用數字數據庫進行分析,但許多定性標準仍須使用專家判斷,以語意量詞進行審查。本文提出了一種混合數據包絡分析(DEA)方法、球面模糊層次分析法(SF-AHP)和球面模糊加權聚合和積評估(SF-WASPAS)來處理優先級問題的複雜性多種因素並存造成的。在使用綜合方法評估供應商時,要考慮定量和定性的有效因素。首先使用DEA,根據各種可量化的因素選擇高效供應商。接著,根據經濟、環境和社會因素等定性因素對這些供應商進行進一步評估。SF-AHP 用於評估標準的重要性,而 SF-WASPAS 用於對永續供應鏈管理進行排名。為將三階段 MCDM 模型付諸實施,通過文獻回顧和專家訪談,建立了一套基於永續發展理念的綜合評價標準。根據決策框架,確定了越南鋼鐵行業的最佳永續供應鏈管理。 敏感性分析和敏感性比較結果表明,該決策框架具有實用性和穩健性。研究結果可以幫助鋼鐵行業管理者解決宏觀層面的供應商選擇問題。 此外,本研究中提出的方法亦可幫助其他行業的管理者更成功地選擇和評估供應商。
Supplier selection is a critical issue for supply chain (SC) management because it is a multi-criteria decision-making problem largely dependent on the decision makers' vision. SC sustainability, which considers environmental, economic, and social factors, was recently recognized in the SC management evaluation process. As the foundation of SC, suppliers play a crucial role in the development of a sustainable SC. As a result, this research aims to identify a sustainable supplier for the steel manufacturing industry in a case study from Vietnam. While some criteria can be analyzed using a numerical database, many qualitative criteria must be reviewed in linguistic terms using expert judgment. This paper proposes a hybrid of the data envelopment analysis (DEA) method, the spherical fuzzy analytic hierarchy process (SF-AHP), and the spherical fuzzy weighted aggregated sum product assessment (SF-WASPAS) to deal with the complexity of the priority problem caused by the coexistence of many factors. When evaluating suppliers using an integrated approach, both quantitative and qualitative factors are considered. DEA is used in the first step to select high-efficiency suppliers based on various quantifiable factors. In the second step, these suppliers are evaluated further based on qualitative factors such as economic, environmental, and social factors. The SF-AHP is used to assess the significance of the criteria, while the SF-WASPAS is used to rank sustainable suppliers. To put the three-stage MCDM model into action, a comprehensive set of evaluation criteria based on sustainable development was established through a literature review and expert interviews. The best sustainable supplier for the Vietnamese steel industry has been identified based on the decision framework. The sensitivity analysis and sensitivity comparison results show that the decision framework is both practicable and robust. The study's findings can help steel industry managers solve the macrolevel supplier selection problem. Furthermore, the approach proposed in this study can help managers in other industries more successfully select and evaluate suppliers.
ABSTRACT IV
ACKNOWLEDGEMENTS VI
TABLE OF CONTENTS VII
LIST OF TABLES IX
LIST OF FIGURES XI
CHAPTER 1: INTRODUCTION 1
1. 1. Background 1
1.2. Motivation and Objectives 2
1.3. Contributions 6
1.4. Dissertation structure 7
CHAPTER 2: LITERATURE REVIEW 9
CHAPTER 3: METHODOLOGY 14
3.1. Data Envelopment Analysis (DEA) 14
3.1.1. Charnes-Cooper-Rhodes model (CCR) 15
3.1.2. Banker-Charnes-Cooper model (BCC) 15
3.1.3. Slacks-Based Measure model (SBM) 15
3.1.4. Epsilon-Based Measure model (EBM) 16
3.2. Proposed Methods 20
3.2.1. SF-AHP 20
3.2.2. SF-WASPAS 22
CHAPTER 4: CASE STUDY 24
4.1. A case study in Vietnam 24
4.1.1. Screening potential suppliers with DEA models 25
4.1.2. A combination of the SF-AHP and SF-WASPAS models. 27
CHAPTER 5: RESULTS AND DISCUSSION 32
5.1. SF-AHP results 32
5.1.1. SF-AHP Results 32
5.1.1.1. Main Criteria Weights 32
5.1.1.2. Results of global Criteria Weights 34
5.1.2. SF-WASPAS Results 36
5.2. Discussion 48
CHAPTER 6: CONCLUSION AND FUTURE WORKS 51
Appendix A 53
References 66
Autobiography ………………………………………………………………………………...72


Research Report on the Vietnam Steel Industry. Available online: https://www.businesswire.com/news/home/20180606005579/en/Research-Report-on-the-Vietnam-Steel-Industry-2018-2022---CAGR-of-the-Production-Volume-of-Crude-Steel-is-Projected-to-Exceed-20---ResearchAndMarkets.com (accessed on 30 December 2021).
2.Wu, C.; Barnes, D. A Literature Review of Decision-Making Models and Approaches for Partner Selection in Agile Supply Chains. J. Purch. Supply Manag. 2011, 17, 256–274.
3.Verghese, K.; Lewis, H. Environmental Innovation in Industrial Packaging: A Supply Chain Approach. Int. J. Prod. Res. 2007, 45, 4381–4401.
4.Ho, W.; Xu, X.; Dey, P.K. Multi-Criteria Decision Making Approaches for Supplier Evaluation and Selection: A Literature Review. Eur. J. Oper. Res. 2010, 202, 16–24.
5.Wagner, S.M.; Johnson, J.L. Configuring and Managing Strategic Supplier Portfolios. Ind. Mark. Manag. 2004, 33, 717–730.
6.Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A Comparison between Fuzzy AHP and Fuzzy TOPSIS Methods to Supplier Selection. Appl. Soft Comput. 2014, 21, 194–209.
7.Ha, B.; Park, Y.; Cho, S. Suppliers’ Affective Trust and Trust in Competency in Buyers: Its Effect on Collaboration and Logistics Efficiency. Int. J. Oper. Prod. Manag. 2011.
8.Hsu, C.-W.; Kuo, T.-C.; Chen, S.-H.; Hu, A.H. Using DEMATEL to Develop a Carbon Management Model of Supplier Selection in Green Supply Chain Management. J. Clean. Prod. 2013, 56, 164–172.
9.Büyüközkan, G.; Çifçi, G. A Novel Fuzzy Multi-Criteria Decision Framework for Sustainable Supplier Selection with Incomplete Information. Comput. Ind. 2011, 62, 164–174.
10.Gaziulusoy, A.I. A Critical Review of Approaches Available for Design and Innovation Teams through the Perspective of Sustainability Science and System Innovation Theories. J. Clean. Prod. 2015, 107, 366–377.
11.Keeble, B.R. The Brundtland Report:‘Our Common Future.’ Med. War 1988, 4, 17–25.
12.Guest, R. The Economics of Sustainability in the Context of Climate Change: An Overview. J. World Bus. 2010, 45, 326–335.
13.Elkington, J. Enter the Triple Bottom Line. In The triple bottom line; Routledge, 2013; pp. 23–38 ISBN 1849773343.
14.Dao, V.; Langella, I.; Carbo, J. From Green to Sustainability: Information Technology and an Integrated Sustainability Framework. J. Strateg. Inf. Syst. 2011, 20, 63–79.
15.Amindoust, A.; Ahmed, S.; Saghafinia, A.; Bahreininejad, A. Sustainable Supplier Selection: A Ranking Model Based on Fuzzy Inference System. Appl. Soft Comput. 2012, 12, 1668–1677.
16.Govindan, K.; Khodaverdi, R.; Jafarian, A. A Fuzzy Multi Criteria Approach for Measuring Sustainability Performance of a Supplier Based on Triple Bottom Line Approach. J. Clean. Prod. 2013, 47, 345–354.
17.Bai, C.; Sarkis, J. Integrating Sustainability into Supplier Selection with Grey System and Rough Set Methodologies. Int. J. Prod. Econ. 2010, 124, 252–264.
18.Zimmer, K.; Fröhling, M.; Schultmann, F. Sustainable Supplier Management–a Review of Models Supporting Sustainable Supplier Selection, Monitoring and Development. Int. J. Prod. Res. 2016, 54, 1412–1442.
19.Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M.J. A Fuzzy VIKOR Method for Supplier Selection Based on Entropy Measure for Objective Weighting. Expert Syst. Appl. 2011, 38, 12160–12167.
20.Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A Comprehensive MCDM-Based Approach Using TOPSIS, COPRAS and DEA as an Auxiliary Tool for Material Selection Problems. Mater. Des. 2017, 121, 237–253.
21.Garg, H.; Kumar, K. A Novel Exponential Distance and Its Based TOPSIS Method for Interval-Valued Intuitionistic Fuzzy Sets Using Connection Number of SPA Theory. Artif. Intell. Rev. 2020, 53, 595–624.
22.Ghorabaee, M.K.; Zavadskas, E.K.; Amiri, M.; Esmaeili, A. Multi-Criteria Evaluation of Green Suppliers Using an Extended WASPAS Method with Interval Type-2 Fuzzy Sets. J. Clean. Prod. 2016, 137, 213–229.
23.Bouyssou, D. Using DEA as a Tool for MCDM: Some Remarks. J. Oper. Res. Soc. 1999, 50, 974–978.
24.Doyle, J.; Green, R. Data Envelopment Analysis and Multiple Criteria Decision Making. Omega 1993, 21, 713–715.
25.Stević, Ž.; Miškić, S.; Vojinović, D.; Huskanović, E.; Stanković, M.; Pamučar, D. Development of a Model for Evaluating the Efficiency of Transport Companies: PCA–DEA–MCDM Model. Axioms 2022, 11, 140.
26.Saaty, T. The Analytic Hierarchy Process (AHP) for Decision Making. In Proceedings of the Kobe, Japan; 1980; pp. 1–69.
27.Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353, doi:https://doi.org/10.1016/S0019-9958(65)90241-X.
28.Zadeh, L.A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning-III. Inf. Sci. (Ny). 1975, 9, 43–80, doi:10.1016/0020-0255(75)90017-1.
29.Atanassov, K.T. Intuitionistic Fuzzy Sets. In Intuitionistic fuzzy sets; Springer, 1999; pp. 1–137.
30.Torra, V. Hesitant Fuzzy Sets. Int. J. Intell. Syst. 2010, 25, 529–539.
31.Yager, R.R. Pythagorean Fuzzy Subsets. In Proceedings of the Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013; IEEE, 2013; pp. 57–61.
32.Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis. 1998.
33.Kutlu Gündoğdu, F.; Kahraman, C. Spherical Fuzzy Sets and Decision Making Applications. In Proceedings of the International Conference on Intelligent and Fuzzy Systems; Springer, 2019; pp. 979–987.
34.Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of Weighted Aggregated Sum Product Assessment. Elektron. ir Elektrotechnika 2012, 122, 3–6.
35.Kutlu Gundogdu, F.; Kahraman, C. Extension of WASPAS with Spherical Fuzzy Sets. Informatica 2019, 30, 269–292.
36.Ghoushchi, S.J.; Bonab, S.R.; Ghiaci, A.M.; Haseli, G.; Tomaskova, H.; Hajiaghaei-Keshteli, M. Landfill Site Selection for Medical Waste Using an Integrated SWARA-WASPAS Framework Based on Spherical Fuzzy Set. Sustainability 2021, 13, 13950.
37.Ayyildiz, E.; Taskin Gumus, A. A Novel Spherical Fuzzy AHP-Integrated Spherical WASPAS Methodology for Petrol Station Location Selection Problem: A Real Case Study for İstanbul. Environ. Sci. Pollut. Res. 2020, 27, 36109–36120.
38.Nguyen, P.H.; Tsai, J.F.; Dang, T.T.; Lin, M.H.; Pham, H.A.; Nguyen, K.A. A Hybrid Spherical Fuzzy MCDM Approach to Prioritize Governmental Intervention Strategies against the COVID-19 Pandemic: A Case Study from Vietnam. Mathematics 2021, 9, 1–28, doi:10.3390/math9202626.
39.Schiele, H.; Calvi, R.; Gibbert, M. Customer Attractiveness, Supplier Satisfaction and Preferred Customer Status: Introduction, Definitions and an Overarching Framework. Ind. Mark. Manag. 2012, 41, 1178–1185.
40.Kumar, M. An Innovative Supplier and Imitative Buyer in the Case of Product Life Cycle. Adv. Ind. Eng. Manag. 2013, 2, 16–34.
41.Amiran, H.; Radfar, I.; Zolfani, S.H. A Fuzzy MCDM Approach for Evaluating Steel Industry Performance Based on Balanced Scorecard: A Case in Iran. In Proceedings of the 2011 2nd IEEE International Conference on Emergency Management and Management Sciences, IEEE, Beijing, China, 2011, pp. 574–577.
42.Jafarnejad, A.; Ansari, M.; Youshanlouei, H.R.; Mood, M. A Hybrid MCDM Approach for Solving the ERP System Selection Problem with Application to Steel Industry. Int. J. Enterp. Inf. Syst. 2012, 8, 54–73.
43.Mohaghar, A.; Zarchi, E.S. Identification and Ranking of Projects Funded by the Steel Industry by Using of Multi Criteria Decision Making (MCDM). Glob. J. Manag. Stud. Res. 2015, 2, 38–47.
44.Quader, M.A.; Ahmed, S. A Hybrid Fuzzy MCDM Approach to Identify Critical Factors and CO2 Capture Technology for Sustainable Iron and Steel Manufacturing. Arab. J. Sci. Eng. 2016, 41, 4411–4430.
45.Azimifard, A.; Moosavirad, S.H.; Ariafar, S. Selecting Sustainable Supplier Countries for Iran’s Steel Industry at Three Levels by Using AHP and TOPSIS Methods. Resour. Policy 2018, 57, 30–44.
46.Choi, Y.; Yu, Y.; Lee, H.S. A Study on the Sustainable Performance of the Steel Industry in Korea Based on SBM-DEA. Sustainability 2018, 10, 173.
47.Javad, M.O.M.; Darvishi, M.; Javad, A.O.M. Green Supplier Selection for the Steel Industry Using BWM and Fuzzy TOPSIS: A Case Study of Khouzestan Steel Company. Sustain. Futur. 2020, 2, 100012.
48.Jain, N.; Singh, A.R. Sustainable Supplier Selection Criteria Classification for Indian Iron and Steel Industry: A Fuzzy Modified Kano Model Approach. Int. J. Sustain. Eng. 2020, 13, 17–32.
49.Chakraborty, S.; Chattopadhyay, R.; Chakraborty, S. An Integrated D-MARCOS Method for Supplier Selection in an Iron and Steel Industry. Decis. Mak. Appl. Manag. Eng. 2020, 3, 49–69.
50.50. Ghamari, R.; Mahdavi-Mazdeh, M.; Ghannadpour, S.F. Resilient and Sustainable Supplier Selection via a New Framework: A Case Study from the Steel Industry. Environ. Dev. Sustain. 2021, 1–39.
51.Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444.
52.Wen, M. Uncertain Data Envelopment Analysis; Springer, 2015;
53.Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–281.
54.Tone, K.; Tsutsui, M. An Epsilon-Based Measure of Efficiency in DEA–a Third Pole of Technical Efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563.
55.Kutlu Gündoğdu, F.; Kahraman, C. A Novel Spherical Fuzzy Analytic Hierarchy Process and Its Renewable Energy Application. Soft Comput. 2020, 24, 4607–4621, doi:10.1007/s00500-019-04222-w.
56.Vietnam GDP Grows 5.03% in First Three Months of 2022. Available online: https://asia.nikkei.com/Economy/Vietnam-GDP-grows-5.03-in-first-three-months-of-2022 (accessed on 18 April 2022).
57.Vietnam Steel Industry Report 2020-2024 Available online: https://www.researchandmarkets.com/reports/4911561/vietnam-steel-industry-report-2020-2024 (accessed on 30 December 2021).
58.Vietnam’s Steel Industry Outlook 2022 Available online: https://vietnamcredit.com.vn/news/vietnams-steel-industry-outlook-2022_14639 (accessed on 18 April 2022).
59.Vietnam’s Steel Market to 2024 Available online: https://www.prnewswire.com/news-releases/vietnams-steel-market-to-2024-production-volume-of-crude-steel-is-projected-to-exceed-20-cagr-during-2020-2024-300992785.html (accessed on 29 December 2021).
60.Ecer, F.; Pamucar, D. Sustainable Supplier Selection: A Novel Integrated Fuzzy Best Worst Method (F-BWM) and Fuzzy CoCoSo with Bonferroni (CoCoSo’B) Multi-Criteria Model. J. Clean. Prod. 2020, 266, 121981.
61.Wang, C.N.; Nguyen, T.L.; Dang, T.T.; Bui, T.H. Performance Evaluation of Fishery Enterprises Using Data Envelopment Analysis-a Malmquist Model. Mathematics 2021, 9, 1–21.
62.Sarkis, J. A Methodological Framework for Evaluating Environmentally Conscious Manufacturing Programs. Comput. Ind. Eng. 1999, 36, 793–810.
63.Vietstock.Vn Available online: https://vietstock.vn/ (accessed on 20 December 2021)
64.Punniyamoorthy, M.; Mathiyalagan, P.; Parthiban, P. A Strategic Model Using Structural Equation Modeling and Fuzzy Logic in Supplier Selection. Expert Syst. Appl. 2011, 38, 458–474.
65.Mavi, R.K.; Goh, M.; Zarbakhshnia, N. Sustainable Third-Party Reverse Logistic Provider Selection with Fuzzy SWARA and Fuzzy MOORA in Plastic Industry. Int. J. Adv. Manuf. Technol. 2017, 91, 2401–2418.
66.Wang Chen, H.M.; Chou, S.-Y.; Luu, Q.D.; Yu, T.H.-K. A Fuzzy MCDM Approach for Green Supplier Selection from the Economic and Environmental Aspects. Math. Probl. Eng. 2016, 2016.
67.Taherdoost, H.; Brard, A. Analyzing the Process of Supplier Selection Criteria and Methods. Procedia Manuf. 2019, 32, 1024–1034.
68.Mafakheri, F.; Breton, M.; Ghoniem, A. Supplier Selection-Order Allocation: A Two-Stage Multiple Criteria Dynamic Programming Approach. Int. J. Prod. Econ. 2011, 132, 52–57.
69.Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An Integrated Framework for Sustainable Supplier Selection and Evaluation in Supply Chains. J. Clean. Prod. 2017, 140, 1686–1698.
70.What Is Customer Satisfaction? Available online: https://asq.org/quality-resources/customer-satisfaction (accessed on 18 March 2022).
71.What Is Stakeholder Satisfaction? Available online: https://simplicable.com/new/stakeholder-satisfaction#:~:text=Stakeholder satisfaction is a measurement,satisfaction on a numerical scale (accessed on 18 March 2022).
72.Wang, C.-N.; Dang, T.-T.; Wang, J.-W. A Combined Data Envelopment Analysis (DEA) and Grey Based Multiple Criteria Decision Making (G-MCDM) for Solar PV Power Plants Site Selection: A Case Study in Vietnam. Energy Reports 2022, 8, 1124–1142.
73.Muduli, K.; Barve, A. Sustainable Development Practices in Mining Sector: A GSCM Approach. Int. J. Environ. Sustain. Dev. 2013, 12, 222–243.
74.Hsu, C.-W.; Hu, A.H. Applying Hazardous Substance Management to Supplier Selection Using Analytic Network Process. J. Clean. Prod. 2009, 17, 255–264.
75.Kannan, D.; de Sousa Jabbour, A.B.L.; Jabbour, C.J.C. Selecting Green Suppliers Based on GSCM Practices: Using Fuzzy TOPSIS Applied to a Brazilian Electronics Company. Eur. J. Oper. Res. 2014, 233, 432–447.
76.Falatoonitoosi, E.; Ahmed, S.; Sorooshian, S. A Multicriteria Framework to Evaluate Supplier’s Greenness. In Proceedings of the Abstract and Applied Analysis; Hindawi, 2014; Vol. 2014.
77.Lee, A.H.I.; Kang, H.-Y.; Hsu, C.-F.; Hung, H.-C. A Green Supplier Selection Model for High-Tech Industry. Expert Syst. Appl. 2009, 36, 7917–7927.
78.Luthra, S.; Garg, D.; Haleem, A. Empirical Analysis of Green Supply Chain Management Practices in Indian Automobile Industry. J. Inst. Eng. Ser. C 2014, 95, 119–126.
79.De Marchi, V. Environmental Innovation and R&D Cooperation: Empirical Evidence from Spanish Manufacturing Firms. Res. Policy 2012, 41, 614–623.
80.Zhu, Q.; Sarkis, J.; Lai, K. Examining the Effects of Green Supply Chain Management Practices and Their Mediations on Performance Improvements. Int. J. Prod. Res. 2012, 50, 1377–1394.
81.Govindan, K.; Diabat, A.; Shankar, K.M. Analyzing the Drivers of Green Manufacturing with Fuzzy Approach. J. Clean. Prod. 2015, 96, 182–193.
82.Mangla, S.; Madaan, J.; Chan, F.T.S. Analysis of Flexible Decision Strategies for Sustainability-Focused Green Product Recovery System. Int. J. Prod. Res. 2013, 51, 3428–3442.
83.Customer Satisfaction. Available online: https://en.wikipedia.org/wiki/Customer_satisfaction (accessed on 20 February 2022).
84.Hoa Phat Posts Record High Profit in 2021. Available online: https://en.vietnamplus.vn/hoa-phat-posts-record-high-profit-in-2021/221385.vnp (accessed on 21 February 2022).
85.Hoa Phat Group Ensures Environmental Protection Available online: https://www.hoaphat.com.vn/news/hoa-phat-group-ensures-environmental-protection.html (accessed on 21 February 2022).
86.HSG: Sustainable Growth in the Fiscal Year 2020 – 2021 Available online: https://blogtuan.info/2022/03/21/hsg-sustainable-growth-in-the-fiscal-year-2020-2021/ (accessed on 21 February 2022).
87.Vnsteel-Vicasa Available online: https://vicasasteel.com/gioi-thieu/tam-nhin-su-menh (accessed on 21 February 2022).
88.Steel Is One of the World’s Most Sustainable Materials, but Decarbonizing Remains a Challenge Available online: https://www.ey.com/en_id/mining-metals/five-actions-to-improve-the-sustainability-of-steel (accessed on 23 February 2022).
89.Vietnam Urged to March towards “Green Steel Industry” Available online: https://www.eco-business.com/news/vietnam-urged-to-march-towards-green-steel-industry/ (accessed on 23 February 2022)

電子全文 電子全文(網際網路公開日期:20270606)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊