跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯榮昌
研究生(外文):Rong-Chang Ke
論文名稱:竹材活性碳的製備及應用於超級電容器之研究
論文名稱(外文):Preparation of Activated Carbon from Bamboo for Supercapacitors
指導教授:楊文都楊文都引用關係
指導教授(外文):Wein-Duo Yang
口試委員:林文崇、黃芳榮
口試日期:2022-06-28
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:107
中文關鍵詞:竹材
外文關鍵詞:bamboo
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究取材自竹材與KOH化學活化處理後,製成活性碳材應用於超級電容器之電極材料,並且探討製備之竹材活性碳材(BC)之性質。將KOH與竹材混合後,於管式爐直接進行高溫化學碳化/活化,成功製備出BC/KOH活性碳。使用Raman、BET、EDS、FTIR和SEM分析活性碳特性。將黏著劑與活性碳依重量百分比混合,並附著於鎳泡網上。使用1M Na2SO4電解液,研究循環伏安法(CV)、恆電流充放電(GCD)和循環充放電的電化學測試。BET結果,得質量比BC/KOH 1:2之活性碳,得相對較高比表面積。測其GCV顯示為在1 A/g充放電下比電容值85.58 F/g。得其電化學行為具有EDLC之特性。於電流密度1 A/g下經過10,000次循環初始電容值保持率仍為93.89 %。
In this study, the materials were obtained from bamboo materials after chemical activation with KOH, and the porous carbon materials were made into the electrode materials of supercapacitors. The properties of the prepared porous carbon materials were investigated and discussed. After mixing KOH with bamboo, high-temperature chemical carbonization/activation was carried out directly in a tube furnace, and BC/KOH porous activated carbon was successfully prepared. Raman, BET, EDS 、FTIR, and SEM properties of porous carbon were analyzed to examine the as-prepared porous activated carbon. The adhesive is mixed with porous carbon and other substances according to weight percentage and is attached to the nickel mesh. The electrochemical tests of cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and cyclic charge-discharge of the carbon electrodes were investigated using 1M Na2SO4 electrolyte. The analyses of the BET results indicated that the highest specific surface area is obtained from the activated carbon prepared by the mass ratio of Bamboo: KOH at 1:2. Its GCV was measured to show a particular capacitance value of 85.58 F/g at 1 A/g charge and discharge. Its electrochemical behavior has the characteristics of EDLC. After 10,000 cycles at a current density of 1 A/g, the initial capacitance value retention rate was still 93.89 %.
目錄
中文摘要........................................................III
Abstract.......................................................IV
致謝............................................................Ⅵ
目錄...............................................................Ⅶ
表目錄..............................................................XI
圖目錄............................................................XII
第一章 緒論 ........................................................1
1.1 前言...........................................................1
1.2 研究動機與目的.............................................4
第二章 文獻回顧 .....................................................7
2.1 超級電容器.......................................................7
2.1.1 儲能機制與原理.........................................9
2.2 電解質之種類 ....................................................16
2.3 電極材料種類 .................................................20
2.4 竹子..........................................................24
2.4.1 纖維素(Cellulose)............................................25
2.4.2 半纖維素(Hemicellulose) ....................................26
2.4.3 木質素(Lignin)..................................................26
2.5 活性碳..................................................................27
2.5.1 活性碳製備方式 ........................................28
2.5.1.1 物理活化..................................................31
2.5.1.2 化學活化 ................................................33
第三章 實驗方法與步驟 ................................................37
3.1 實驗藥品.......................................................37
3.2 實驗儀器......................................................38
3.3 實驗分析設備..............................................39
3.3.1 比表面積(BET)分析.......................................................39
3.3.1.1 吸附等溫線的分類..................................................40
3.3.1.2 遲滯環的分類..........................................................42
3.3.2 掃描式電子顯微鏡(SEM)分析 ......................................44
3.3.3 能量分散光譜儀(EDS)分析...........................................45
3.3.4 拉曼光譜儀(Raman Spectrometer)分析.........................46
3.3.5 電化學分析 ............................................47
3.3.5.1 循環伏安法(CV).................................................48
3.3.5.2 恆電流充放電測試(GCD).......................................49
3.3.5.3 電化學交流阻抗分析 (EIS) ....................................50
3.4 實驗架構...........................................................53
3.4.1 竹材製備多孔碳材 .........................................53
3.4.2.1 竹材前置處理..........................................................55
3.4.2.2 多孔碳材製作方式..................................................55
3.4.2.3 金屬鎳網前處理及多孔碳材之電極製作..............57
第四章 結果與討論 ............................................59
4.1 竹材活性碳材之性質分析......................................59
4.1.1 活性碳之 SEM 分析..........................................59
4.1.2 活性碳之 BET 分析............................................66
4.1.3 活性碳之 拉曼光譜分析................................................70
4.1.4 活性碳之 EDS 分析.......................................................72
4.1.5 活性碳之 FTIR 分析.....................................................73
4.2 電化學之性質研究 ..................................................74
4.2.1 活化比例不同之活性碳電極影響.................................74
4.2.2 BC/KOH之質量比1:2活性碳電性EIS及循環分析.....78
第五章 結論 ........................................................81
參考文獻 ...............................................................82

1. S. Hatfield-Dodds, H. Schandl, D. Newth, M. Obersteiner, Y. Cai, T. Baynes, J.West, P. Havlik, "Assessing Global Resource Use and Greenhouse Emissions to 2050, with Ambitious Resource Efficiency and Climate Mitigation Policies." Journal of Cleaner Production 144 (2017) 403-414.
2.L. Zheng, M. Hong, S. Chen, X. Liang, L.Q. F. "Oxygen-Rich Hierarchical Porous Carbon Derived from Biomass Waste-Kapok Flower for Supercapacitor Electrode." Diamond and Related Materials 113 (2021) 108267.
3.W. John Graydon, P. Milad, W. Donald, "Charge Redistribution and Ionic Mobility in the Micropores of Supercapacitors. "Journal of Power Sources 245 (2014) 822-829.
4.N. Nguyen, Ky, and J. J. Borkowski. "New 3-Level Response Surface Designs Constructed from Incomplete Block Designs." Journal of Statistical Planning and Inference 138 (2008) 294-305.
5.L. Du, P. Yang, X. Yu, P. Liu, J. Song, and W. Mai. “Flexible Supercapacitors Based on Carbon Nanotube/MnO2 Nanotube Hybrid Porous Films for Wearable Electronic Devices." Journal of Materials Chemistry A 2 (2014) 17561-17567

電子全文 電子全文(網際網路公開日期:20270717)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top