跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚力愷
研究生(外文):Yao, Li-Kai
論文名稱:以 2,7-雙(咔唑-9-基)-9,9-芴和雙噻吩衍生 物電沉積共聚物及其在電致變色元件的應用
論文名稱(外文):Electrodeposited copolymers based on 2,7-bis(carbazol-9-yl)-9,9-fluorene and dithiophene derivatives and their applications in electrochromic devices
指導教授:郭仲文郭仲文引用關係
指導教授(外文):Kuo, Chung-Wen
口試委員:吳知易郭仲文何國賢
口試委員(外文):Wu, Tzi-YiKuo, Chung-WenHo, Ko-Shan
口試日期:2022-07-15
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:125
中文關鍵詞:雙咔唑雙噻吩電沉積著色效率響應時間穿透度變化電致變色元件光學記憶
外文關鍵詞:2,7-bis(carbazol-9-yl)-9,9-fluorenedithiopheneelectrodepositioncoloration efficiencyresponse timetransmittance changeelectrochromic deviceoptical memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究分為兩個部分,第一部分使用2,7-雙(咔唑-9-基)-9,9-二甲苯基芴(2,7-bis(carbazol-9-yl)-9,9-ditolylfluorene,BCDF)為主體,以電化學聚合法聚合成P(BCDF)高分子薄膜,BCDF再分別與四種雙噻吩衍生物(2,2'-bithiophene (BTP)、3,3'-dibromo-2,2'-bithiophene (DBBT)、2-(2-thienyl)furan (TF)及cyclopentadithiophene ketone (CPDTK))以進料莫耳比例為1/1於ITO玻璃基板上進行電化學聚合,分別得到P(BCDF-co-BTP)、P(BCDF-co-DBBT)、P(BCDF-co-TF)以及P(BCDF-co-CPDTK) 四種高分子薄膜,使用電化學分析儀搭配紫外光-可見光光譜儀對高分子薄膜進行光電性質分析,分析內容包含穿透度變化、著色效率以及響應時間,從實驗結果得知,P(BCDF-co-BTP)於波長1000 nm處穿透度變化達到54.3%,著色效率為185.8 cm2 C-1,顏色變化從還原態的黃綠色轉變為氧化態的灰藍色。
將上述製備的五種高分子薄膜分別作為陽極材料,以poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) (PProDOT-Me2)作為陰極材料,並使用膠態高分子電解質(PC-PMMA-LiClO4-ACN)作為陽極與陰極間的離子傳輸層,組裝成五種電致變色元件並對其進行光電性質測試,測試內容包含穿透度變化、著色效率、響應時間、光學記憶以及穩定度,經由測試結果得知P(BCDF-co-BTP)/PProDOT-Me2元件的性質最為優異,此元件於波長580 nm處時穿透度變化達到40.0%,著色效率為494.8 cm2 C-1,在光學記憶及穩定度上均有良好的表現。
第二部分使用2,7-雙(咔唑-9-基)-9,9-二辛基芴(2,7-bis(carbazol-9-yl)-9,9-dioctylfluorene,BCOF)為主體,以電化學聚合法聚合成P(BCOF)高分子薄膜,BCOF再分別與兩種雙噻吩衍生物(2,2'-bithiophene (BTP)及cyclopentadithiophene ketone (CPDTK))以不同進料莫耳比例為1/1及1/2在ITO玻璃基板上進行電化學聚合,分別得到P(BCOF-co-BTP)、P(BCOF-co-2BTP)、P(BCOF-co-CPDTK)及P(BCOF-co-2CPDTK) 四種高分子薄膜,並使用電化學分析儀搭配紫外光-可見光光譜儀對高分子薄膜進行光電性質分析,分析內容包含穿透度變化、著色效率以及響應時間,從實驗結果得知P(BCOF-co-BTP)於波長1000 nm處穿透度變化達到58.4%,著色效率為167.1 cm2 C-1,顏色變化從還原態的卡其色變為氧化態的灰藍色。
隨後將上述製備的五種高分子薄膜分別+作為陽極材料,以poly(3,4-ethylenedioxythiophene) (PEDOT)作為陰極材料,並使用膠態高分子電解質(PC-PMMA-LiClO4-ACN)作為陽極與陰極間的離子傳輸層,組裝成五種電致變色元件並對其進行光電性質測試,測試內容包含穿透度變化、著色效率、響應時間、光學記憶以及穩定度,測試結果得知P(BCOF-co-2BTP)/PEDOT元件的性質最為優異,此元件於波長640 nm處時穿透度變化達到39.7%,著色效率為449.2 cm2 C-1,在光學記憶及穩定度上均有良好的表現。

This study includes two parts. In first section, copolymers based on 2,7-bis(carbazol-9-yl)-9,9-ditolylfluorene (BCDF) and four dithiophene derivatives (2,2'-bithiophene (BTP), 3,3'-dibromo-2,2'-bithiophene (DBBT), 2-(2-thienyl)furan (TF) and cyclopentadithiophene ketone (CPDTK)) are successfully electrodeposited on ITO electrodes to obtain P(BCDF), P(BCDF-co-BTP), P(BCDF-co-DBBT), P(BCDF-co-TF) and P(BCDF-co-CPDTK) films, respectively. Spectroelectrochemical properties of copolymer films are investigated by UV–Vis spectroscopy and cyclic voltammetry (CV). P(BCDF-co-BTP) copolymer with BCOF/BTP =1/1 feed molar ratio shows high optical contrast and coloration efficiency which are measured as 54.3% and 185.8 cm2 C-1 at 1000 nm, respectively. Electrochromic devices (ECDs) are assembled using P(BCDF), P(BCDF-co-BTP), P(BCDF-co-DBBT), P(BCDF-co-TF) and P(BCDF-co-CPDTK) films as the anodic layers, poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) (PProDOT-Me2) film as the cathodic layer and a PC-PMMA-LiClO4-ACN composite film as the electrochromic electrolyte. P(BCDF-co-BTP)/PProDOT-Me2 ECD shows two different colors (bright brown and purplish blue) when applied different potentials. P(BCDF-co-BTP)/PProDOT-Me2 ECD shows high optical contrast (40.0%) and coloration efficiency (494.8 cm2 C–1) at 580 nm. In addition, this ECD has satisfactory optical memory and long-term stability.
In second section, copolymers based on 2,7-bis(carbazol-9-yl)-9,9-dioctylfluorene (BCOF) and two dithiophene derivatives (2,2'-bithiophene (BTP) and cyclopentadithiophene ketone (CPDTK)) are successfully electrodeposited on ITO electrodes to obtain P(BCOF), P(BCOF-co-BTP), P(BCOF-co-2BTP), P(BCOF-co-CPDTK), and P(BCOF-co-2CPDTK) films, respectively. Spectroelectrochemical properties of copolymer films are investigated by UV–Vis spectroscopy and cyclic voltammetry (CV). P(BCOF-co-BTP) copolymer with BCOF/BTP =1/1 feed molar ratio shows high optical contrast and coloration efficiency which are measured as 58.4% and 167.1 cm2 C-1 at 1000 nm, respectively. Electrochromic devices (ECDs) are assembled using P(BCOF), P(BCOF-co-BTP), P(BCOF-co-2BTP), P(BCOF-co-CPDTK), and P(BCOF-co-2CPDTK) films as the anodic layers, poly(3,4-ethylenedioxythiophene) (PEDOT) film as the cathodic layer and a PC-PMMA-LiClO4-ACN composite film as the electrochromic electrolyte. P(BCOF-co-2BTP)/PEDOT ECD shows two different colors (light grey and purplish blue) when applied different potentials. P(BCOF-co-2BTP)/PEDOT ECD show high optical contrast (39.7%) and coloration efficiency (449.2 cm2 C–1) at 640 nm. In addition, this ECD has satisfactory optical memory and long-term stability.

摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章、緒論 1
1.1 前言 1
1.2 變色材料介紹及應用 2
1.3 電致變色簡介 4
1.3.1 電致變色材料發展 4
1.3.2 電致變色材料種類 5
1.3.3 電致變色元件結構介紹 7
1.3.4 電解質介紹 8
1.3.5 電致變色基本參數 8
1.4 文獻回顧 11
1.5 研究動機 23
第二章、BCDF分別與雙噻吩衍生物電合成共聚物並與PProDOT-Me2組成元件之電化學與光學性質探討 25
2.1 實驗內容 25
2.1.1 實驗架構 25
2.1.2 實驗藥品 26
2.1.3 實驗設備 26
2.1.4 ITO玻璃基板前處理 27
2.1.5 電化學實驗裝置 27
2.1.6 BCDF分別與四種雙噻吩衍生物電化學聚合反應示意圖 28
2.1.7 陽極材料在液態電解質環境下之光電性質之測試 30
2.1.8 PProDOT-Me2陰極材料製備 31
2.1.9 膠態電解質及電致變色元件製備 31
2.1.10 電致變色元件光電性質之測試 33
2.2 陽極高分子薄膜性質測試 34
2.2.1 BCDF、BTP、DBBT、TF以及CPDTK單體聚合起始電位 34
2.2.2 傅立葉紅外線光譜分析 36
2.2.3 電化學循環伏安法聚合分析 37
2.2.4 定電位法電聚合陽極薄膜 39
2.2.5 電化學特性分析 39
2.2.6 不同電位下之吸收光譜圖及顏色 43
2.2.7 不同電位下之CIE色座標(L*, a*, b*, x, y) 45
2.2.8 HOMO、LUMO及能階 47
2.2.9 操作電位範圍之穿透度變化及響應時間 48
2.2.10 電致變色參數整理及分析 51
2.3 電致變色元件性質測試 52
2.3.1 不同電位下之吸收光譜圖及顏色 52
2.3.2 不同電位下之CIE色座標(L*, a*, b*, x, y) 54
2.3.3 操作電位範圍之穿透度變化及響應時間 57
2.3.4 電致變色參數整理及分析 60
2.3.5 光學記憶分析 61
2.3.6 多圈循環伏安法穩定度測試 63
第三章、BCOF分別與雙噻吩衍生物合成共聚物並與PEDOT組成元件之電化學與光學性質探討 66
3.1 實驗內容 66
3.1.1 實驗架構 66
3.1.2 實驗藥品 67
3.1.3 實驗設備 67
3.1.4 ITO玻璃基板前處理 68
3.1.5 BCOF分別與雙噻吩衍生物電化學聚合反應示意圖 68
3.1.6 PEDOT陰極材料之製備 70
3.2 陽極高分子薄膜性質測試 70
3.2.1 BCOF、BTP以及CPDTK單體聚合起始電位 70
3.2.2 傅立葉紅外線光譜分析 72
3.2.3 電化學循環伏安法聚合分析 73
3.2.4 定電位法電聚合陽極薄膜 75
3.2.5 電化學特性分析 75
3.2.6 不同電位下之吸收光譜圖及顏色 79
3.2.7 不同電位下之CIE色座標(L*, a*, b*, x, y) 81
3.2.8 HOMO、LUMO以及能階 83
3.2.9 操作電位範圍之穿透度變化及響應時間 84
3.2.10 電致變色參數整理及分析 87
3.3 電致變色元件性質測試 88
3.3.1 不同電位下之吸收光譜圖及顏色 88
3.3.2 不同電位下之CIE色座標(L*, a*, b*, x, y) 90
3.3.3 操作電位範圍之穿透度變化及響應時間 93
3.3.4 電致變色參數整理及分析 96
3.3.5 光學記憶分析 97
3.3.6 多圈循環伏安法穩定度測試 99
第四章、結論 102
參考文獻 103


[1]''讓物件隨溫度變色-熱致變色'' https://razerjaxx.wordpress.com/.
[2]''光致變色鏡片'' https://www.tonshung.com/zh-hant/usages/%E5%85%89%E8%87%B4%E8%AE%8A%E8%89%B2%E9%8F%A1%E7%89%87/.
[3]''隨時都完美的陽光-自動變色玻璃''https://prizes-is-here.life/?u=t11kd0b&o=zac8myd&m=1&t=400.
[4]''ADM 自動防眩後視鏡''https://www.motorsport.com.tw/adm.html.
[5]J.R. Platt, "Electrochromism, a possible change of color producible in dyes by an electric field". The Journal of Chemical Physics, (1961). 34(3): p. 862-863.
[6]S.K. Deb, "A Novel Electrophotographic System". Applied Optics., (1969). 8(S1): p. 192-195.
[7]D.J. O'Farrell and R.J. Gahan; "Electrochromic rearview mirror for vehicles with constant light transmitting area" .S5406414A. (1995).
[8]H.E. Elkhidr, Z. Ertekin, Y.A. Udum, and K. Pekmez, "Electrosynthesis and characterizations of electrochromic and soluble polymer films based on N- substituted carbazole derivates". Synthetic Metals, (2020). 260: p. 116253.
[9]P.R. Somani and S. Radhakrishnan, "Electrochromic materials and devices: present and future". Materials Chemistry and Physics, (2003). 77(1): p. 117-133.
[10]C.G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G.A. Niklasson, C.G. Ribbing, D. Rönnow, M. Strømme Mattsson, and M. Veszelei, "Towards the smart window: progress in electrochromics". Journal of Non-Crystalline Solids, (1997). 218: p. 273-279.
[11]''Taiwan台灣照明委員會''https://cie-taiwan.itri.org.tw/.
[12]S. Koyuncu, B. Gultekin, C. Zafer, H. Bilgili, M. Can, S. Demic, İ. Kaya, and S. Icli, "Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films: Electropolymerization and electrochromism". Electrochimica Acta, (2009). 54(24): p. 5694-5702.
[13]A. Aydın and İ. Kaya, "Syntheses, characterizations and electrochromic applications of polymers derived from carbazole containing thiophene rings in side chain with electrochemical and FeCl3 methods". Organic Electronics, (2013). 14(3): p. 730-743.
[14]Y.A. Udum, C.G. Hızlıateş, Y. Ergün, and L. Toppare, "Electrosynthesis and characterization of an electrochromic material containing biscarbazole–oxadiazole units and its application in an electrochromic device". Thin Solid Films, (2015). 595: p. 61-67.
[15]E. Karatas, M. Guzel, and M. Ak, "Asymmetric star-shaped functionalized triazine architecture and its electrochromic device application". Journal of the Electrochemical Society, (2017). 164(7): p. H463-H469.
[16]C.W. Kuo, J.K. Chang, Y.C. Lin, T.Y. Wu, P.Y. Lee, and T.H. Ho, "Poly(tris(4-carbazoyl-9-ylphenyl)amine)/three poly(3,4-ethylenedioxythiophene) derivatives in complementary high-contrast electrochromic devices". Polymers (Basel), (2017). 9(10).
[17]C.W. Kuo, J.C. Chang, Y.T. Huang, J.K. Chang, L.T. Lee, and T.Y. Wu, "Applications of copolymers consisting of 2,6-di(9H-carbazol-9-yl)pyridine and 3,6-di(2-thienyl)carbazole units as electrodes in electrochromic devices". Materials (Basel), (2019). 12(8): p. 1251.
[18]C.W. Kuo, J.C. Chang, L.T. Lee, J.K. Chang, Y.T. Huang, P.Y. Lee, and T.Y. Wu, "Electrosynthesis of electrochromic polymers based on bis-(4-(N-carbazolyl)phenyl)-phenylphosphine oxide and 3,4-propylenedioxythiophene derivatives and studies of their applications in high contrast dual type electrochromic devices". Journal of the Taiwan Institute of Chemical Engineers, (2022). 131: p. 104173.
[19]F. Zhang, C. Zhou, and J. Yan, "New progress of researches in carbazole compounds". Chinese Journal of Organic Chemistry, (2010). 30: p. 783-796.
[20]P. Najechalski, Y. Morel, O. Stéphan, and P.L. Baldeck, "Two-photon absorption spectrum of poly(fluorene)". Chemical Physics Letters, (2001). 343(1): p. 44-48.
[21]A.K. Baghdouche, M. Guergouri, M. Bencharif, and L. Bencharif, "Synthesis, characterization, and electropolymerization of fluorene-thiophene derivatives". Journal of Molecular Structure, (2022). 1252: p. 132091.
[22]F.E. Hong, Y.C. Yang, S.C. Lo, and C.C. Lin, "Nucleophilic substitution reactions of cyclopentadienyl and its related carbanions on tricarbonyl(η6-4-fluorotoluene)chromium: molecular structures of 1,4-bis [tricarbonyl(η6-4-toluene)chromium] cyclopentadiene, 3-[tricarbonyl(η6-4-toluene)chromium]indene, and 9,9-bis[tricarbonyl(η6-4-toluene)chromium]fluorene". Polyhedron, (1997). 16(12): p. 2005-2012.
[23]K.K. Guzmán-Rabadán, M. Güizado-Rodríguez, V. Barba, M. Rodríguez, J. Velusamy, and G. Ramos-Ortiz, "Synthesis of fluorene-thiophene-benzothiadiazole (D-π-A) molecules by direct arylation reactions: Formation of nanoparticles and their fluorescence study by one- and two-photon absorption". Optical Materials, (2020). 101: p. 109758.
[24]B. Wang, J. Zhao, C. Cui, J. Liu, and Q. He, "Electrosynthesis and characterization of an electrochromic material from poly(1,4-bis(3-methylthiophen-2-yl)benzene) and its application in electrochromic device". Solar Energy Materials and Solar Cells, (2012). 98: p. 161-167.
[25]I. Demirtas, E. Ertas, S. Topal, and T. Ozturk, "Electropolymers of 4-(thieno[3,2-b]thiophen-3-yl)benzonitrile extended with thiophene, 3-hexylthiophene and EDOT moieties; their electrochromic applications". Polymer, (2021). 235: p. 124286.
[26]A. García Rodríguez, S. Merino, and J. Rodríguez López, "Synthesis and polymerization of 2,2'-bithiophenes substituted with π-conjugated arms". Materials Today Communications, (2020). 25: p. 101424.
[27]B.B. Carbas, "Novel electrochromic copolymers based on 3-3′-dibromo-2-2′-bithiophene and 3,4 ethylene dioxythiophene". Polymer, (2017). 113: p. 180-186.
[28]W. Yao, P. Liu, C. Liu, J. Xu, K. Lin, H. Kang, M. Li, X. Lan, and F. Jiang, "Flexible conjugated polyfurans for bifunctional electrochromic energy storage application". Chemical Engineering Journal, (2022). 428: p. 131125.
[29]S. Hajaji, R. Zaier, and S. Ayachi, "Difluorinated cyclopentadithiophene derivatives for green emitters in organic light-emitting diodes: A theoretical investigation". Journal of Physics and Chemistry of Solids, (2021). 156: p. 110170.
[30]C.W. Kuo, J.C. Chang, L.T. Lee, Y.D. Lin, P.Y. Lee, and T.Y. Wu, "1,4-bis((9H-carbazol-9-yl)methyl)benzene-containing electrochromic polymers as potential electrodes for high-contrast electrochromic devices". Polymers (Basel), (2022). 14(6): p. 1175.
[31]K. Kawabata and H. Goto, "Electrosynthesis of 2,7-linked polycarbazole derivatives to realize low-bandgap electroactive polymers". Synthetic Metals, (2010). 160(21): p. 2290-2298.
[32]K. Kham, S.d. Sadki, and C. Chevrot, "Oxidative electropolymerizations of carbazole derivatives in the presence of bithiophene". Synthetic Metals, (2004). 145(2): p. 135-140.
[33]N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, and J.L. Dempsey, "A Practical beginner’s guide to cyclic voltammetry". Journal of Chemical Education, (2018). 95(2): p. 197-206.
[34]M. Ak, A. Durmus, and L. Toppare, "Solid state electrochromic device applications of N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide". Solid State Sciences, (2007). 9(9): p. 843-849.
[35]S.O. Hacioglu, D. Yiğit, T.E. Akbey, Y. Arslan Udum, M. Güllü, T. Depci, and L. Toppare, "Multipurpose acetic acid functionalized carbazole derivatives: Synthesis, electrochemical properties and electrochromic device applications". Journal of Electroanalytical Chemistry, (2022). 908: p. 116108.
[36]M. Sezgin, O. Ozay, S. Koyuncu, H. Ozay, and F. Baycan Koyuncu, "A neutral state colorless phosphazene/carbazole hybride dendron and its electrochromic device application". Chemical Engineering Journal, (2015). 274: p. 282-289.
[37]P. Zhou, Z. Wan, Y. Liu, C. Jia, X. Weng, J. Xie, and L. Deng, "Synthesis and electrochromic properties of a novel conducting polymer film based on dithiafulvenyl-triphenylamine-di(N-carbazole)". Electrochimica Acta, (2016). 190: p. 1015-1024.
[38]A. Oral, S. Koyuncu, and İ. Kaya, "Polystyrene functionalized carbazole and electrochromic device application". Synthetic Metals, (2009). 159(15): p. 1620-1627.
[39]C.W. Kuo, B.W. Wu, J.K. Chang, J.C. Chang, L.T. Lee, T.Y. Wu, and T.H. Ho, "Electrochromic devices based on poly(2,6-di(9H-carbazol-9-yl)pyridine)-type polymer films and PEDOT-PSS". Polymers (Basel), (2018). 10(6).
[40]C.W. Kuo, T.H. Hsieh, C.K. Hsieh, J.W. Liao, and T.Y. Wu, "Electrosynthesis and characterization of four electrochromic polymers based on carbazole and indole-6-carboxylic acid and their applications in high-contrast electrochromic devices". Journal of the Electrochemical Society, (2014). 161(14): p. D782-D790.
[41]C.W. Kuo and P.Y. Lee, "E lectrosynthesis of copolymers based on 1,3,5-tris(N-Carbazolyl)benzene and 2,2′-bithiophene and their applications in electrochromic devices". Polymers (Basel), (2017). 9(10).
[42]C. Xu, J. Zhao, J. Yu, and C. Cui, "Ethylenedioxythiophene derivatized polynapthalenes as active materials for electrochromic devices". Electrochimica Acta, (2013). 96: p. 82-89.
[43]S. Koyuncu, İ. Kaya, F.B. Koyuncu, and E. Ozdemir, "Electrochemical, optical and electrochromic properties of imine polymers containing thiophene and carbazole units". Synthetic Metals, (2009). 159(11): p. 1034-1042.
[44]D. Gulfidan, E. Sefer, S. Koyuncu, and M.H. Acar, "Neutral state colorless electrochromic polymer networks: Spacer effect on electrochromic performance". Polymer, (2014). 55(23): p. 5998-6005.
[45]B. Hu, X. Zhang, J. Liu, X. Chen, J. Zhao, and L. Jin, "Effects of the redox group of carbazole-EDOT derivatives on their electrochemical and spectroelectrochemical properties". Synthetic Metals, (2017). 228: p. 70-78.
[46]Y. Li, Y. Zhou, X. Jia, and D. Chao, "Synthesis and characterization of a dual electrochromic and electrofluorochromic crosslinked polymer". European Polymer Journal, (2018). 106: p. 169-174.
[47]S.H. Hsiao and J.C. Hsueh, "Electrochemical synthesis and electrochromic properties of new conjugated polycarbazoles from di(carbazol-9-yl)-substituted triphenylamine and N-phenylcarbazole derivatives". Journal of Electroanalytical Chemistry, (2015). 758: p. 100-110.
[48]B. Wang, J. Zhao, R. Liu, J. Liu, and Q. He, "Electrosyntheses, characterizations and electrochromic properties of a copolymer based on 4,4′-di(N-carbazoyl)biphenyl and 2,2′-bithiophene". Solar Energy Materials and Solar Cells, (2011). 95(7): p. 1867-1874.
[49]X. Yang, M. Wang, J. Zhao, C. Cui, S. Wang, and J. Liu, "Multichromic polymers containing alternating bithiophenes derivatives and 4-cyanotriphenylamine unit and their application for electrochromic devices". Journal of Electroanalytical Chemistry, (2014). 714-715: p. 1-10.
[50]T.Y. Wu, J.W. Liao, and C.Y. Chen, "Electrochemical synthesis, characterization and electrochromic properties of indan and 1,3-benzodioxole-based poly(2,5-dithienylpyrrole) derivatives". Electrochimica Acta, (2014). 150: p. 245-262.
[51]E.G. Cansu Ergun and A.M. Önal, "Carbazole based electrochromic polymers bearing ethylenedioxy and propylenedioxy scaffolds". Journal of Electroanalytical Chemistry, (2018). 815: p. 158-165.

電子全文 電子全文(網際網路公開日期:20270801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊