跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林緯宸
研究生(外文):Lin, Wei-Chen
論文名稱:採用雙尺寸 SiO2 顆粒在紡織物上製造堅固且 有效抗污染的EDTA/PDMS/F-SiO2 超疏水塗層
論文名稱(外文):Fabrication of Robust and Effective Antifouling EDTA/PDMS/F-SiO2 Superhydrophobic Coatings on Textiles Using Dual Size SiO2 Particles
指導教授:高立衡高立衡引用關係
指導教授(外文):KAO, LI-HENG
口試委員:莊高樹黃朝偉高立衡
口試委員(外文):CHUANG, KAO-SHUHUANG, CHAO-WEIKAO, LI-HENG
口試日期:2022-07-11
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:63
中文關鍵詞:EDTA/PDMS/F-SiO2¬微奈米塗層紡織物超疏水自清能力pH影響
外文關鍵詞:EDTA/PDMS/F-SiO2micro-nanofabricsuper hydrophobicself-cleaning abilitypH effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
第二章 基本原理與文獻回顧 4
2-1 奈米科技 4
2-2 超疏水表面(蓮花效應) 5
2-3 超疏水理論 6
2-3-1 接觸角(Contact Angle) 7
2-3-2 滾動角(Sliding angle) 8
2-4 表面潤濕理論 9
2-4-1 楊氏(Young’s)方程式 9
2-4-2 溫佐(Wenzel)方程式(非勻質粗造表面) 10
2-4-3 卡西-巴斯特(Cassie and Baxter)方程式(非勻質複合表面) 12
2-4-4 超疏水表面製作方法 14
2-5 溶膠凝膠法 14
2-6 溶膠凝膠塗佈方式 15
2-6-1 浸漬法(Dip-coating) 15
2-6-2 旋轉塗佈(Spin-coating) 17
2-6-3 噴塗法(Spray-coating) 18
2-6-4 電泳法Electrophoresis) 19
第三章 實驗方法與步驟 20
3-1 實驗藥品 20
3-2 儀器與設備 21
3-2-1 數電磁加熱攪拌器 21
3-2-2 精密量秤天平 (Precision Weighing Scales) 22
3-2-3 超音波震盪器 ( Ultrasonic cleaner ) 22
3-2-4 空氣噴塗機與噴槍 23
3-2-5 接觸角分析儀 (Contact Angle Meter) 23
3-2-6 旋轉塗佈機 25
3-2-7 紫外光與可見光分光光譜儀器 26
3-2-8 自製油水分離檢測儀器 27
3-3 實驗步驟 28
3-3-1 二甲基矽氧烷包覆二氧化矽塗層製備 28
3-3-2 乙二胺四乙酸(EDTA)強化二甲基矽氧烷包覆二氧化矽塗層 29
3-3-3 製備基材棉織布 30
3-3-4 疏水微奈米塗層塗佈 31
第四章 結果與討論 32
4-1 EDTA/PDMS/F-SiO2微奈米粒子分析 32
4-1-1 SiO2顆粒大小比例的選用 32
4-2 EDTA/PDMS/F-SiO2微奈米疏水塗層製備基材分析 33
4-2-1 微奈米塗層於硬性與軟性基材測試 33
4-2-2 微奈米塗層耐磨性測試 34
4-2-3 微奈米塗層抗UV測試 36
4-2-4 微奈米塗層抗汙能力測試 37
4-2-5 微奈米塗層化學穩定性測試 38
4-2-6 微奈米塗層油水分離實驗分析 39
4-2-7 微奈米塗層穿透率測試 40
第五章 結論 42
參考文獻 44



【1】Z. Guo, F. Zhou, J. Hao et al., "Stable biomimetic super-hydrophobic engineering materials," Journal of the American Chemical Society, 127 (2005) 15670-15671.
【2】Y. C. Hong, S. C. Cho, D. H. Shin et al., "A facile method for the fabrication of super-hydrophobic surfaces and their resulting wettability," Scripta Materialia, 59 (2008) 776-779.
【3】D. Teng, T. Zhao, Y. Xu et al., "The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation," Separation and Purification Technology, 263 (2021) 118393.
【4】R. Iqbal, B. Majhy,A. Sen, "Facile fabrication and characterization of a PDMS-derived candle soot coated stable biocompatible superhydrophobic and superhemophobic surface," ACS applied materials & interfaces, 9 (2017) 31170-31180.
【5】X.-M. Li, D. Reinhoudt,M. Crego-Calama, "What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces," Chemical Society Reviews, 36 (2007) 1350-1368.
【6】P. Deeksha, G. Deepika, J. Nishanthini et al., "Super-hydrophobicity: Mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections," Journal of Industrial and Engineering Chemistry, 92 (2020) 1-17.
【7】Y. C. Sang, A. B. Albadarin, H. Ala’a et al., "Properties of super-hydrophobic copper and stainless steel meshes: Applications in controllable water permeation and organic solvents/water separation," Applied Surface Science, 335 (2015) 107-114.
【8】X. Zhou, Z. Zhang, X. Xu et al., "Robust and durable superhydrophobic cotton fabrics for oil/water separation," ACS applied materials & interfaces, 5 (2013) 7208-7214.
【9】J. Wang, F. Han, Y. Chen et al., "A pair of MnO2 nanocrystal coatings with inverse wettability on metal meshes for efficient oil/water separation," Separation and Purification Technology, 209 (2019) 119-127.
【10】A. Xie, Y. Wu, Y. Liu et al., "Robust antifouling NH2-MIL-88B coated quartz fibrous membrane for efficient gravity-driven oil-water emulsion separation," Journal of Membrane Science, 644 (2022) 120093.
【11】C.-T. Liu,Y.-L. Liu, "pH-Induced switches of the oil-and water-selectivity of crosslinked polymeric membranes for gravity-driven oil–water separation," Journal of Materials Chemistry A, 4 (2016) 13543-13548.
【12】J. Alburquerque, J. Gonzálvez, D. García et al., "Effects of a compost made from the solid by-product (“alperujo”) of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.)," Bioresource Technology, 98 (2007) 940-945.
【13】M. Peng, Y. Zhu, H. Li et al., "Synthesis and application of modified commercial sponges for oil-water separation," Chemical Engineering Journal, 373 (2019) 213-226.
【14】M. Hasani-Javanmardi, A. A. Fallah,M. Abbasvali, "Effect of safflower oil nanoemulsion and cumin essential oil combined with oxygen absorber packaging on the quality and shelf-life of refrigerated lamb loins," LWT, 147 (2021) 111557.
【15】H. Wen, S. Raza, P. Wang et al., "Robust super hydrophobic cotton fabrics functionalized with Ag and PDMS for effective antibacterial activity and efficient oil–water separation," Journal of Environmental Chemical Engineering, 9 (2021) 106083.
【16】W. Sui, H. Hu, Y. Lin et al., "Mussel-inspired pH-responsive copper foam with switchable wettability for bidirectional oil-water separation," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630 (2021) 127603.
【17】X.-Q. Zhao, F. Wahid, J.-X. Cui et al., "Cellulose-based special wetting materials for oil/water separation: A review," International Journal of Biological Macromolecules, 185 (2021) 890-906.
【18】T. Fan, Q. Qian, Z. Hou et al., "Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method," Carbohydrate polymers, 200 (2018) 63-71.
【19】J. Liu, J. Xiong, Q. Huang et al., "Eco-friendly synthesis of robust bioinspired cotton fabric with hybrid wettability for integrated water harvesting and water purification," Journal of Cleaner Production, 350 (2022) 131524.
【20】Q. Guo, H. Sun, L. Zhang et al., "Cotton fabric-based rGO/BiVO4 recyclable photocatalytic nanocomposites for dye degradation under visible light," Composites Communications, 27 (2021) 100846.
【21】A. Krämer, C. Kunz, S. Gräf et al., "Pulsed laser deposition of anatase thin films on textile substrates," Applied Surface Science, 353 (2015) 1046-1051.
【22】K. Liu, H. Suo, C. Zhang et al., "An active Fischer–Tropsch synthesis FeMo/SiO2 catalyst prepared by a modified sol–gel technique," Catalysis Communications, 12 (2010) 137-141.
【23】F. E. Annanouch, S. Vallejos, T. Stoycheva et al., "Aerosol assisted chemical vapour deposition of gas-sensitive nanomaterials," Thin Solid Films, 548 (2013) 703-709.
【24】I. Singh, R. Kumar,B. I. Birajdar, "Zirconium doped TiO2 nano-powder via halide free non-aqueous solvent controlled sol-gel route," Journal of environmental chemical engineering, 5 (2017) 2955-2963.
【25】G. M. Walker, A. B. Albadarin, A. McGlue et al., "Analysis of friction factor reduction in turbulent water flow using a superhydrophobic coating," Progress in Organic Coatings, 90 (2016) 472-476.
【26】K.-J. Chae, S.-M. Kim, H.-D. Park et al., "Development of pseudo-amphoteric sponge media using polyalkylene oxide–modified polydimethylsiloxane (PDMS) for rapid start-up of wastewater treatment plant," Chemosphere, 71 (2008) 961-968.
【27】張立德,奈米材料,五南圖書出版有限公司(2002).
【28】W. Barthlott,C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, 202 (1997) 1-8.
【29】M. Zhang, S. Feng, L. Wang et al., "Lotus effect in wetting and self-cleaning," Biotribology, 5 (2016) 31-43.
【30】A. Y. Ben-Naim, Hydrophobic interactions. Springer Science & Business Media, 2012.
【31】P. K. Szewczyk, J. Knapczyk-Korczak, D. P. Ura et al., "Biomimicking wetting properties of spider web from Linothele megatheloides with electrospun fibers," Materials Letters, 233 (2018) 211-214.
【32】接觸角均相表面之示意圖.. http://wbsscphysicalsciences.blogspot.com/2013/08/surface-tension.html.
【33】維基百科 接觸角. https://zh.wikipedia.org/wiki/%E6%8E%A5%E8%A7%B8%E8%A7%92.
【34】R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & Engineering Chemistry, 28 (1936) 988-994.
【35】維基百科 疏水角. https://zh.wikipedia.org/wiki/%E7%96%8F%E6%B0%B4%E6%80%A7#cite_note-4.
【36】A. Cassie,S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday society, 40 (1944) 546-551.
【37】P. J. Fitzsimmons,K. E. Kuter, "Harmonic functions on Walsh’s Brownian motion," Stochastic Processes and their Applications, 124 (2014) 2228-2248.
【38】C. J. Brinker,G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, 2013.
【39】L. Scriven, "Physics and applications of dip coating and spin coating," MRS Online Proceedings Library (OPL), 121 (1988).
【40】Y. Kokubun, H. Kimura,S. Nakagomi, "Preparation of ZnO thin films on sapphire substrates by sol-gel method," Japanese journal of applied physics, 42 (2003) L904.
【41】keyence塗佈機. https://www.keyence.com.cn/ss/products/measure/sealing/coater-type/spin.jsp.


電子全文 電子全文(網際網路公開日期:20270825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top