|
[1] C. Pilinis, J.H. Seinfeld, DEVELOPMENT AND EVALUATION OF AN EULERIAN PHOTOCHEMICAL GAS AEROSOL MODEL, Atmos. Environ., 22 (1988) 1985-2001. [2] H.S. Bosch, J.D. Strachan, C.W. Barnes, E.B. Nieschmidt, CALIBRATION OF A SURFACE-BARRIER DETECTOR FOR 14-MEV NEUTRON-FLUX MEASUREMENTS ON TFTR, Rev. Sci. Instrum., 59 (1988) 1718-1720. [3] C.A. Pope, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA-J. Am. Med. Assoc., 287 (2002) 1132-1141. [4] P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion, Prog. Energy Combust. Sci., 67 (2018) 31-68. [5] 賴正昕, 劉國棟, 黃自立, 選擇性觸媒還原法排煙脫硝系統(SCR DE-NOx)控制實務, 工業污染防治, 15卷 (1996) 頁110-126. [6] T. Lee, H. Bai, Low temperature selective catalytic reduction of NO x with NH 3 over Mn-based catalyst: A review, AIMS Environmental Science, 3 (2016) 261-289. [7] A.A.S. Goncalves, F. Ciesielczyk, B. Samojeden, M. Jaroniec, Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH3, J. Hazard. Mater., 401 (2021) 9. [8] S. Zuercher, M. Hackel, G. Schaub, Kinetics of selective catalytic NOx reduction in a novel gas-particle filter reactor (catalytic filter element and sponge insert), Ind. Eng. Chem. Res., 47 (2008) 1435-1442. [9] 刘勇, 吴国忠, NOx的生成机理, 油氣田地面工程, 26 (2007) 32-33. [10] J. Van Durme, J. Dewulf, C. Leys, H. Van Langenhove, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review, Appl. Catal. B-Environ., 78 (2008) 324-333. [11] M.A. Gomez-Garcia, V. Pitchon, A. Kiennemann, Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials, Environ. Int., 31 (2005) 445-467. [12] 行政院環境保護署, 空氣汙染排放清冊 TEDS11.0, 2019. [13] K. Skalska, J.S. Miller, S. Ledakowicz, Trends in NOx abatement: A review, Sci. Total Environ., 408 (2010) 3976-3989. [14] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B-Environ., 18 (1998) 1-36. [15] S. Roy, M.S. Hegde, G. Madras, Catalysis for NOx abatement, Appl. Energy, 86 (2009) 2283-2297. [16] L.X. Chen, V. Agrawal, S.L. Tait, Sulfate promotion of selective catalytic reduction of nitric oxide by ammonia on ceria, Catal. Sci. Technol., 9 (2019) 1802-1815. [17] 雷敏宏, 吳紀聖, 觸媒化學概論與應用 = Essence of heterogenous catalysis and applications, 初版 ed., 五南, 臺北市, 2014. [18] S. Hosseini, H. Moghaddas, S.M. Soltani, S. Kheawhom, Technological Applications of Honeycomb Monoliths in Environmental Processes: A review, Process Saf. Environ. Protect., 133 (2020) 286-300. [19] J.H. Choi, S.K. Kim, S.J. Ha, Y.O. Park, The preparation of V2O5/TiO2 catalyst supported on the ceramic filter candle for selective reduction of NO, Korean J. Chem. Eng., 18 (2001) 456-462. [20] I. Nova, A. Beretta, G. Groppi, L. Lietti, E. Tronconi, P. Forzatti, Monolithic catalysts for NOx removal from stationary sources, Structured catalyst and reactors. Marcel Dekker New York, (2006) 171-214. [21] S.T. Korhonen, A.M. Beale, M.A. Newton, B.M. Weckhuysen, New Insights into the Active Surface Species of Silver Alumina Catalysts in the Selective Catalytic Reduction of NO, J. Phys. Chem. C, 115 (2011) 885-896. [22] C. Wang, F. Yu, M. Zhu, X. Wang, J. Dan, J. Zhang, P. Cao, B. Dai, Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50–150 °C, Chem. Eng. J., 346 (2018) 182-192. [23] S. Heidenreich, M. Nacken, M. Hackel, G. Schaub, Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams, Powder Technol., 180 (2008) 86-90. [24] S. Matsuda, A. Kato, Titanium oxide based catalysts - a review, Applied Catalysis, 8 (1983) 149-165. [25] S.L. Zhang, Q. Zhong, Y.N. Wang, Effect of rutile phase on V2O5 supported over TiO2 mixed phase for the selective catalytic reduction of NO with NH3, Appl. Surf. Sci., 314 (2014) 112-118. [26] 黃國華, 以低溫SCR觸媒同時處理2-氯酚及NOx之研究, 環境工程系所, 國立交通大學, 新竹市, 2011, pp. 118. [27] C.H. Lin, H. Bai, Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal - in situ DRIFTS study, Appl. Catal. B-Environ., 42 (2003) 279-287. [28] W.D. Zhang, S.H. Qi, G. Pantaleo, L.F. Liotta, WO3-V2O5 Active Oxides for NOx SCR by NH3: Preparation Methods, Catalysts' Composition, and Deactivation Mechanism-A Review, Catalysts, 9 (2019) 30. [29] M. Aguilar-Romero, R. Camposeco, S. Castillo, J. Marin, V. Rodriguez-Gonzalez, L.A. Garcia-Serrano, I. Mejia-Centeno, Acidity, surface species, and catalytic activity study on V2O5-WO3/TiO2 nanotube catalysts for selective NO reduction by NH3, Fuel, 198 (2017) 123-133. [30] G.S. Qi, R.T. Yang, Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B-Environ., 44 (2003) 217-225. [31] Z.B. Wu, B.Q. Jiang, Y. Liu, W.R. Zhao, B.H. Guan, Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method, J. Hazard. Mater., 145 (2007) 488-494. [32] 張育誠, 吳國光, 焦鴻文, 簡國祥, 歐陽湘, Y.-c. Chang, K.-k. Wu, H.-w. Chiao, K.-h. Chien, S. Ou-yang, 富氧燃燒技術之應用與分析, 臺灣能源期刊, 2卷 (2015) 頁323-331. [33] H.S. Fogler, Elements of chemical reaction engineering, 3rd ed. ed., Prentice Hall PTR, Upper Saddle River, N.J, 1999. [34] A. Boyano, N. Lombardo, M.E. Galvez, M.J. Lazaro, R. Moliner, Vanadium-loaded carbon-based monoliths for the on-board NO reduction: Experimental study of operating conditions, Chem. Eng. J., 144 (2008) 343-351. [35] 廖柏治, 陶瓷纖維擔載觸媒進行SCR脫硝之觸媒特性分析與效能測試研究, 環境工程學系所, 國立中興大學, 台中市, 2019, pp. 73. [36] P. Zhang, T.H. Chen, X.H. Zou, C.Z. Zhu, D. Chen, H.B. Liu, V2O5/hematite catalyst for low temperature selective catalytic reduction of NOx with NH3, Chin. J. Catal., 35 (2014) 99-107. [37] Z.J. Kong, C. Wang, Z.N. Ding, Y.F. Chen, Z.K. Zhang, Enhanced activity of MnxW0.05Ti0.95 (-) O-x(2) (-) (delta) for selective catalytic reduction of NOx with ammonia by self-propagating high-temperature synthesis, Catal. Commun., 64 (2015) 27-31. [38] M. Yates, J.A. Martin, M.A. Martin-Luengo, S. Suarez, J. Blanco, N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts, Catal. Today, 107-08 (2005) 120-125. [39] F.D. Liu, H. He, Y. Ding, C.B. Zhang, Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3, Appl. Catal. B-Environ., 93 (2009) 194-204. [40] M. Nacken, S. Heidenreich, M. Hackel, G. Schaub, Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation, Appl. Catal. B-Environ., 70 (2007) 370-376. [41] R. Burch, Low NOx options in catalytic combustion and emission control, Catal. Today, 35 (1997) 27-36. [42] A. Szymaszek, B. Samojeden, M. Motak, The Deactivation of Industrial SCR Catalysts-A Short Review, Energies, 13 (2020) 25. [43] Z.G. Lei, B. Han, K. Yang, B.H. Chen, Influence of H2O on the low-temperature NH3-SCR of NO over V2O5/AC catalyst: An experimental and modeling study, Chem. Eng. J., 215 (2013) 651-657. [44] F.D. Liu, H. He, C.B. Zhang, W.P. Shan, X.Y. Shi, Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst, Catal. Today, 175 (2011) 18-25. [45] B.X. Shen, T. Liu, N. Zhao, X.Y. Yang, L.D. Deng, Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3, J. Environ. Sci., 22 (2010) 1447-1454. [46] C.H. Lin, H. Bai, Adsorption behavior of moisture over a vanadia/titania catalyst: A study for the selective catalytic reduction process, Ind. Eng. Chem. Res., 43 (2004) 5983-5988. [47] J.M. Jehng, G. Deo, B.M. Weckhuysen, I.E. Wachs, Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures, J. Mol. Catal. A-Chem., 110 (1996) 41-54. [48] L. Zhu, Z.P. Zhong, H. Yang, C.H. Wang, Effect of MoO3 on vanadium based catalysts for the selective catalytic reduction of NOx with NH3 at low temperature, J. Environ. Sci., 56 (2017) 169-179. [49] K. Cheng, J. Liu, T. Zhang, J.M. Li, Z. Zhao, Y.C. Wei, G.Y. Jiang, A.J. Duan, Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst, J. Environ. Sci., 26 (2014) 2106-2113. [50] M. Blomberg, A. Torkkeli, A. Lehto, C. Helenelund, M. Viitasalo, Electrically tuneable micromachined Fabry-Perot interferometer in gas analysis, Phys. Scr., T69 (1997) 119-121. [51] V.A. Banakh, Y.N. Ponomarev, I.N. Smalikho, K.M. Firsov, D.D. Maluta, G.A. Poliakov, Simulation of operation of multiwave remote gas-analyzer based on NH3-laser, Infrared Phys. Technol., 41 (2000) 115-131. [52] L.A. Wood, The use of dew-point temperature in humidity calculations, Journal of Research of the National Bureau of Standards–C. Engineering and Instrumentation C, 74 (1970) 117-122. [53] G.S. Patience, Experimental methods and instrumentation for chemical engineers, 1st ed. ed., Elsevier, Waltham MA, 2013. [54] 羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹–SEM, 小奈米大世界, (2003). [55] S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, (Photo)catalyst Characterization Techniques, 2019, pp. 87-152. [56] P.F. McMillan, Raman Spectroscopy in Mineralogy and Geochemistry, Annual Review of Earth and Planetary Sciences, 17 (1989) 255-279. [57] P.F. McMillan, A.M. Hofmeister, Chapter 4. INFRARED AND RAMAN SPECTROSCOPY, in: C.H. Frank (Ed.) Spectroscopic Methods in Mineralogy and Geology, De Gruyter2018, pp. 99-160. [58] S.H. Kim, J.S. Cha, Y.S. Jeon, B.C. Park, M.C. Shin, J.K. Song, Y.K. Kim, Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia, React. Kinet. Mech. Catal., 118 (2016) 633-641. [59] D.W. Kwon, K.H. Park, S.C. Hong, The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method, Appl. Catal. A-Gen., 451 (2013) 227-235. [60] Y. Qiu, B. Liu, J. Du, Q. Tang, Z.H. Liu, R.L. Liu, C.Y. Tao, The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR, Chem. Eng. J., 294 (2016) 264-272. [61] Z.Q. Tan, G.P. Niu, Q. Qi, M.W. Zhou, B.H. Wu, W. Yao, Ultralow Emission of Dust, SOx, HCl, and NOx Using a Ceramic Catalytic Filter Tube, Energy Fuels, 34 (2020) 4173-4182. [62] L. Lang, H.Y. Zhu, Y.N. Ding, X.L. Yin, C.Z. Wu, X. Yu, A.V. Bridgwater, Mini-Review on Hot Gas Filtration in Biomass Gasification: Focusing on Ceramic Filter Candles, Energy Fuels, 35 (2021) 11800-11819.
|