跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游子豪
研究生(外文):YOU, ZIH-HAO
論文名稱:探討釩鈦SCR觸媒負載於陶瓷纖維/蜂巢/沸石載體之脫硝效率研究
論文名稱(外文):Study on de-NOx Efficiency of Vanadium-Titanium SCR Catalyst Loaded on Different Carriers (Ceramic Fiber/Honeycomb/Zeolite)
指導教授:黃朝偉黃朝偉引用關係高立衡高立衡引用關係
指導教授(外文):Huang, Chao-WeiKao, Li-Heng
口試委員:黃柏榮李約亨簡彰胤
口試委員(外文):Huang, Po-JungLi, Yueh-HengChien, Chang-Yin
口試日期:2022-07-13
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:96
中文關鍵詞:選擇性觸媒還原法煙道氣脫硝觸媒載體
外文關鍵詞:selective catalytic reductionflue gas denitrificationcatalyst carrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
選擇性觸媒還原法(Selective Catalytic Reduction, SCR)是目前處理燃燒後廢氣中氮氧化物最有效的方法。本研究探討常用之V / Ti觸媒負載於(1)陶瓷纖維載體、(2)菫青石蜂巢以及(3)勃姆石沸石等三種載體,以評估不同載體對於V / Ti觸媒脫硝效率之影響。於本研究中發現將V15 / Ti85比例的觸媒以含浸法負載於陶瓷纖維載體後,在模擬煙道氣環境中空間速度3000 hr-1、氧氣濃度10 vol %、NO濃度450 ppm、NH3濃度500 ppm以及水氣濃度10 vol %下,在反應溫度250 oC時,NO轉化效率可達到96.3 %,並且N2O的產生量為12.8 ppm;同時在相同模擬條件下的煙道氣環境中,菫青石蜂巢的NO轉化效率為91.7 %,N2O的產生量為8.5 ppm;勃姆石沸石的NO轉化效率為23.1 %,N2O的產生量為9.0 ppm。於拉曼光譜分析結果得知,陶瓷纖維濾材與菫青石蜂巢這二種載體在含浸了V / Ti觸媒後,在拉曼光譜下的405、480與527 cm-1處的波峰有發現V-O和V-O-V的彎曲模式,由此可見增加釩氧化物在表面的分布有助於提高觸媒的脫硝效果。將觸媒漿液含浸到載體時,陶瓷纖維載體僅需含浸一次即可負載0.6 g的觸媒於載體上,菫青石蜂巢需含浸二次,勃姆石沸石需含浸三次。綜合以上結果,陶瓷纖維作為載體時,負載觸媒過程較為簡易,製作成本較低,此外負載在陶瓷纖維載體的脫硝觸媒,其NO轉化效率優於商用化許久的菫青石蜂巢載體。
Selective Catalytic Reduction is currently the most effective technique for removal of nitrogen oxides from post-combustion gases. In this study, three commonly used types of supports which loaded by V / Ti were investigated: (1) ceramic fiber, (2) cordierite honeycomb and (3) boehmite zeolite, in order to evaluate the effect of various supports loaded by V / Ti catalyst on the removal efficiency. In this work, the ratio of V15 / Ti85 was dispersed on the ceramic fiber through impregnation method, the conversion efficiency of NOx reached 96.3 % at the reaction temperature of 250 oC under the condition of space velocity was 3000 hr-1, the oxygen concentration was 10 vol %, the NO and NH3 concentration was 450 ppm and 500 ppm, respectively, and 10 vol % of water content, moreover, the N2O concentration was only 12.8 ppm. Besides, the NO conversion efficiency of V15 / Ti85 was loaded on honeycomb and boehmite zeolite was 91.7 % and 23.1 %, respectively, and the N2O concentration was 8.5 ppm and 9.0 ppm, respectively. According to the spectrum of Raman, it can be observed that the V-O and V-O-V stretching peak at 405, 480 and 527 cm-1, after impregnating with V / Ti catalysts, therefore, increasing the distribution of vanadium oxide is benefit to enhance the NO removal efficiency. While above supports were impregnated into catalyst slurry, just soaking once then obtained that 0.6g V / Ti was loaded on the ceramic fiber, however, in order to disperse the same amount of V / Ti, the honeycomb required impregnated twice, and the boehmite zeolite even required impregnated three times. Based on these results, The ceramic fiber as a support is easy to disperse, and the production cost is rather low. Additionally, V / Ti catalyst were dispersed on the ceramic fiber has excellent de-NOx efficiency which better than commercial honeycomb.
摘 要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章、前言 1
1.1 研究起源 1
1.2 研究目的 2
第二章、文獻回顧 4
2.1 NOx危害與生成機制 4
2.1.1 NOx對環境與人體所造成的危害 4
2.1.2 NOx來源與生成機制 4
2.1.3 NOx控制技術種類與特點 7
2.2 選擇性觸媒還原(SCR)技術 7
2.2.1 SCR原理介紹 7
2.2.2 SCR進行機制 8
2.2.3 SCR觸媒種類 9
2.2.4 觸媒的製作方法 10
2.3 SCR觸媒載體 10
2.3.1 SCR觸媒載體種類 10
2.3.2 不同SCR觸媒載體所應用之系統配置 12
2.4 影響SCR反應效率之因素 14
2.4.1 SCR觸媒自身之特性 14
2.4.2 SCR觸媒反應環境之特性 16
第三章 研究方法與實驗步驟 24
3.1 研究方法與流程架構 24
3.2 實驗藥品與實驗設備 26
3.2.1 實驗藥品與材料 26
3.2.2 實驗氣體 26
3.2.3 觸媒檢測儀器 27
3.3 實驗樣品製作 28
3.3.1 SCR觸媒液樣品製作 28
3.3.2觸媒載體前處理 29
3.3.3 浸漬SCR觸媒到觸媒載體 29
3.4 實驗樣品之鑑定 29
3.4.1 NO / N2O分析 29
3.4.2 X射線繞射儀 33
3.4.3 掃描式電子顯微鏡 34
3.4.4比表面積分析 35
3.4.5 拉曼光譜分析 38
第四章 結果與討論 40
4.1 V / Ti觸媒與其含浸載體後脫硝試驗結果 40
4.1.1 不同V / Ti比例觸媒粉在不同流速下的脫硝效率以及N2O產生量 40
4.1.2 不同V / Ti比例觸媒含浸陶瓷纖維載體後,在不同流速下的脫硝效率以及N2O產生量 42
4.1.3 不同V / Ti比例觸媒含浸蜂巢載體後,在不同流速下的脫硝效率以及N2O產生量 44
4.1.4 不同V / Ti比例觸媒含浸沸石載體後,在不同流速下的脫硝效率以及N2O產生量 46
4.1.5 V15 / Ti85比例觸媒含浸不同載體後,在不同流速下的脫硝效率以及N2O產生量 48
4.1.6 V / Ti觸媒與其含浸載體後脫硝試驗小結 49
4.2 V / Ti觸媒與觸媒載體基本特性分析結果 49
4.2.1 SEM與mapping結果討論 49
4.2.2 XRD結果討論 52
4.2.3 BET結果討論 59
4.2.4 Raman結果討論 69
4.2.5 V / Ti觸媒與觸媒載體基本特性分析小結 72
第五章 結論 75
參考文獻 78
[1] C. Pilinis, J.H. Seinfeld, DEVELOPMENT AND EVALUATION OF AN EULERIAN PHOTOCHEMICAL GAS AEROSOL MODEL, Atmos. Environ., 22 (1988) 1985-2001.
[2] H.S. Bosch, J.D. Strachan, C.W. Barnes, E.B. Nieschmidt, CALIBRATION OF A SURFACE-BARRIER DETECTOR FOR 14-MEV NEUTRON-FLUX MEASUREMENTS ON TFTR, Rev. Sci. Instrum., 59 (1988) 1718-1720.
[3] C.A. Pope, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA-J. Am. Med. Assoc., 287 (2002) 1132-1141.
[4] P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion, Prog. Energy Combust. Sci., 67 (2018) 31-68.
[5] 賴正昕, 劉國棟, 黃自立, 選擇性觸媒還原法排煙脫硝系統(SCR DE-NOx)控制實務, 工業污染防治, 15卷 (1996) 頁110-126.
[6] T. Lee, H. Bai, Low temperature selective catalytic reduction of NO x with NH 3 over Mn-based catalyst: A review, AIMS Environmental Science, 3 (2016) 261-289.
[7] A.A.S. Goncalves, F. Ciesielczyk, B. Samojeden, M. Jaroniec, Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH3, J. Hazard. Mater., 401 (2021) 9.
[8] S. Zuercher, M. Hackel, G. Schaub, Kinetics of selective catalytic NOx reduction in a novel gas-particle filter reactor (catalytic filter element and sponge insert), Ind. Eng. Chem. Res., 47 (2008) 1435-1442.
[9] 刘勇, 吴国忠, NOx的生成机理, 油氣田地面工程, 26 (2007) 32-33.
[10] J. Van Durme, J. Dewulf, C. Leys, H. Van Langenhove, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review, Appl. Catal. B-Environ., 78 (2008) 324-333.
[11] M.A. Gomez-Garcia, V. Pitchon, A. Kiennemann, Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials, Environ. Int., 31 (2005) 445-467.
[12] 行政院環境保護署, 空氣汙染排放清冊 TEDS11.0, 2019.
[13] K. Skalska, J.S. Miller, S. Ledakowicz, Trends in NOx abatement: A review, Sci. Total Environ., 408 (2010) 3976-3989.
[14] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B-Environ., 18 (1998) 1-36.
[15] S. Roy, M.S. Hegde, G. Madras, Catalysis for NOx abatement, Appl. Energy, 86 (2009) 2283-2297.
[16] L.X. Chen, V. Agrawal, S.L. Tait, Sulfate promotion of selective catalytic reduction of nitric oxide by ammonia on ceria, Catal. Sci. Technol., 9 (2019) 1802-1815.
[17] 雷敏宏, 吳紀聖, 觸媒化學概論與應用 = Essence of heterogenous catalysis and applications, 初版 ed., 五南, 臺北市, 2014.
[18] S. Hosseini, H. Moghaddas, S.M. Soltani, S. Kheawhom, Technological Applications of Honeycomb Monoliths in Environmental Processes: A review, Process Saf. Environ. Protect., 133 (2020) 286-300.
[19] J.H. Choi, S.K. Kim, S.J. Ha, Y.O. Park, The preparation of V2O5/TiO2 catalyst supported on the ceramic filter candle for selective reduction of NO, Korean J. Chem. Eng., 18 (2001) 456-462.
[20] I. Nova, A. Beretta, G. Groppi, L. Lietti, E. Tronconi, P. Forzatti, Monolithic catalysts for NOx removal from stationary sources, Structured catalyst and reactors. Marcel Dekker New York, (2006) 171-214.
[21] S.T. Korhonen, A.M. Beale, M.A. Newton, B.M. Weckhuysen, New Insights into the Active Surface Species of Silver Alumina Catalysts in the Selective Catalytic Reduction of NO, J. Phys. Chem. C, 115 (2011) 885-896.
[22] C. Wang, F. Yu, M. Zhu, X. Wang, J. Dan, J. Zhang, P. Cao, B. Dai, Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50–150 °C, Chem. Eng. J., 346 (2018) 182-192.
[23] S. Heidenreich, M. Nacken, M. Hackel, G. Schaub, Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams, Powder Technol., 180 (2008) 86-90.
[24] S. Matsuda, A. Kato, Titanium oxide based catalysts - a review, Applied Catalysis, 8 (1983) 149-165.
[25] S.L. Zhang, Q. Zhong, Y.N. Wang, Effect of rutile phase on V2O5 supported over TiO2 mixed phase for the selective catalytic reduction of NO with NH3, Appl. Surf. Sci., 314 (2014) 112-118.
[26] 黃國華, 以低溫SCR觸媒同時處理2-氯酚及NOx之研究, 環境工程系所, 國立交通大學, 新竹市, 2011, pp. 118.
[27] C.H. Lin, H. Bai, Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal - in situ DRIFTS study, Appl. Catal. B-Environ., 42 (2003) 279-287.
[28] W.D. Zhang, S.H. Qi, G. Pantaleo, L.F. Liotta, WO3-V2O5 Active Oxides for NOx SCR by NH3: Preparation Methods, Catalysts' Composition, and Deactivation Mechanism-A Review, Catalysts, 9 (2019) 30.
[29] M. Aguilar-Romero, R. Camposeco, S. Castillo, J. Marin, V. Rodriguez-Gonzalez, L.A. Garcia-Serrano, I. Mejia-Centeno, Acidity, surface species, and catalytic activity study on V2O5-WO3/TiO2 nanotube catalysts for selective NO reduction by NH3, Fuel, 198 (2017) 123-133.
[30] G.S. Qi, R.T. Yang, Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B-Environ., 44 (2003) 217-225.
[31] Z.B. Wu, B.Q. Jiang, Y. Liu, W.R. Zhao, B.H. Guan, Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method, J. Hazard. Mater., 145 (2007) 488-494.
[32] 張育誠, 吳國光, 焦鴻文, 簡國祥, 歐陽湘, Y.-c. Chang, K.-k. Wu, H.-w. Chiao, K.-h. Chien, S. Ou-yang, 富氧燃燒技術之應用與分析, 臺灣能源期刊, 2卷 (2015) 頁323-331.
[33] H.S. Fogler, Elements of chemical reaction engineering, 3rd ed. ed., Prentice Hall PTR, Upper Saddle River, N.J, 1999.
[34] A. Boyano, N. Lombardo, M.E. Galvez, M.J. Lazaro, R. Moliner, Vanadium-loaded carbon-based monoliths for the on-board NO reduction: Experimental study of operating conditions, Chem. Eng. J., 144 (2008) 343-351.
[35] 廖柏治, 陶瓷纖維擔載觸媒進行SCR脫硝之觸媒特性分析與效能測試研究, 環境工程學系所, 國立中興大學, 台中市, 2019, pp. 73.
[36] P. Zhang, T.H. Chen, X.H. Zou, C.Z. Zhu, D. Chen, H.B. Liu, V2O5/hematite catalyst for low temperature selective catalytic reduction of NOx with NH3, Chin. J. Catal., 35 (2014) 99-107.
[37] Z.J. Kong, C. Wang, Z.N. Ding, Y.F. Chen, Z.K. Zhang, Enhanced activity of MnxW0.05Ti0.95 (-) O-x(2) (-) (delta) for selective catalytic reduction of NOx with ammonia by self-propagating high-temperature synthesis, Catal. Commun., 64 (2015) 27-31.
[38] M. Yates, J.A. Martin, M.A. Martin-Luengo, S. Suarez, J. Blanco, N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts, Catal. Today, 107-08 (2005) 120-125.
[39] F.D. Liu, H. He, Y. Ding, C.B. Zhang, Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3, Appl. Catal. B-Environ., 93 (2009) 194-204.
[40] M. Nacken, S. Heidenreich, M. Hackel, G. Schaub, Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation, Appl. Catal. B-Environ., 70 (2007) 370-376.
[41] R. Burch, Low NOx options in catalytic combustion and emission control, Catal. Today, 35 (1997) 27-36.
[42] A. Szymaszek, B. Samojeden, M. Motak, The Deactivation of Industrial SCR Catalysts-A Short Review, Energies, 13 (2020) 25.
[43] Z.G. Lei, B. Han, K. Yang, B.H. Chen, Influence of H2O on the low-temperature NH3-SCR of NO over V2O5/AC catalyst: An experimental and modeling study, Chem. Eng. J., 215 (2013) 651-657.
[44] F.D. Liu, H. He, C.B. Zhang, W.P. Shan, X.Y. Shi, Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst, Catal. Today, 175 (2011) 18-25.
[45] B.X. Shen, T. Liu, N. Zhao, X.Y. Yang, L.D. Deng, Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3, J. Environ. Sci., 22 (2010) 1447-1454.
[46] C.H. Lin, H. Bai, Adsorption behavior of moisture over a vanadia/titania catalyst: A study for the selective catalytic reduction process, Ind. Eng. Chem. Res., 43 (2004) 5983-5988.
[47] J.M. Jehng, G. Deo, B.M. Weckhuysen, I.E. Wachs, Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures, J. Mol. Catal. A-Chem., 110 (1996) 41-54.
[48] L. Zhu, Z.P. Zhong, H. Yang, C.H. Wang, Effect of MoO3 on vanadium based catalysts for the selective catalytic reduction of NOx with NH3 at low temperature, J. Environ. Sci., 56 (2017) 169-179.
[49] K. Cheng, J. Liu, T. Zhang, J.M. Li, Z. Zhao, Y.C. Wei, G.Y. Jiang, A.J. Duan, Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst, J. Environ. Sci., 26 (2014) 2106-2113.
[50] M. Blomberg, A. Torkkeli, A. Lehto, C. Helenelund, M. Viitasalo, Electrically tuneable micromachined Fabry-Perot interferometer in gas analysis, Phys. Scr., T69 (1997) 119-121.
[51] V.A. Banakh, Y.N. Ponomarev, I.N. Smalikho, K.M. Firsov, D.D. Maluta, G.A. Poliakov, Simulation of operation of multiwave remote gas-analyzer based on NH3-laser, Infrared Phys. Technol., 41 (2000) 115-131.
[52] L.A. Wood, The use of dew-point temperature in humidity calculations, Journal of Research of the National Bureau of Standards–C. Engineering and Instrumentation C, 74 (1970) 117-122.
[53] G.S. Patience, Experimental methods and instrumentation for chemical engineers, 1st ed. ed., Elsevier, Waltham MA, 2013.
[54] 羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹–SEM, 小奈米大世界, (2003).
[55] S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, (Photo)catalyst Characterization Techniques, 2019, pp. 87-152.
[56] P.F. McMillan, Raman Spectroscopy in Mineralogy and Geochemistry, Annual Review of Earth and Planetary Sciences, 17 (1989) 255-279.
[57] P.F. McMillan, A.M. Hofmeister, Chapter 4. INFRARED AND RAMAN SPECTROSCOPY, in: C.H. Frank (Ed.) Spectroscopic Methods in Mineralogy and Geology, De Gruyter2018, pp. 99-160.
[58] S.H. Kim, J.S. Cha, Y.S. Jeon, B.C. Park, M.C. Shin, J.K. Song, Y.K. Kim, Catalytic activity of vanadium oxide catalysts prepared by electrodeposition for the selective catalytic reduction of nitrogen oxides with ammonia, React. Kinet. Mech. Catal., 118 (2016) 633-641.
[59] D.W. Kwon, K.H. Park, S.C. Hong, The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method, Appl. Catal. A-Gen., 451 (2013) 227-235.
[60] Y. Qiu, B. Liu, J. Du, Q. Tang, Z.H. Liu, R.L. Liu, C.Y. Tao, The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR, Chem. Eng. J., 294 (2016) 264-272.
[61] Z.Q. Tan, G.P. Niu, Q. Qi, M.W. Zhou, B.H. Wu, W. Yao, Ultralow Emission of Dust, SOx, HCl, and NOx Using a Ceramic Catalytic Filter Tube, Energy Fuels, 34 (2020) 4173-4182.
[62] L. Lang, H.Y. Zhu, Y.N. Ding, X.L. Yin, C.Z. Wu, X. Yu, A.V. Bridgwater, Mini-Review on Hot Gas Filtration in Biomass Gasification: Focusing on Ceramic Filter Candles, Energy Fuels, 35 (2021) 11800-11819.
電子全文 電子全文(網際網路公開日期:20250902)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top