跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡哲瑋
研究生(外文):HU,ZHE-WEI
論文名稱:探索Al2O3/Ti/Al2O3/Ti太陽能選擇性吸收膜對斜向入射和表面粗糙度的光學特性
論文名稱(外文):Explore the Optical Properties of Al2O3/Ti/Al2O3/Ti Solar Selective Abosrbers on Oblique Incidence and Surface Roughness
指導教授:賴富德
指導教授(外文):Lai,Fu-Der
口試委員:黃繼遠賴富德梁財春花瑞銘
口試委員(外文):HUANG,CHI-YUANLai,Fu-DerLIANG,TSAIR-CHUNHUA,JUI-MING
口試日期:2022-01-04
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:69
中文關鍵詞:太陽光熱選擇性吸收膜斜向入射表面粗糙度
外文關鍵詞:TitaniumSolar Absorption FilmOblique IncidenceSurface Roughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用的材料為鈦(Titanium, Ti) 來當作太陽能吸熱膜的吸收膜層,太陽能吸熱膜膜層結構為Al2O3/Ti/Al2O3/Ti濺鍍於基板上,基板材料選用矽基板與不鏽鋼基板。
本論文實驗之試片皆以本實驗室自有之反應式磁控濺鍍系統(Reactive Magnetron Sputtering System) 配合複合式光學摹擬軟體計算最佳效率和膜厚以及使用退火爐對樣品進行熱處理。
本研究最佳結果為厚度[68nm/12nm/72nm/180nm]與顏色為黃色之吸熱膜其光熱轉換效率達到95.69%,粗糙度方面使用220目砂紙與鏡面來做比較發現其效率變化不大但在肉眼與反射光上顏色變化比鏡面來的小,而在斜向入射中入射角度在15度時光熱轉換效率達到90%以上,當入射角度在30度時光熱轉換效率達到88%以上,與入射角度在45度時光熱轉換效率達到82%以上,當入射角度在60度時光熱轉換效率達到63%以上,而在最大入射角度75度中光熱轉換效率是達到35%以上。

The material used in this study is titanium (TI) as the absorption film of solar heat absorption film. The structure of solar heat absorption film is Al2O3 / Ti / Al2O3 / Ti deposited on the substrate.
The substrate materials are silicon substrate and stainless steel substrate. The test pieces in this paper are calculated by the reactive magnetron sputtering system owned by our laboratory and the composite optical simulation software, and the samples are heat treated in an annealing furnace.
The best result of this study is that the thickness [68nm / 12nm / 72nm/180nm] and color of the Yellow endothermic film have a photothermal conversion efficiency of 95.69%. In terms of roughness, 220 mesh sandpaper is used to compare with the mirror. It is found that the efficiency has little change, but the color change in the naked eye and reflected light is smaller than that in the mirror. In oblique incidence, the efficiency reaches more than 90% at 15 degrees, When the incident angle is 30 degrees, the efficiency reaches more than 88%, and when the incident angle is 45 degrees, the efficiency reaches more than 82%. When the incident angle is 60 degrees, the reaches more than 63%, while in the maximum incident angle of 75 degrees, the efficiency reaches more than 35%.

中文摘要 I
ABSTRACT II
誌謝 III
第一章、緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 3
第二章、文獻探討 4
2.1 太陽能集熱器簡介 4
2.1.1太陽能(Solar Energy) 4
2.1.2平板型太陽熱能集熱器(Flat-Plate Collector) 5
2.2太陽能選擇性吸收膜原理 6
2.2.1太陽能選擇性吸收膜介紹 6
2.2.2太陽能選擇性吸收膜表面之光學特性 7
2.2.3太陽能選擇性吸收結構類型 8
2.3 反應式磁控濺鍍技術 9
2.3.1電漿 9
2.3.2反應式磁控濺鍍 11
第三章、實驗流程與儀器介紹 12
3.1 實驗規劃 12
3.1.1太陽能選擇性吸收膜結構設計 12
3.1.2最佳率之吸收膜厚度摹擬 13
3.1.3各基板粗糙度之如何判斷應選擇之光型 13
3.1.4鍍膜參數 15
3.1.5試片製作流程 16
3.1.6試片量測與測試 18
3.2 實驗材料 19
3.3 實驗設備與量測儀器 20
3.3.1 反應式磁控濺鍍系統 20
3.3.2 熱退火系統 21
3.3.3 高解析掃描式電子顯微鏡 22
3.3.4 紫外光/可見光光譜儀(U.V/VIS) 23
3.3.5 高強度多功能X光薄膜微區繞射儀(Multipurpose High Intensity X-Ray Thin-Film Micro Area Diffractometer) 24
3.3.6 傅利葉轉換紅外線光譜儀(FTIR) 24
第四章、結果與討論 25
4.1 最佳效率模擬結果 25
4.2 CIE模擬效率91%以上色域標點 27
4.3 CIE色彩高效率吸收膜製作之結果 30
4.3.1 CIE色彩吸收膜 30
4.3.2 CIE色彩吸收膜表面研磨處理 33
4.4 彩色選擇性吸收膜斜向入射模擬結果 36
4.5 高效率吸收膜退火與量測 39
4.5.1高效率吸收膜光譜量測 39
4.5.2高效率吸收膜XRD 42
4.5.3高效率吸收膜FTIR 45
4.5.4高效率吸收膜SEM 48
4.6 太陽能選擇性吸收膜角度顏色變化 51
4.7 不同砂紙研磨表面之變化 58
4.7.1各目數砂紙表面狀態 58
4.7.2 最佳效率鍍膜於各粗糙度之表面量測表面樣貌與反射光譜 61
第五章、結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
參考文獻 67

1.能源轉型,打造綠能科技島—綠能科技產業創新推動方案,行政院全球資訊網,https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/f0c0d485-a977-40cc-aeab-5e19e210fd85 ,2018。
2.能源轉型白皮書(核定本),經濟部能源局,P1-117,2020。
3.OTING William Kamis Avellino, Fridah Mwarania, AL-HASSAN Abdul Wahab,and KPATINDE Talagbe Aime, “Uganda Solar Energy Utilization: Current Status and Future Trends”, International Journal of Scientific and Research Publications, Volume 8, Issue 3, P.7547,2018.
4.楊松偉,以電漿濺鍍技術製備太陽能選擇性吸收膜之研究,中國文化大學材料科學與製造研究所,碩士論文,2001。
5.Z. C. Orel and M. K. Gunde, “Solar Energy Mater Solar Cells” , Vol. 68, p.337,2001.
6.Z. C. Orel, M. K. Gunde, A. Lencek, and N. Benz, “Solar Energy”,Vol.69, P.131, 2000.
7.A. Wazawaz, J. Aalmi, H. Hallak, and R. Bes, “Renewable Energy”, Vol.27 , P. 227, 2002.
8.V. Moise, R. Cloots, and A. Mulmont, “International Journal of Inorganic Materials”, Vol. 3, P.1323, 2001.
9.C. Anandan, V. K. William Grips, K. S. Rajam, V. Jayaram, and P. Bera, “Applied Surface Science”, Vol.191, P. 254, 2002
10.P. lsakson, “Flat Plate Thermal Solar Collectors”, Byggforskningsrådet, 1980.
11.T.J. Hsueh, C.L. Hsu, S.J. Chang, P.W. Guo, J.H. Hsieh ,and I.C. Chen, “Cu2O/n-ZnO Nanowire Solar Cells on ZnO:Ga/Glass Templates”, Scripta Materialia, Vol.57, 2007.
12.H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO Film Deposition Conditions on the Photovoltaic Properties of AZO-Cu2O Hetero Junctions”, Appl. Surf. Sci., Vol.244, 2005.
13.H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Electrical and Optical Properties of TCO-Cu2O Hetero Junction Devices”, Thin Solid Films, Vol.469, 2004.
14.M. Izaki, T. Shinagawa, K.T. Mizuno, Y. Ida, M. Inaba ,and A. Tasaka, “Electrochemically Constructed p-Cu2O/n-ZnO Hetero Junction Diode for Photovoltaic Device”, J. Phys. D: Appl. Phys., Vol.40 , 2007.
15.E. Zayed, H. Elsheikh, F.A. Essa, Ahmed Mohamed Elbanna, Wenjia Li,and Jun Zhao, “High-Temperature Solar Selective Absorbing Coatings for Concentrated Solar Power”, Sustainable Materials and Green Processing for Energy Conversion, Elsevier,1, P.361-398, 2021.
16.H.C. Barshiliaa, N. Selvakumar, K.S. Rajam, and A. Biswas, “Spectrally Selective NbAlN/NbAlON/Si3N4 Tandem Absorber for High-Temperature Solar Applications,” Solar Energy Materials and Solar Cells, Vol. 92, P.495-504, 2008.
17.Q.C. Zhang, “Metal-AlN Cermet Selective Surface Deposited by Direct Current Magnetron Sputtering Technology,” J. Physics D:Appl. Phys. Vol. 31, P. 335-362, 1988.
18.H. Ihara, S. Ebisawa, and I. Itoh, Proc. 7th Int. Vac. Gong., 3rd Int. Conf. On Solid Surfaces, P. 1813, 1977.
19.R. Blickensderfer, “Metal Oxycarbonitride Solar Absorbers,” Proc. DOEIDST Thermal Power System Workshop on Selective Absorber Coatings, SERIITP-31-061, P. 371, 1977.
20.J.C.C. Fan and S. A. Spura, “Selective Black Absorbers Using RF Sputtered Cr~Oz/Cr Cermet Films,” Appl. Phys. Lett. Vol. 30, P. 513, 1977.
21.A. Antonaia, A. Castaldo, M.L. Addonizio, and S. Esposito, “Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature,” Solar Energy Materials and Solar Cells, Vol. 94, P. 1604-1611, 2010.
22.S. Esposito, A. Antonaia, M.L. Addonizio, and S. Aprea, “Fabrication and Optimisation of Highly Efficient Cermet-based Spectrally Selective Coatings for High Operating Temperature,” Thin Solid Films, Vol. 517, P. 6000-6006, 2009.
23.D. Xinkang, W. Cong, W. Tianmin, Z. Long, C. Buliang, and R. Ning, “Microstructure and Spectral Selectivity of Mo–Al2O3 Solar Selective Absorbing Coatings after Annealing,” Thin Solid Films, Vol. 516, P. 3971-3977, 2008.
24.Wei-Xi Zhou, Yan Shen, Er-Tao Hu, Yuan Zhao, Ming-Yu Sheng, Yu-Xiang, Zheng, Song-You Wang, Young-Pak Lee, Cai-Zhuang Wang, David W. Lynch, and Liang-Yao Chen1, “Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability,” Optics Express, Vol. 20, pp.28953-28962, 2012.
25.L. Hao, M. Du, S.M. Wang, L.J. Jiang, L. Fang, Z.N. Li, and J. Mi, “Thermal Stability of Nitride Solar Selective Absorbing Coatings Used in High Temperature Parabolic Trough Current,” Science China Technological Sciences, Vol. 53, P. 1507-1512, 2010.
26.L. Hao, S.M. Wang, L.J. Jiang, X.P. Liu, H.L. Li, and Z.N. Li, “Preparation and Thermal Stability on Non-vacuum High Temperature Solar Selective Absorbing Coatings,” Chinese Science Bulletin, Vol. 58, P. 1451-1454, 2009.
27.N. Selvakumar, H.C. Barshiliaa, K.S. Rajam, and A. Biswas, “Spectrally Selective TiAlN/CrAlON/Si3N4 Tandem Absorber for High Temperature Solar Applications,” Renewable Energy and Environment for Sustainable Development, Vol. 58, P.469-477, 2008.
28.楊德仁,太陽能電池材料,五南圖書出版股份有限公司,台北,2008。
29.莊瑞誠、楊岳霖、張秉宏,“太陽能高溫選擇性吸收膜發展現況”,化工技術月刊,3月號,2013。
30.G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård, “Optical, Thermal and Structural Characteristics of Carbon Nanoparticles Embedded in ZnO and NiO as Selective Solar Absorbers,” Solar Energy Materials & Solar Cells, Vol. 92, No. 10, P. 1285-1292, 2008.
31.C.E. Kennedy, “Review of Mid-to-high Temperature Solar Selective Absorber Materials,” Nati. Rene. Energy Lab., 2002.
32.王宇宙,“SiO2/Ti/SiO2太陽能選擇性吸收膜之光學摹擬、最佳化設計與製作”,碩士論文,國立高雄第一科技大學光電工程研究所,高雄,2009。
33.M. Ohring, “The Materials Science of Thin Films,” Academic Press, New Jersey, P. 107, 1992.
34.蔡宜蓁,“以反應式磁控濺鍍沉積AZO透明導電膜之特性研究”,碩士論文,大同大學材料工程研究所,台北,2007。
35.Donald L. Smith “Thin-Film Desposition Priciples and Practive” , The McGraw-Hill Companies, nc. P. 157, 1999.

電子全文 電子全文(網際網路公開日期:20270121)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top