跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊璋
研究生(外文):Wu, Jun-Zhang
論文名稱:微機電聲學感測模組之研究
論文名稱(外文):Simulation Study of Acoustic Sensing Module
指導教授:高宗達
指導教授(外文):Kao, Tzung-Ta
口試委員:葉蕙溱林裕城高宗達
口試委員(外文):Yeh, Hui-ChenLin, Yu-ChengKao, Tzung-Ta
口試日期:2022-07-29
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:69
中文關鍵詞:MEMS聲學感測聲學號角機械靈敏度
外文關鍵詞:MEMSAcoustic sensingAcoustic hornMechanical sensitivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著台灣的半導體產業鏈蓬勃發展,也在國際上廣為人知,但對於微機電這類型的整合系統相對較少;若以韓國三星企業來做舉例,三星小至晶片、記憶卡、硬碟,大到手機平板、家用電器都可以一條龍服務完成生產,可見其效率之高,同時也為三星企業贏得了不少優勢,但也離不開 MEMS 領域的技術,所以台灣的MEMS領域,還有很大的進步空間。
本研究提出了一種新型微機電聲學感測系統,參考國研院台灣半導體研究中心提供學術界使用的TSMC 0.35 μm mixed-signal 2P4M(D35)為範本進行設計,將感測器結構與彈簧結構整合於單一膜片上,製程規定膜片必須為1.5 mm x 1.5 mm之方形外框,厚度為 6400 Ångström,分別設計出雙螺旋形彈簧 10 µm、雙螺旋形彈簧 100 µm、Z形彈簧及雙 Z形彈簧四種彈簧膜片,同時建立聲學號角與阻抗板模形,以提升聲壓訊號,並以國家高速網路與計算中心所提供的有限元素分析軟體進行機械靈敏度分析。
由實驗結果得知,當聲波進入號角時,由於號角頸部開口被阻抗板縮小,導致空氣分子會大量聚集在號角頸部,此時空氣分子速度降低 ,轉變成提升聲壓,當膜片被提升後的聲壓觸及時,造成靈敏度增加,本論文成功設計出具有較高的機械靈敏度412 nm/Pa之聲學感測器,藉此證明CMOS-MEMS 標準製程應用於聲學感測之可行性。

With the vigorous development of Taiwan's semiconductor industry chain, it is also widely known internationally, but there are relatively few integrated systems of this type. Mobile phones, tablets, and household appliances can be produced through one-stop service. It can be seen that its efficiency is high, and it has also won many advantages for Samsung companies. However, it is also inseparable from the technology in the MEMS field. Big room for improvement.
In this study, a new type of MEMS acoustic sensing system is proposed. The design is based on the TSMC 0.35 μm mixed-signal 2P4M (D35) used by the academic community provided by the Taiwan Semiconductor Research Center of the National Academy of Sci-ences. The sensor structure is integrated with the spring structure. On a single diaphragm, the process stipulates that the diaphragm must be a square frame of 1.5 mm x 1.5 mm, with a thickness of 6400 Ångström. The double helical spring 10 µm, the double helical spring 100 µm, the Z spring and the double Z spring are designed respectively. Four kinds of spring diaphragms are used, and the acoustic horn and impedance plate model are estab-lished at the same time to improve the sound pressure signal, and the mechanical sensitivity analysis is carried out with the finite element analysis software ANSYS provided by the National High-speed Network and Computing Center.
Known from the experimental results , When the sound wave enters the horn, since the opening of the horn neck is reduced by the impedance plate, a large number of air molecules will gather in the neck of the horn. At this time, the speed of the air molecules is reduced, which is converted into an increased sound pressure. When the diaphragm is lifted, the sound pressure When touched, the sensitivity increases. This paper successfully designs an acoustic sensor with a high mechanical sensitivity of 412 nm/Pa, thereby proving the feasibility of applying the CMOS-MEMS standard process to acoustic sensing.

Keywords : MEMS、Acoustic sensing、 Acoustic horn、 Mechanical sensitivity

摘要 i
致謝 ii
目錄 iii
表目錄 v
圖目錄 vi
一、緒論 1
1.1 前言 1
1.2 文獻回顧 5
1.3 研究動機 14
1.4 論文架構 15
二、理論分析 16
2.1 聲學理論 16
2.1.1 聲學原理概述 16
2.1.2 聲波傳遞 16
2.2 基本聲學 16
2.3 聲強與聲壓級 17
2.4 聲波阻抗方程式與推導 17
2.5 機械靈敏度 20
2.6 楊氏係數 21
2.7 浦松比 21
2.8 振動分析 22
2.9 阻抗分析 24
三、研究方法步驟與元件設計 25
3.1 實驗規劃 25
3.2 有限元基本概念 26
3.2.1 元素 26
3.2.2 節點 26
3.2.3 自由度 26
3.2.4 網格生成系統 26
3.3 有限元素分析法 26
3.3.1 有限元素分析法簡介 26
3.3.2 元件設計 27
3.3.3 模擬分析測試 33
3.3.4 收斂分析 40
四、結果與討論 49
4.1 膜片模態分析比較 49
4.2 聲壓頻率響應分析 54
4.3 聲學感測器靈敏度分析 59
五、結論 65
5.1 結論 65
5.2 未來研究建議 67
參考文獻 68


[1]S. B. Sedaghat, B. A. Ganji, and R. Ansari (2018). "Design and modeling of a frog-shape MEMS capacitive microphone using SOI technology." Microsystem Technologies 24(2): 1061-1070.
[2]M. Guo et al. (2021). "Ultrahigh Sensitivity Fiber-Optic Fabry–Perot Interferometric Acoustic Sensor Based on Silicon Cantilever." IEEE Transactions on Instrµmentation and Measurement 70: 1-8.
[3]J. Ahmadnejad, B. A. Ganji, and A. Nemati (2013). Design, analysis, and modelling of a MEMS capacitive microphone for integration into CMOS circuits. 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), IEEE.
[4]X. Li et al. (2018). "A heat-resistance and high-sensitivity acoustic pressure sensor based on alµminµm-polyimide diaphragm." Sensors and Actuators A: Physical 279: 75-78.
[5]Y. Chen, H. Liu, M. Reilly, H. Bae, and M. Yu (2014). "Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials." Nature communications 5(1): 1-9.
[6]D. M. Donskoy and B. A. Cray (2011). "Horns as particle velocity amplifiers." The Journal of the Acoustical Society of America 130(5): EL311-EL315.
[7]Z. Gong et al. (2021). "A Miniature Fiber-Optic Silicon Cantilever-Based Acoustic Sensor Using Ultra-High Speed Spectrµm Demodulation." IEEE Sensors Journal 21(18): 20086-20091.
[8]Z. Hongkun and H. Lianjin (2013). Influence of acoustic horn on vector sensor's sensitivity. 2013 Fifth International Conference on Measuring Technology and Mechatronics Automation, IEEE.
[9]J. Walker, D. Halliday, and R. Resnick (2018). Principles of Physics.
[10]K. Wang, S. Guo, and M. Wang (2021). Finite Element Simulation and Shape Optimization of Acoustic Horn. Journal of Physics: Conference Series, IOP Publishing.
[11]P. Fan et al. (2020). "High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm." Optics Express 28(17): 25238-25249.
[12]陳加揚 (2015)。聲學感測器讀取電路之探討。碩士論文,國立高雄應用科技大學。
[13]J. Lewis (2012). "Understanding microphone sensitivity." Analog Dialogue 46(2): 14-16.
[14]莊曜維 (2012)。立體振膜式微機電聲學號角製作。碩士論文,國立暨南國際大學。
[15]W. Wang, R. Lin, Q. Zou, and X. Li (2003). "Modeling and characterization of a silicon condenser microphone." Journal of micromechanics microengineering 14(3): 403-409.
[16]R. Elliott. (2010). "Deflection of beams." from http://www.clag.org.uk/beam.html.
[17]J. X. Zhang and K. Hoshino (2019). "Mechanical transducers: Cantilevers, acoustic wave sensors, and thermal sensors." Molecular Sensors and Nanodevices; Elsevier: Amsterdam: 311-412.
[18]李易 (2011)。材料力學頂極複習攻略,考用出版社。
[19]J. Rychlewski (1984). "On Hooke's law." Journal of Applied Mathematics and Mechanics 48(3): 303-314.
[20]姚賀騰 (2019)。iEM工程數學 (第二版),全華圖書。
[21]D. K. Parsediya, J. Singh, and P. K. Kankar (2014). "Simulation and analysis of highly sensitive MEMS cantilever designs for “in vivo label free” biosensing." Procedia Technology 14: 85-92.
[22]H. Mevada and D. Patel (2016). "Experimental determination of structural damping of different materials." Procedia Engineering 144: 110-115.
[23]陳艷霞 (2018)。ANSYS Workbench 18.0 有限元分析從入門到精通 (聲級板),電子工業出版社。
[24]許貿晴 (2021)。微機電聲波感測器之研究。碩士論文,國立高雄科技大學。
[25]S. Shubham¹ and M. Nawaz¹ (2018). "Analysis of Mechanical Sensitivity of MEMS Pressure Diaphragm for contact formation." Knowles Corporation: 4-6.
[26]B. Liu et al. (2018). "An optical fiber Fabry-Perot microphone based on corrugated silver diaphragm." EEE Transactions on Instrµmentation and Measurement 67(8): 1994-2000.


電子全文 電子全文(網際網路公開日期:20270904)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top