|
[1]D. Qiu et al., “Machine Reading Comprehension Using Structural Knowledge Graph-aware Network,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, Nov. 2019, pp. 5896–5901. doi: 10.18653/v1/D19-1602.
[2]A. Trischler et al., “NewsQA: A Machine Comprehension Dataset,” arXiv:1611.09830 [cs], Feb. 2017, Accessed: Dec. 21, 2021. [Online]. Available: http://arxiv.org/abs/1611.09830
[3]P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ Questions for Machine Comprehension of Text,” 2016. doi: 10.18653/v1/D16-1264.
[4]O. Levy, M. Seo, E. Choi, and L. Zettlemoyer, “Zero-Shot Relation Extraction via Reading Comprehension,” arXiv:1706.04115 [cs], Jun. 2017, Accessed: Dec. 21, 2021. [Online]. Available: http://arxiv.org/abs/1706.04115
[5]B. Roth, C. Conforti, N. Poerner, S. Karn, and H. Schütze, “Neural Architectures for Open-Type Relation Argument Extraction,” Nat. Lang. Eng., vol. 25, no. 2, pp. 219–238, Mar. 2019, doi: 10.1017/S1351324918000451.
[6]D. Li, B. Hu, Q. Chen, W. Peng, and A. Wang, “Towards Medical Machine Reading Comprehension with Structural Knowledge and Plain Text,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, Nov. 2020, pp. 1427–1438. doi: 10.18653/v1/2020.emnlp-main.111.
[7]Y. Liu, T. Yang, Z. You, W. Fan, and P. S. Yu, “Commonsense Evidence Generation and Injection in Reading Comprehension,” arXiv:2005.05240 [cs], May 2020, Accessed: Dec. 22, 2021. [Online]. Available: http://arxiv.org/abs/2005.05240
[8]M. T. Maybury, “Generating summaries from event data,” Information Processing & Management, vol. 31, no. 5, pp. 735–751, Sep. 1995, doi: 10.1016/0306-4573(95)00025-C.
[9]M. Gambhir and V. Gupta, “Recent automatic text summarization techniques: a survey,” Artif Intell Rev, vol. 47, no. 1, pp. 1–66, Jan. 2017, doi: 10.1007/s10462-016-9475-9.
[10]W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed, “Automatic text summarization: A comprehensive survey,” Expert Systems with Applications, vol. 165, p. 113679, 2021.
[11]J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.
[12]Robertson, Stephen E., Steve Walker, Susan Jones, Micheline Hancock-Beaulieu and Mike Gatford, “Okapi at TREC-3.” TREC (1994), https://www.semanticscholar.org/paper/Okapi-at-TREC-3-Robertson-Walker/d2071c1e4a6030dc0005dbfeefdd196a8b293e84
[13]R. Nogueira, Z. Jiang, and J. Lin, “Document Ranking with a Pretrained Sequence-to-Sequence Model,” arXiv:2003.06713 [cs], Mar. 2020, Accessed: Dec. 23, 2021. [Online]. Available: http://arxiv.org/abs/2003.06713
[14]C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,” arXiv:1910.10683 [cs, stat], Jul. 2020, Accessed: Dec. 23, 2021. [Online]. Available: http://arxiv.org/abs/1910.10683
[15]A. Chauhan and Y. Hasija, “NLP-Based Tools for Decoding the Language of Life,” in Proceedings of Emerging Trends and Technologies on Intelligent Systems, Singapore, 2022, pp. 217–233. doi: 10.1007/978-981-16-3097-2_18.
[16]F. N. A. Al Omran and C. Treude, “Choosing an NLP Library for Analyzing Software Documentation: A Systematic Literature Review and a Series of Experiments,” in 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), May 2017, pp. 187–197. doi: 10.1109/MSR.2017.42.
[17]“spaCy • Industrial-strength Natural Language Processing in Python.” https://spacy.io/ (accessed Dec. 22, 2021).
[18]“Announcing SyntaxNet: The World’s Most Accurate Parser Goes Open Source,” Google AI Blog. http://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html (accessed Dec. 22, 2021).
[19]E. Partalidou, E. Spyromitros-Xioufis, S. Doropoulos, S. Vologiannidis, and K. I. Diamantaras, “Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy,” in 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Oct. 2019, pp. 337–341.
[20]Chin-Yew Lin, “ROUGE: A Package for Automatic Evaluation of Summaries”, 2004, In Text Summarization Branches Out, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.
[21]Daniel Jurafsky & James H. Martin, “Speech and Language Processing Chapter.14 Dependency Parsing”, 2021, https://web.stanford.edu/~jurafsky/slp3/14.pdf
[22]Louis Teo, “The Secret Guide To Human-Like Text Summarization”, July 15, 2021, Retrieved from https://www.topbots.com/guide-to-human-like-text-summarization/?utm_source=ActiveCampaign&utm_medium=email&utm_content=The%20latest%20advances%20in%20text%20summarization%20and%20language%20generation&utm_campaign=Weekly%20Newsletter%2008%2011%202021%20Issue%20248&fbclid=IwAR2RLmWz-g9vSHetb8w9tN8V5LFoeITBBzBFWd0vIA8F9gMqfmC7PZ9Db8Q
[23]Kondalarao Vonteru, NEWS SUMMARY[Dataset], Retrieved from https://www.kaggle.com/datasets/sunnysai12345/news-summary/metadata?resource=download
|