跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉兆泓
研究生(外文):LIOU, JHAO-HONG
論文名稱:新冠肺炎疫情下的學生接受線上學習之轉換意圖研究
論文名稱(外文):A Study on the Switching Intentions of Online Learning for Students under the COVID-19 Pandemic
指導教授:陳世智陳世智引用關係
指導教授(外文):CHEN,SHIH-CHIH
口試委員:洪崇文陳世智洪郁雯張弘毅
口試委員(外文):HUNG, CHUNG-WENCHEN,SHIH-CHIHHUNG,YU-WENCHANG,HUNG-YI
口試日期:2022-06-21
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:88
中文關鍵詞:新冠病毒線上學習解構式計畫行為理論數位能力轉換意圖
外文關鍵詞:COVID-19Online LearningDecomposed Theory of Planned BehaviorDigital CompetenceSwitching Intention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
隨著新冠病毒在全球的肆虐,各國迅速關閉學校以減少疫情傳播,而這項措施對傳統教育來說受到極大的影響。但是,關於疫情影響下,如何改變傳統教育走向線上教育意圖研究才正要起步。因此,本研究探討了在COVID-19大流行的階段,學生對線上學習的接受和轉換意圖,以解構式計劃行為理論探討學生在疫情期間,影響學生使用線上學習和轉換成線上學習意圖之因素。本研究並添加了滿意度、數位能力、知覺COVID-19風險與知覺COVID-19感染力,作為新的影響因子整合到模型中。在樣本蒐集過程,我們利用Google表單進行問卷之發放及回收,針對在疫情期間具有使用線上學習經驗的學生進行資料蒐集,共得到 290份有效樣本。經由偏最小平方法分析後發現相關預測變量同樣充分描述了DTPB的關鍵組成部分。首先,態度、主觀規範、知覺行為控制和知覺風險對轉換意圖皆有顯著影響。第二,感知有用性和滿意度成為學生使用態度的重要解釋的子構面。第三,同學影響成為學生主觀規範最主要的原因。第四,數位能力和促進條件都顯著的影響了學生知覺行為控制。第五,知覺COVID-19風險在五個主要構面路徑系數最大,代表了最為關鍵的影響。最後,本研究主要針對新冠肺炎的大流行中,提供教育工作者和其他教育機構在面對學生從實體授課轉換成為線上學習的過程,提供管理意涵、策略建議與未來研究方向。
As the COVID-19 rages around the world, countries are rapidly closing schools to reduce the spread of the pandemic, a measure that has had a dramatic impact on traditional education. However, research on how to change traditional education toward online educational intentions in the face of the epidemic is just beginning. Therefore, this study examines students' intention to accept and switch to online learning during the COVID-19 pandemic, using Decomposed Theory of Planned Behavior to examine the factors that influenced students' intention to use and switch to online learning during the pandemic. Satisfaction, digital competence, perceived COVID-19 risk, and perceived COVID-19 Infectability were added to the model as new influencing factors. In the sample collection process, we used Google Forms to distribute and collect questionnaires from students who had experience with online learning during the epidemic, and 290 valid samples were obtained. After partial least square analysis, we found that the relevant predictive variables also fully described the key components of DTPB. First, attitude, subjective norm, perceived behavioral control, and perceived risk all had significant effects on Switching Intentions. Second, perceived usefulness and satisfaction became important explanatory subcomponents of students' attitude toward use. Third, peer influence was the most important cause of students' subjective norm. Fourth, both digital competence and facilitation conditions significantly influenced students' perceived behavioral control. Fifth, perceived COVID-19 risk had the largest path coefficients across the five major constructs and represented the most critical influence. Finally, this study focuses on the management implications, strategic recommendations, and future research directions for educators and other education institutions facing the transition of students from physical instruction to online learning in the COVID-19 pandemic.
中文摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
壹、緒論 1
1.1研究背景 1
1.2研究動機及目的 2
1.3研究流程 4
貳、文獻探討 5
2.1線上學習 5
2.2研究的模型理論基礎 5
2.3態度(Attitude)前因探討 8
2.4主觀規範(Subjective Norm)前因探討 10
2.5知覺行為控制(Perceived Behavioral Control)前因探討 12
2.6知覺風險(Perceived COVID-19 Risk) 13
2.7保護動機理論(Protection Motivation Theory)和知覺COVID-19感染力(Perceived COVID-19 Infectability) 13
2.8轉換意圖(Switching Intention) 14
參、研究方法 15
3.1研究假說 15
3.2研究設計 21
3.2.1態度維度之問卷設計 22
3.2.2主觀規範維度之問卷設計 23
3.2.3知覺行為控制維度之問卷設計 24
3.2.4知覺COVID-19感染力之問卷設計 25
3.2.5知覺風險之問卷設計 26
3.2.6轉換意圖之問卷設計 26
3.3研究對象與數據收集 27
3.4研究方法 27
肆、研究結果 29
4.1樣本敘述性統計分析 29
4.2模型信度與效度分析 30
4.2.1信度分析 30
4.2.2效度分析 33
4.3模型假說檢定與路徑分析 37
4.3.1模型構面分析與檢定 37
4.3.2間接效果分析 39
伍、結論與建議 41
5.1研究發現 41
5.2學術意涵 43
5.3實務意涵 44
5.4研究限制與未來研究建議 45
參考文獻 47
附錄一、受測者問卷 68

1.Alsabawy, A. Y., Cater-Steel, A., & Soar, J. (2016). Determinants of perceived usefulness of e-learning systems. Computers in Human Behavior, 64, 843-858.
http://doi.org/10.1016/j.chb.2016.07.065
2.Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in human behavior, 56, 238-256.
http://doi.org/10.1016/j.chb.2015.11.036
3.Akour, I., Alshurideh, M., Al Kurdi, B., Al Ali, A., & Salloum, S. (2021). Using machine learning algorithms to predict people’s intention to use mobile learning platforms during the COVID-19 pandemic: machine learning approach. JMIR Medical Education,7(1), e24032. https://doi.org/10.2196/24032
4.Anandarajan, M., Igbaria, M., & Anakwe, U. P. (2002). IT acceptance in a less-developed country: a motivational factor perspective. International Journal of Information Management, 22(1), 47-65.
https://doi.org/10.1016/S0268-4012(01)00040-8
5.Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations. https://doi.org/10.5771/9783845291666-29
6.Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin,84(5), 888.
https://doi.org/10.1037/0033-2909.84.5.888
7.Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-69746-3_2
8.Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
https://doi.org/10.1016/0749-5978(91)90020-T
9.Ajzen, I., & Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of Experimental Social Psychology, 22(5), 453-474. https://doi.org/10.1016/0022-1031(86)90045-4
10.Alqasa, K. M., Mohd Isa, F., Othman, S. N., & Zolait, A. H. S. (2014). The impact of students’ attitude and subjective norm on the behavioural intention to use services of banking system. International journal of business information systems, 15(1), 105-122. https://doi.org/10.1504/IJBIS.2014.057967
11.Arbaugh, J. B. (2000). Virtual classroom characteristics and student satisfaction with internet-based MBA courses. Journal of management education, 24(1), 32-54.
https://doi.org/10.1177/105256290002400104
12.Aguti, B., Wills, G. B., & Walters, R. J. (2014, November). An evaluation of the factors that impact on the effectiveness of blended e-learning within universities. In International conference on information society (i-Society 2014) (pp. 117-121). IEEE. https://doi.org/10.1109/i-Society.2014.7009023
13.Asadi, S., Nilashi, M., Husin, A. R. C., & Yadegaridehkordi, E. (2017). Customers perspectives on adoption of cloud computing in banking sector. Information Technology and Management, 18(4), 305-330.
https://doi.org/10.1007/s10799-016-0270-8
14.Aguilera-Hermida, A. P. (2020). College students’ use and acceptance of emergency online learning due to COVID-19. International Journal of Educational Research Open, 1, 100011. https://doi.org/10.1016/j.ijedro.2020.100011
15.Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in human behavior, 56, 238-256.
https://doi.org/10.1016/j.chb.2015.11.036
16.Asadi, S., Nilashi, M., Safaei, M., Abdullah, R., Saeed, F., Yadegaridehkordi, E., & Samad, S. (2019). Investigating factors influencing decision-makers’ intention to adopt Green IT in Malaysian manufacturing industry. Resources, Conservation and Recycling, 148, 36-54. https://doi.org/10.1016/j.resconrec.2019.04.028
17.Aji, H. M., Berakon, I., & Md Husin, M. (2020). COVID-19 and e-wallet usage intention: A multigroup analysis between Indonesia and Malaysia. Cogent Business & Management, 7(1), 1804181. https://doi.org/10.1080/23311975.2020.1804181
18.Alijanzadeh, M., & Harati, T. (2021). The role of social capital in the implementation of social distancing during the COVID-19 pandemic. Asian J. Soc. Health Behav, 4, 45-46. https://doi.org/10.4103/shb.shb_55_20
19.Bao, W. (2020). COVID‐19 and online teaching in higher education: A case study of Peking University. Human behavior and emerging technologies, 2(2), 113-115.
https://doi.org/10.1002/hbe2.191
20.Bauer, R. A. (1960). Consumer behavior as risk taking. In Proceedings of the 43rd National Conference of the American Marketing Assocation, June 15, 16, 17, Chicago, Illinois, 1960. American Marketing Association.
https://doi.org/10.2307/1249125
21.Basantes-Andrade, A., Cabezas-González, M., & Casillas-Martín, S. (2020). Digital competences relationship between gender and generation of university
professors. International Journal on Advanced Science, Engineering and
Information Technology, 10(1), 205-211.
https://doi.org/10.18517/ijaseit.10.1.10806
22.Bansal, H. S., & Taylor, S. F. (1999). The service provider switching model (spsm) a model of consumer switching behavior in the services industry. Journal of service Research, 2(2), 200-218. https://doi.org/10.1177/109467059922007
23.Brancheau, J. C., & Wetherbe, J. C. (1990). The adoption of spreadsheet software: testing innovation diffusion theory in the context of end-user computing.
Information systems research, 1(2), 115-143. https://doi.org/10.1287/isre.1.2.115
24.Baker, E. W., Al‐Gahtani, S. S., & Hubona, G. S. (2007). The effects of gender and age on new technology implementation in a developing country: Testing the theory of planned behavior (TPB). Information Technology & People.
https://doi.org/10.1108/09593840710839798
25.Bhattacherjee, A. (2000). Acceptance of e-commerce services: the case of electronic brokerages. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and humans, 30(4), 411-420. https://doi.org/10.1109/3468.852435
26.Bhattacherjee, A., & Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: a theoretical model and longitudinal test. MIS Quarterly, 28(2), 229–254. https://doi.org/10.2307/25148634
27.Bhattacherjee, A., & Hikmet, N. (2008). Reconceptualizing organizational support and its effect on information technology usage: Evidence from the health care sector. Journal of Computer Information Systems, 48(4), 69-76.
https://doi.org/10.1080/08874417.2008.11646036
28.Bhattacherjee, A., & Sanford, C. (2006). Influence processes for information technology acceptance: An elaboration likelihood model. MIS quarterly, 805-825.
https://doi.org/10.2307/25148755
29.Barkhi, R., & Wallace, L. (2007). The impact of personality type on purchasing decisions in virtual stores. Information Technology and Management, 8(4), 313–330.
https://doi.org/10.1007/s10799-007-0021-y
30.Boss, S. R., Galletta, D. F., Lowry, P. B., Moody, G. D., & Polak, P. (2015). What do systems users have to fear? Using fear appeals to engender threats and fear that motivate protective security behaviors. MIS quarterly, 39(4), 837-864.
https://doi.org/10.25300/MISQ/2015/39.4.5
31.Burns, A. J., Posey, C., Roberts, T. L., & Lowry, P. B. (2017). Examining the relationship of organizational insiders' psychological capital with information security threat and coping appraisals. Computers in Human Behavior, 68, 190-209.
https://doi.org/10.1016/j.chb.2016.11.018
32.Bergdahl, N., Nouri, J., & Fors, U. (2020). Disengagement, engagement and digital skills in technology-enhanced learning. Education and information
technologies, 25(2), 957-983. https://doi.org/10.1007/s10639-019-09998-w
33.Calvani, A., Fini, A., Ranieri, M., & Picci, P. (2012). Are young generations in secondary school digitally competent? A study on Italian teenagers. Computers & Education, 58(2), 797–807. https://doi.org/10.1016/j.compedu.2011.10.004
34.Chang, H.-J. (1998). Korea: The misunderstood crisis. World Development, 26(8), 1555-1561. https://doi.org/10.1016/S0305-750X(98)00057-6
35.Chiu, C. M., Hsu, M. H., Sun, S. Y., Lin, T. C., & Sun, P. C. (2005). Usability, quality, value and e-learning continuance decisions. Computers & Education, 45, 399–416.
https://doi.org/10.1016/j.compedu.2004.06.001
36.Chen, N. S., Lin, K. M., & Kinshuk. (2008). Analyzing users’ satisfaction with e-learning using a negative critical incidents approach. Innovations in Education and Teaching International, 45(2), 115–126.
https://doi.org/10.1080/14703290801950286
37.Chawinga, W. D., & Zozie, P. A. (2016). Increasing access to higher education through open and distance learning: Empirical findings from Mzuzu University, Malawi. International Review of Research in Open and Distributed Learning,17(4), 1-20. https://doi.org/10.19173/irrodl.v17i4.2409
38.Chang, C. T., Hajiyev, J., & Su, C. R. (2017). Examining the students’ behavioral intention to use e-learning in Azerbaijan? The general extended technology acceptance model for e-learning approach. Computers & Education,111, 128-143. https://doi.org/10.1016/j.compedu.2017.04.010
39.Chao, C. M. (2019). Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Frontiers in psychology,10, 1652. https://doi.org/10.3389/fpsyg.2019.01652
40.Calvani, A., Fini, A., Ranieri, M., & Picci, P. (2012). Are young generations in secondary school digitally competent? A study on Italian teenagers. Computers & Education, 58(2), 797-807. https://doi.org/10.1016/j.compedu.2011.10.004
41.Chang, S. C., & Tung, F. C. (2008). An empirical investigation of students' behavioural intentions to use the online learning course websites. British Journal of Educational Technology, 39(1), 71-83.
https://doi.org/10.1111/j.1467-8535.2007.00742.x
42.Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS quarterly, vii-xvi.
43.Chin, W. W. 1998. “Issues and Opinion on Structural Equation Modeling,” MIS Quarterly Vol. 22 (1), pp. 7-16.
44.Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information systems research, 14(2), 189-217. https://doi.org/10.1287/isre.14.2.189.16018
45.Chu, T. H., & Chen, Y. Y. (2016). With good we become good: Understanding e-learning adoption by theory of planned behavior and group influences.Computers & Education,92, 37-52. https://doi.org/10.1016/j.compedu.2015.09.013
46.Chu, T. H., & Chen, Y. Y. (2016). With good we become good: Understanding e-learning adoption by theory of planned behavior and group influences. Computers & Education, 92, 37-52. https://doi.org/10.1016/j.compedu.2015.09.013
47.Chute, A. G., Hancock, B., & Thompson, M. (1998). The McGraw-Hill Handbook of Distance Learning: A``how to Get Started Guide''for Trainers and Human Resources Professionals. McGraw-Hill, Inc.
48.Cole, M. T., Shelley, D. J., & Swartz, L. B. (2014). Online instruction, e-learning, and student satisfaction: A three year study. The International Review of Research in Open and Distributed Learning, 15(6). https://doi.org/10.19173/irrodl.v15i6.1748
49.Cojocariu, V. M., Lazar, I., Nedeff, V., & Lazar, G. (2014). SWOT anlysis of e-learning educational services from the perspective of their beneficiaries. Procedia-Social and Behavioral Sciences, 116, 1999-2003.
https://doi.org/10.1016/j.sbspro.2014.01.510
50.Clubb, A. C., & Hinkle, J. C. (2015). Protection motivation theory as a theoretical framework for understanding the use of protective measures. Criminal justice studies, 28(3), 336-355. https://doi.org/10.1080/1478601X.2015.1050590
51.Chan, N. N., Walker, C., & Gleaves, A. (2015). An exploration of students' lived experiences of using smartphones in diverse learning contexts using a hermeneutic phenomenological approach. Computers & Education, 82, 96-106.
https://doi.org/10.1016/j.compedu.2014.11.001
52.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
53.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. https://doi.org/10.2307/249008
54.Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
55.Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International journal of man-machine studies, 38(3), 475-487. https://doi.org/10.1006/imms.1993.1022
56.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
57.Doll, W. J., Hendrickson, A., & Deng, X. (1998). Using Davis's perceived usefulness and ease‐of‐use instruments for decision making: a confirmatory and multigroup invariance analysis. Decision sciences, 29(4), 839-869.
https://doi.org/10.1111/j.1540-5915.1998.tb00879.x
58.Donohue, T. L., & Wong, E. H. (1997). Achievement motivation and college satisfaction in traditional and nontraditional students. Education, 118(2), 237-244.
59.Dziuban, C., Moskal, P., Hermsdorfer, A., DeCantis, G., Norberg, A., & Bradford, G. (2015). A Deconstruction of Blended Learning. The 11th Annual Sloan-C Blended Learning Conference and Workshop, Denver, 7-8 July 2015.
60.Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational statistics & data analysis, 81, 10-23. https://doi.org/10.1016/j.csda.2014.07.008
61.Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS quarterly, 39(2), 297-316.
https://doi.org/10.25300/MISQ/2015/39.2.02
62.El-Masri, M., & Tarhini, A. (2017). Factors affecting the adoption of e-learning systems in Qatar and USA: Extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Educational Technology Research and
Development, 65(3), 743-763. https://doi.org/10.1007/s11423-017-9526-1
63.Esterhuyse, M. P., Scholtz, B. M., & Venter, D. (2016). Intention to use and satisfaction of e-learning for training in the corporate context. Interdisciplinary Journal of Information, Knowledge, and Management, 11, 347.
https://doi.org/10.28945/3610
64.Elkaseh, A. M., Wong, K. W., & Fung, C. C. (2016). Perceived ease of use and perceived usefulness of social media for e-learning in Libyan higher education: A structural equation modeling analysis. International Journal of Information and Education Technology, 6(3), 192. https://doi.org/10.7763/IJIET.2016.V6.683
65.El-Gayar, O., Moran, M., & Hawkes, M. (2011). Students' acceptance of tablet PCs and implications for educational institutions. Journal of Educational Technology & Society, 14(2), 58-70. https://www.jstor.org/stable/jeductechsoci.14.2.58
66.Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2).
67.Friman, M., Edvardsson, B., & Gärling, T. (2001). Frequency of negative critical incidents and satisfaction with public transport services. I. Journal of retailing and consumer services, 8(2), 95-104. https://doi.org/10.1016/S0969-6989(00)00003-5
68.Floyd, D. L., Prentice‐Dunn, S., & Rogers, R. W. (2000). A meta‐analysis of research on protection motivation theory. Journal of applied social psychology, 30(2), 407-429. https://doi.org/10.1111/j.1559-1816.2000.tb02323.x
69.Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business research, 56(11), 867-875.
https://doi.org/10.1016/S0148-2963(01)00273-9
70.Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474. https://doi.org/10.1016/S1071-5819(03)00111-3
71.Ferrari, A. (2012). Digital competence in practice: An analysis of frameworks.Sevilla: JRC IPTS, 10, 82116. https://doi.org/10.2791/82116
72.Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Duckworth, D. (2020). Preparing for life in a digital world: IEA international computer and information literacy study 2018 international report (p. 297). Springer Nature.
https://doi.org/10.1007/978-3-030-38781-5
73.Floyd, D. L., Prentice‐Dunn, S., & Rogers, R. W. (2000). A meta‐analysis of research on protection motivation theory. Journal of applied social psychology, 30(2), 407-429. https://doi.org/10.1111/j.1559-1816.2000.tb02323.x
74.Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing research, 19(4), 440-452. https://doi.org/10.2307/3151718
75.Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.2307/3151312
76.Ghorab, K. E. (1997). The impact of technology acceptance considerations on system usage, and adopted level of technological sophistication: An empirical investigation. International Journal of Information Management, 17(4), 249-259. https://doi.org/10.1016/S0268-4012(97)00003-0
77.Gray, K., Chang, S., & Kennedy, G. (2010). Use of social web technologies by international and domestic undergraduate students: implications for internationalising learning and teaching in Australian universities. Technology, Pedagogy and Education, 19(1), 31-46.
https://doi.org/10.1080/14759390903579208
78.Grouws, D. A., & Cebulla, K. J. (2000). Improving Student Achievement in Mathematics. Educational Practices Series--4.
79.Groves, M., Sellars, C., Smith, J., & Barber, A. (2015). Factors affecting student engagement: a case study examining two cohorts of students attending a post-1992 university in the United Kingdom. International Journal of Higher Education, 4(2), 27-37. https://doi.org/10.5430/ijhe.v4n2p27
80.Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review), 31(1) , 2-24.
https://doi.org/10.1108/EBR-11-2018-0203
81.Hair Jr, J. F., Sarstedt, M., Matthews, L. M., & Ringle, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I–method. European Business Review. https://doi.org/10.1108/EBR-09-2015-0094
82.Hammouri, Q., & Abu-Shanab, E. (2018). Exploring factors affecting users' satisfaction toward E-learning systems. International Journal of Information and Communication Technology Education (IJICTE), 14(1), 44-57.
https://doi.org/10.4018/IJICTE.2018010104
83.He, T., Zhu, C., & Questier, F. (2018). Predicting digital informal learning: an empirical study among Chinese University students. Asia Pacific Education Review, 19(1), 79-90. https://doi.org/10.1007/s12564-018-9517-x
84.Hsu, M. K., Wang, S. W., & Chiu, K. K. (2009). Computer attitude, statistics anxiety and self-efficacy on statistical software adoption behavior: An empirical study of online MBA learners. Computers in human behavior, 25(2), 412-420.
https://doi.org/10.1016/j.chb.2008.10.003
85.Huang, F., Teo, T., & Zhou, M. (2020). Chinese students’ intentions to use the Internet-based technology for learning. Educational Technology Research and Development, 68(1), 575-591. https://doi.org/10.1007/s11423-019-09695-y
86.Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic management journal, 20(2), 195-204.
https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
87.Hofstede, G. (2008). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations (2nd ed.). Shanghai: Shanghai Foreign Language Education Press.
88.Hsieh, J. K., Hsieh, Y. C., Chiu, H. C., & Feng, Y. C. (2012). Post-adoption switching behavior for online service substitutes: A perspective of the push–pull–mooring framework. Computers in Human Behavior, 28(5), 1912-1920.
https://doi.org/10.1016/j.chb.2012.05.010
89.Hao, S., Dennen, V. P., & Mei, L. (2017). Influential factors for mobile learning acceptance among Chinese users. Educational Technology Research and Development, 65(1), 101-123. https://doi.org/10.1007/s11423-016-9465-2
90.Hatlevik, O. E., & Christophersen, K.-A. (2013). Digital competence at the beginning of upper secondary school: Identifying factors explaining digital inclusion. Computers & Education, 63(0),240–247.
https://doi.org/10.1016/j.compedu.2012.11.015
91.Hsu, H. H. (2012). The acceptance of Moodle: An empirical study based on UTAUT. Creative Education,3, 44. https://doi.org/10.4236/ce.2012.38B010
92.Hsu, C. L., & Lin, J. C. C. (2016). Effect of perceived value and social influences on mobile app stickiness and in-app purchase intention. Technological Forecasting and Social Change, 108, 42-53. https://doi.org/10.1016/j.techfore.2016.04.012
93.Huang, F., Teo, T., & Zhou, M. (2019). Factors affecting Chinese English as a foreign language teachers’ technology acceptance: A qualitative study. Journal of Educational Computing Research, 57(1), 83-105.
https://doi.org/10.1177/0735633117746168
94.Hodges, C. B., Moore, S., Lockee, B. B., Trust, T., & Bond, M. A. (2020). The difference between emergency remote teaching and online learning.
https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning
95.Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management & data systems.
https://doi.org/10.1108/IMDS-09-2015-0382
96.Huang, W. H. D., & Oh, E. (2016). Retaining disciplinary talents as informal learning outcomes in the digital age: An exploratory framework to engage undergraduate students with career decision-making processes. In Handbook of research on learning outcomes and opportunities in the digital age (pp. 402-420). IGI Global. https://doi.org/10.4018/978-1-4666-9577-1.ch018
97.He, T., & Li, S. (2019). A comparative study of digital informal learning: The effects of digital competence and technology expectancy. British Journal of Educational Technology, 50(4), 1744-1758. https://doi.org/10.1111/bjet.12778
98.Ilyas, A., & Zaman, M. K. (2020). An evaluation of online students’ persistence intentions. Asian Association of Open Universities Journal.
https://doi.org/10.1108/AAOUJ-11-2019-0053
99.Imlawi, J., Gregg, D., & Karimi, J. (2015). Student engagement in course-based social networks: The impact of instructor credibility and use of communication. Computers & Education, 88, 84-96. https://doi.org/10.1016/j.compedu.2015.04.015
100.Ifinedo, P. (2012). Understanding information systems security policy compliance: An integration of the theory of planned behavior and the protection motivation theory. Computers & Security, 31(1), 83-95.
https://doi.org/10.1016/j.cose.2011.10.007
101.Islam, A. N. (2016). E-learning system use and its outcomes: Moderating role of perceived compatibility. Telematics and Informatics, 33(1), 48-55.
https://doi.org/10.1016/j.tele.2015.06.010
102.Janmaimool, P. (2017). Application of protection motivation theory to investigate sustainable waste management behaviors. Sustainability, 9(7), 1079.
https://doi.org/10.3390/su9071079
103.Islami, M. M., Asdar, M., & Baumassepe, A. N. (2021). Analysis of Perceived Usefulness and Perceived Ease of Use to the Actual System Usage through Attitude Using Online Guidance Application. Hasanuddin Journal of Business Strategy, 3(1), 52-64. https://doi.org/10.26487/hjbs.v3i1.410
104.Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS quarterly, 183-213. https://doi.org/10.2307/249751
105.Kim, E. J., Kim, J. J., & Han, S. H. (2021). Understanding student acceptance of online learning systems in higher education: Application of social psychology theories with consideration of user innovativeness. Sustainability,13(2), 896.
https://doi.org/10.3390/su13020896
106.Kassim, N. M., & Ramayah, T. (2015). Perceived risk factors influence on intention to continue using Internet banking among Malaysians. Global Business Review, 16(3), 393-414. https://doi.org/10.1177/0972150915569928
107.Lai, H. M., & Chen, C. P. (2011). Factors influencing secondary school teachers’ adoption of teaching blogs. Computers & Education, 56(4), 948-960.
https://doi.org/10.1016/j.compedu.2010.11.010
108.Lai, C., Wang, Q., & Lei, J. (2012). What factors predict undergraduate students’ use of technology for learning? A case from Hong Kong. Computers & Education, 59(2), 569–579. https://doi.org/10.1016/j.compedu.2012.03.006
109.Lam, T., & Hsu, C. H. C. (2006). Predicting behavioral intention of choosing a travel destination. Tourism Management, 27(4), 589-599.
https://doi.org/10.1016/j.tourman.2005.02.003
110.Lai, C., & Gu, M. (2011). Self-regulated out-of-class language learning with technology. Computer assisted language learning, 24(4), 317-335.
https://doi.org/10.1080/09588221.2011.568417
111.Lin, K. M. (2011). e-Learning continuance intention: Moderating effects of user e-learning experience. Computers & Education, 56(2), 515-526.
https://doi.org/10.1016/j.compedu.2010.09.017
112.Lin, Y. C., Chen, Y. C., & Yeh, R. C. (2010). Understanding college students’ continuing intentions to use multimedia e-learning systems. World Transactions on Engineering and Technology Education, 8(4), 488-493.
113.Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of travel medicine. https://doi.org/10.1093/jtm/taaa021
114.Lin, K. M., Chen, N. S., & Fang, K. T. (2010). Understanding e-learning continuance intention: A negative critical incidents perspective. Behavior & Information Technology. https://doi.org/10.1080/01449291003752948
115.Lewis, W., Agarwal, R., & Sambamurthy, V. (2003). Sources of influence on beliefs about information technology use: An empirical study of knowledge workers. MIS quarterly, 657-678. https://doi.org/10.2307/30036552
116.Lai, C. (2015). Modeling teachers' influence on learners' self-directed use of technology for language learning outside the classroom. Computers & Education, 82, 74-83. https://doi.org/10.1016/j.compedu.2014.11.005
117.Lie, G. Peking University Spring Semester Online Courses. Available online: http://news.pku.edu.cn/xwzh/979e47acd7bf4c9592945323a2292f4d.htm (accessed on 28 April 2020).
118.Liu, J. (2022). From offline learning to online learning: Moderating effect of relationship inertia and satisfaction. Computer Applications in Engineering Education. https://doi.org/10.1002/cae.22511
119.Ma, W. W. K., Andersson, R., & Streith, K. O. (2005). Examining user acceptance of computer technology: An empirical study of student teachers. Journal of computer assisted learning, 21(6), 387-395.
https://doi.org/10.1111/j.1365-2729.2005.00145.x
120.Margaryan, A., & Littlejohn, A. (2008). Repositories and communities at cross‐purposes: issues in sharing and reuse of digital learning resources. Journal of Computer Assisted Learning, 24(4), 333-347.
https://doi.org/10.1111/j.1365-2729.2007.00267.x
121.McGeveran, W., & Fisher, W. (2006). The digital learning challenge: Obstacles to educational uses of copyrighted Material in the Digital Age. Berkman Center Research Publication No. 2006–09. https://doi.org/10.2139/ssrn.923465
122.Mailizar, M., Burg, D., & Maulina, S. (2021). Examining university students’ behavioural intention to use e-learning during the COVID-19 pandemic: An extended TAM model. Education and Information Technologies, 26(6), 7057-7077. https://doi.org/10.1007/s10639-021-10557-5
123.Margaryan, A., & Littlejohn, A. (2008). Repositories and communities at cross‐purposes: issues in sharing and reuse of digital learning resources. Journal of Computer Assisted Learning, 24(4), 333-347.
https://doi.org/10.1111/j.1365-2729.2007.00267.x
124.Mew, L., & Money, W. H. (2011). Effects of computer self efficacy on the use and adoption of online social networking. In Virtual Communities: Concepts,
Methodologies, Tools and Applications (pp. 1145-1161). IGI Global.
https://doi.org/10.4018/978-1-60960-100-3.ch403
125.McCoy, C. W. (2001). The relationship of self-directed learning, technological self-efficacy, and satisfaction of adult learners in a digital learning environment. The University of Alabama.
126.McBrien, J. L., Cheng, R., & Jones, P. (2009). Virtual spaces: Employing a synchronous online classroom to facilitate student engagement in online
learning. International review of research in open and distributed learning, 10(3).
https://doi.org/10.19173/irrodl.v10i3.605
127.Martins, L. L., & Kellermanns, F. W. (2004). A model of business school students' acceptance of a web-based course management system. Academy of Management Learning & Education, 3(1), 7-26. https://doi.org/10.5465/amle.2004.12436815
128.Maser, B., & Weiermair, K. (1998). Travel decision-making: From the vantage point of perceived risk and information preferences. Journal of Travel & Tourism
Marketing, 7(4), 107-121.https://doi.org/10.1300/J073v07n04_06
129.Menard, P., Warkentin, M., & Lowry, P. B. (2018). The impact of collectivism and psychological ownership on protection motivation: A cross-cultural
examination. Computers & Security, 75, 147-166.
https://doi.org/10.1016/j.cose.2018.01.020
130.Mutisya, D. N., & Makokha, G. L. (2016). Challenges affecting adoption of e-learning in public universities in Kenya. E-Learning and Digital Media, 13(3-4), 140-157. https://doi.org/10.1177/2042753016672902
131.Marafon, D. L., Basso, K., Espartel, L. B., de Barcellos, M. D., & Rech, E. (2018). Perceived risk and intention to use internet banking: The effects of self-confidence and risk acceptance. International Journal of Bank Marketing https://doi.org/10.1108/IJBM-11-2016-0166
132.Nicolaou, A. I., Ibrahim, M., & Van Heck, E. (2013). Information quality, trust, and risk perceptions in electronic data exchanges. Decision support systems, 54(2), 986-996. https://doi.org/10.1016/j.dss.2012.10.024
133.Nayak, B., Bhattacharyya, S. S., Goswami, S., & Thakre, S. (2022). Adoption of online education channel during the COVID-19 pandemic and associated economic lockdown: an empirical study from push–pull-mooring framework. Journal of Computers in Education, 9(1), 1-23.
https://doi.org/10.1007/s40692-021-00193-w
134.Ndubisi, N. (2006). Factors of online learning adoption: A comparative juxtaposition of the theory of planned behaviour and the technology acceptance
model. International Journal on E-learning, 5(4), 571-591.
https://www.learntechlib.org/primary/p/6173/
135.Ndubisi, N. O. (2004, July). Factors influencing e-learning adoption intention: Examining the determinant structure of the decomposed theory of planned behaviour constructs. In Proceedings of the 27th Annual Conference of HERDSA (pp. 252-262).
136.NOREEN, M., GHAZALI, Z., & MIA, M. S. (2021). The Impact of Perceived Risk and Trust on Adoption of Mobile Money Services: An Empirical Study in Pakistan. The Journal of Asian Finance, Economics and Business, 8(6), 347-355.
https://doi.org/10.13106/jafeb.2021.vol8.no6.0347
137.Ozili, P. K., & Arun, T. (2020). Spillover of COVID-19: impact on the Global Economy. Available at SSRN 3562570. https://doi.org/10.2139/ssrn.3562570
138.Pedersen, P. E., & Nysveen, H. (2002). Using the theory of planned behavior to explain teenagers' adoption of text messaging services. Agder University College.
139.Prasetyo, Y. T., Castillo, A. M., Salonga, L. J., Sia, J. A., & Seneta, J. A. (2020). Factors affecting perceived effectiveness of COVID-19 prevention measures among Filipinos during enhanced community quarantine in Luzon, Philippines: Integrating Protection Motivation Theory and extended Theory of Planned Behavior. International journal of infectious diseases, 99, 312-323.
https://doi.org/10.1016/j.ijid.2020.07.074
140.Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. The Journal of Marketing, 49, 41–50. https://doi.org/10.2307/1251430
141.Pajo, K., & Wallace, C. (2001). Barriers to the uptake of web-based technology by university teachers. Journal of distance education, 16(1), 70-84.
142.Park, N. (2004). The role of subjective well-being in positive youth development. Annals of the American Academy of Political and Social Science, 591(1), 25-39.
https://doi.org/10.1177/0002716203260078
143.Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology & Society, 12(3), 150-162.
https:/www.jstor.org/stable/jeductechsoci.12.3.150
144.Park, S. Y., Nam, M. W., & Cha, S. B. (2012). University students' behavioral intention to use mobile learning: Evaluating the technology acceptance model. British journal of educational technology, 43(4), 592-605.
https://doi.org/10.1111/j.1467-8535.2011.01229.x
145.Posey, C., Roberts, T. L., & Lowry, P. B. (2015). The impact of organizational commitment on insiders’ motivation to protect organizational information assets. Journal of Management Information Systems, 32(4), 179-214.
https://doi.org/10.1080/07421222.2015.1138374
146.Palvia, S., Aeron, P., Gupta, P., Mahapatra, D., Parida, R., Rosner, R., & Sindhi, S. (2018). Online education: Worldwide status, challenges, trends, and implications. Journal of Global Information Technology Management, 21(4), 233-241. https://doi.org/10.1080/1097198X.2018.1542262
147.Pynoo, B., Devolder, P., Tondeur, J., Van Braak, J., Duyck, W., & Duyck, P. (2011). Predicting secondary school teachers’ acceptance and use of a digital learning environment: A cross-sectional study. Computers in Human behavior, 27(1), 568-575. https://doi.org/10.1016/j.chb.2010.10.005
148.Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1.The journal of psychology,91(1), 93-114.
https://doi.org/10.1080/00223980.1975.9915803
149.Rogers, R. W. (1983). Cognitive and psychological processes in fear appeals and attitude change: A revised theory of protection motivation. Social psychophysiology: A sourcebook, 153-176.
150.Rippetoe, P. A., & Rogers, R. W. (1987). Effects of components of protection-motivation theory on adaptive and maladaptive coping with a health threat. Journal of personality and social psychology, 52(3), 596.
https://doi.org/10.1037/0022-3514.52.3.596
151.Roca, J. C., Chiu, C. M., & Martinez, F. J. (2006). Understanding e-learning continuance intention: an extension of the technology acceptance model. International Journal of Human–Computer Studies, 64, 683–696.
https://doi.org/10.1016/j.ijhcs.2006.01.003
152.Rogers, R. W., & Prentice-Dunn, S. (1997). Protection motivation theory Handbook of Health Behavior Research I: Personal and Social Determinants (Vol. xxvii, pp. 113-132).
153.Ramírez-Correa, P. E., Arenas-Gaitán, J., & Rondán-Cataluña, F. J. (2015). Gender and acceptance of e-learning: a multi-group analysis based on a structural equation model among college students in Chile and Spain. PloS one, 10(10), e0140460. https://doi.org/10.1371/journal.pone.0140460
154.Ringle, C. M., Wende, S., & Becker, J. M. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH, 584.
155.Rittichainuwat, B. N., & Chakraborty, G. (2009). Perceived travel risks regarding terrorism and disease: The case of Thailand. Tourism management, 30(3), 410-418.
https://doi.org/10.1016/j.tourman.2008.08.001
156.Sanchez-Franco, M. J. (2009). The moderating effects of involvement on the relationships between satisfaction, trust and commitment in e-banking. Journal of Interactive Marketing, 23(3), 247-258.
https://doi.org/10.1016/j.intmar.2009.04.007
157.Salloum, S. A., & Shaalan, K. (2018, September). Factors affecting students’ acceptance of e-learning system in higher education using UTAUT and structural equation modeling approaches. In International conference on advanced intelligent systems and informatics (pp. 469-480). Springer, Cham.
https://doi.org/10.1007/978-3-319-99010-1_43
158.Sharma, S. K., Sarrab, M., & Al-Shihi, H. (2017). Development and validation of mobile learning acceptance measure. Interactive Learning Environments, 25(7), 847-858. https://doi.org/10.1080/10494820.2016.1224250
159.Šumak, B., Polancic, G., & Hericko, M. (2010, February). An empirical study of virtual learning environment adoption using UTAUT. In 2010 Second international conference on mobile, hybrid, and on-line learning (pp. 17-22). IEEE.
https://doi.org/10.1109/eLmL.2010.11
160.Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Computers in human behavior, 27(6), 2067-2077.
https://doi.org/10.1016/j.chb.2011.08.005
161.Shih, H. P. (2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information & management, 41(3), 351-368.
https://doi.org/10.1016/S0378-7206(03)00079-X
162.Song, Y., & Kong, S. C. (2017). Investigating students’ acceptance of a statistics learning platform using technology acceptance model. Journal of Educational Computing Research,55(6), 865-897. https://doi.org/10.1177/0735633116688320
163.Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information &
management, 44(1), 90-103. https://doi.org/10.1016/j.im.2006.10.007
164.Selim, H. M. (2007). Critical success factors for e-learning acceptance:
Confirmatory factor models. Computers & education, 49(2), 396-413.
https://doi.org/10.1016/j.compedu.2005.09.004
165.Sahu, P. (2020). Closure of universities due to coronavirus disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus, 12(4). https://doi.org/10.7759/cureus.7541
166.Sintema, E. J. (2020). Effect of COVID-19 on the performance of grade 12 students: Implications for STEM education. Eurasia Journal of Mathematics, Science and Technology Education, 16(7), em1851. https://doi.org/10.29333/ejmste/7893
167.Singh, V., & Thurman, A. (2019). How many ways can we define online learning? A systematic literature review of definitions of online learning (1988-2018).
American Journal of Distance Education, 33(4), 289-306.
https://doi.org/10.1080/08923647.2019.1663082
168.Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Computers in human behavior, 27(6), 2067-2077.
https://doi.org/10.1016/j.chb.2011.08.005
169.Samsudeen, S. N., & Mohamed, R. (2019). University students’ intention to use e-learning systems: A study of higher educational institutions in Sri Lanka. Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-11-2018-0092
170.Sadaf, A., & Gezer, T. (2020). Exploring factors that influence teachers’ intentions to integrate digital literacy using the decomposed theory of planned
behavior. Journal of Digital Learning in Teacher Education, 36(2), 124-145.
https://doi.org/10.1080/21532974.2020.1719244
171.Sadaf, A., Newby, T. J., & Ertmer, P. A. (2012). Exploring factors that predict preservice teachers’ intentions to use Web 2.0 technologies using decomposed theory of planned behavior. Journal of Research on Technology in Education, 45(2), 171-196. https://doi.org/10.1080/15391523.2012.10782602
172.Simamora, R. M., De Fretes, D., Purba, E. D., & Pasaribu, D. (2020). Practices, challenges, and prospects of online learning during Covid-19 pandemic in higher education: Lecturer perspectives. Studies in Learning and Teaching, 1(3), 185-208.
https://doi.org/10.46627/silet.v1i3.45
173.Sugar, W., Crawley, F., & Fine, B. (2004). Examining teachers' decisions to adopt new technology. Journal of Educational Technology & Society, 7(4), 201-213.
https://www.jstor.org/stable/jeductechsoci.7.4.201
174.Teng, Y. M., Wu, K. S., & Liu, H. H. (2015). Integrating altruism and the theory of planned behavior to predict patronage intention of a green hotel. Journal of Hospitality & Tourism Research, 39(3), 299-315.
https://doi.org/10.1177/1096348012471383
175.Taylor, S., & Todd, P. (1995). Understanding information technology usage: A test of competing models. Information Systems Research,6, 144–176.
https://doi.org/10.1287/isre.6.2.144
176.Teo, T., & Huang, F. (2019). Investigating the influence of individually espoused cultural values on teachers’ intentions to use educational technologies in Chinese universities. Interactive Learning Environments, 27(5-6), 813-829.
https://doi.org/10.1080/10494820.2018.1489856
177.Teo, T. (2009). Modelling technology acceptance in education: A study of pre-service teachers. Computers & Education, 52(2), 302-312.
https://doi.org/10.1016/j.compedu.2008.08.006
178.Teo, T., Huang, F., & Hoi, C. K. W. (2018). Explicating the influences that explain intention to use technology among English teachers in China. Interactive Learning Environments, 26(4), 460-475. https://doi.org/10.1080/10494820.2017.1341940
179.Treiblmaier, H., & Chong, S. (2013). Trust and perceived risk of personal information as antecedents of online information disclosure: Results from three countries. In Global Diffusion and Adoption of Technologies for Knowledge and Information Sharing (pp. 341-361). IGI Global.
https://doi.org/10.4018/978-1-4666-2142-8.ch015
180.Teo, T. (2016). Modelling Facebook usage among university students in Thailand: The role of emotional attachment in an extended technology acceptance model. Interactive Learning Environments, 24(4), 745-757.
https://doi.org/10.1080/10494820.2014.917110
181.Tarhini, A., Hone, K., Liu, X., & Tarhini, T. (2017). Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: a structural equation modeling of an extended technology acceptance model. Interactive Learning Environments, 25(3), 306-328.
https://doi.org/10.1080/10494820.2015.1122635
182.Topa, I., & Karyda, M. (2015, September). Identifying factors that influence employees’ security behavior for enhancing ISP compliance. In International
Conference on Trust and Privacy in Digital Business (pp. 169-179). Springer, Cham. https://doi.org/10.1007/978-3-319-22906-5_13
183.Teräs, M., Suoranta, J., Teräs, H., & Curcher, M. (2020). Post-COVID-19 education and education technology ‘solutionism’: A seller’s market. Postdigital Science and Education, 2(3), 863-878. https://doi.org/10.1007/s42438-020-00164-x
184.Tarhini, A., Hone, K., & Liu, X. (2014). The effects of individual differences on e-learning users’ behaviour in developing countries: A structural equation
model. Computers in human behavior, 41, 153-163.
https://doi.org/10.1016/j.chb.2014.09.020
185.Teo, T. (2011). Modeling the determinants of pre‐service teachers' perceived usefulness of e‐learning. Campus-Wide Information Systems.
https://doi.org/10.1108/10650741111117824
186.Tosuntaş, Ş. B., Karadağ, E., & Orhan, S. (2015). The factors affecting acceptance and use of interactive whiteboard within the scope of FATIH project: A structural equation model based on the Unified Theory of acceptance and use of technology. Computers & Education, 81, 169-178.
https://doi.org/10.1016/j.compedu.2014.10.009
187.United Nations International Children’s Emergency Fund (UNICEF). Keeping theWorld’s Children Learning through COVID-19 UNICEF. Available online: https://www.unicef.org/coronavirus/keeping-worlds-children-learning-through-COVID-19 (accessed on 27 April 2020).
188.UNICEF and Microsoft Launch Global Learning Platform to Help Address COVID-19 Education Crisis. Available online: https://www.unicef.org/press-releases/unicef-and-microsoft-launch-global-learning-platform-help-address-COVID-19-education (accessed on 28 April 2020).
189.Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information technology
theory and application, 11(2), 5-40.
190.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view.MIS quarterly, 425-478.
https://doi.org/10.2307/30036540
191.Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178. https://doi.org/10.2307/41410412
192.Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315.
https://doi.org/10.1111/j.1540-5915.2008.00192.x
193.Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
194.Venkatesh, V., & Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS quarterly, 115-139. https://doi.org/10.2307/3250981
195.Van der Heijden, H., Verhagen, T., & Creemers, M. (2003). Understanding online purchase intentions: contributions from technology and trust perspectives. European journal of information systems,12(1), 41-48.
https://doi.org/10.1057/palgrave.ejis.3000445
196.Wang, Y., Wang, Y., Chen, Y., & Qin, Q. (2020). Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. Journal of medical virology, 92(6), 568-576.
https://doi.org/10.1002/jmv.25748
197.Wang, S., Wang, J., & Yang, F. (2020). From willingness to action: Do push-pull-
mooring factors matter for shifting to green transportation?. Transportation Research Part D: Transport and Environment, 79, 102242.
https://doi.org/10.1016/j.trd.2020.102242
198.Wang, Y. S., Wang, H. Y., & Shee, D. Y. (2007). Measuring e-learning systems success in an organizational context: Scale development and validation. Computers in Human Behavior, 23(4), 1792-1808. https://doi.org/10.1016/j.chb.2005.10.006
199.Weerathunga, P. R., Samarathunga, W. H. M. S., Rathnayake, H. N., Agampodi, S. B., Nurunnabi, M., & Madhunimasha, M. M. S. C. (2021). The COVID-19 Pandemic and the Acceptance of E-Learning among University Students: The Role of Precipitating Events. Education Sciences, 11(8), 436.
https://doi.org/10.3390/educsci11080436
200.Xu, D., & Wang, H. (2011). Integration of Knowledge Management and E-Learning. In Encyclopedia of Knowledge Management, Second Edition (pp.442-451). IGI Global. https://doi.org/10.4018/978-1-59904-931-1.ch042
201.Yahoo News. Virus Forced Schools Online, But Many Students Didn’t Follow. Available online: https://news.yahoo.com/virus-forced-schools-online-many-134007269.html(accessed on 30 April 2020).
202.Yang, H. L., & Lin, S. L. (2015). User continuance intention to use cloud storage service. Computers in Human Behavior, 52, 219-232.
https://doi.org/10.1016/j.chb.2015.05.057

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊