|
[1] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, “Quantum internet: Networking challenges in distributed quantum computing”, IEEE Network, vol. 34, no. 1, pp. 137–143, 2020. doi: 10.1109/MNET.001.1900092. [2] M. Caleffi, A. S. Cacciapuoti, and G. Bianchi, “Quantum internet”, Pro- ceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, Sep. 2018. doi: 10.1145/3233188.3233224. [Online]. Available: http://dx.doi.org/10.1145/3233188.3233224. [3] H. J. Kimble, “The quantum internet”, Nature, vol. 453, no. 7198, pp. 1023– 1030, Jun. 2008, issn: 1476-4687. doi: 10.1038/nature07127. [Online]. Available: http://dx.doi.org/10.1038/nature07127. [4] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead”, Science, vol. 362, eaam9288, Oct. 2018. doi: 10.1126/ science.aam9288. [5] J. L. Park, “The concept of transition in quantum mechanics”, Foundations of Physics, vol. 1, no. 1, pp. 23–33, Mar. 1970. doi: 10.1007/BF00708652. [6] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distri- bution and coin tossing”, p. 175, 1984. [7] A. K. Ekert, “Quantum cryptography based on bell’s theorem”, Phys. Rev. Lett., vol. 67, pp. 661–663, 6 Aug. 1991. doi: 10.1103/PhysRevLett. 67.661. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRevLett.67.661. [8] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, and et al., “Advances in quantum cryptography”, Advances in Optics and Photonics, vol. 12, no. 4, p. 1012, Dec. 2020, issn: 1943-8206. doi: 10.1364/aop.361502. [Online]. Available: http://dx.doi.org/10.1364/AOP.361502. [9] Q. Jia, K. Xue, Z. Li, M. Zheng, D. Wei, and N. Yu, “An improved qkd pro- tocol without public announcement basis using periodically derived basis”, Quantum Information Processing, vol. 20, Feb. 2021. doi: 10.1007/s11128- 021-03000-8. [10] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, and et al., “Field test of quan- tum key distribution in the tokyo qkd network”, Optics Express, vol. 19, no. 11, p. 10 387, May 2011, issn: 1094-4087. doi: 10.1364/oe.19.010387. [Online]. Available: http://dx.doi.org/10.1364/OE.19.010387. [11] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers”, 2017. arXiv: 1707.01339 [quant-ph]. [12] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin, “A quantum network of clocks”, Nature Physics, vol. 10, no. 8, pp. 582–587, Jun. 2014, issn: 1745-2481. doi: 10.1038/nphys3000. [Online]. Available: http://dx.doi.org/10.1038/nphys3000. [13] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits”, Science, vol. 323, no. 5913, pp. 486–489, Jan. 2009, issn: 1095-9203. doi: 10.1126/ science.1167209. [Online]. Available: http://dx.doi.org/10.1126/ science.1167209. [14] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: Entangling photons that never interacted”, Phys. Rev. Lett., vol. 80, pp. 3891–3894, 18 May 1998. doi: 10.1103/PhysRevLett. 80.3891. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRevLett.80.3891. [15] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and et al., “Heralded entanglement between solid-state qubits separated by three me- tres”, Nature, vol. 497, no. 7447, pp. 86–90, Apr. 2013, issn: 1476-4687. doi: 10.1038/nature12016. [Online]. Available: http://dx.doi.org/10.1038/ nature12016. [16] M. Caleffi, “Optimal routing for quantum networks”, IEEE Access, vol. 5, pp. 22 299–22 312, 2017. doi: 10.1109/ACCESS.2017.2763325. [17] L. Gyongyosi and S. Imre, “Decentralized base-graph routing for the quan- tum internet”, Physical Review A, vol. 98, no. 2, Aug. 2018, issn: 2469-9934. doi: 10.1103/physreva.98.022310. [Online]. Available: http://dx.doi. org/10.1103/PhysRevA.98.022310. [18] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet”, 2017. arXiv: 1708.07142 [quant-ph]. [19] C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, “Effective routing design for remote entanglement generation on quantum networks”, npj Quantum In- formation, vol. 7, Jan. 2021. doi: 10.1038/s41534-020-00344-4. [20] J. Li, M. Wang, Q. Jia, K. Xue, N. Yu, Q. Sun, and J. Lu, “Fidelity-guarantee entanglement routing in quantum networks”, 2021. arXiv: 2111.07764 [quant-ph]. [21] S. Shi and C. Qian, “Concurrent entanglement routing for quantum net- works: Model and designs”, SIGCOMM ’20, pp. 62–75, 2020. doi: 10. 1145/3387514.3405853. [Online]. Available: https://doi.org/10.1145/ 3387514.3405853. [22] Y. Zhao and C. Qiao, “Redundant entanglement provisioning and selection for throughput maximization in quantum networks”, pp. 1–10, 2021. doi: 10.1109/INFOCOM42981.2021.9488850. [23] P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Ver- meulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic de- livery of remote entanglement on a quantum network”, Nature, vol. 558, no. 7709, pp. 268–273, Jun. 2018, issn: 1476-4687. doi: 10.1038/s41586- 018-0200-5. [Online]. Available: http://dx.doi.org/10.1038/s41586- 018-0200-5. [24] N. K. Bernardes, “Long-distance quantum communication: Decoherence- avoiding mechanisms”, Apr. 2013. [25] X.-M. Hu, C.-X. Huang, Y.-B. Sheng, L. Zhou, B.-H. Liu, Y. Guo, C. Zhang, W.-B. Xing, Y.-F. Huang, C.-F. Li, and et al., “Long-distance entanglement purification for quantum communication”, Physical Review Letters, vol. 126, no. 1, Jan. 2021, issn: 1079-7114. doi: 10.1103/physrevlett.126.010503.
|