跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇育賢
研究生(外文):SU,YU-HSIEN
論文名稱:隔離雙向交錯式低漣波轉換器應用於燃料電池之研究
論文名稱(外文):Development of Isolated Bidirectional Interleaved Converter with Low Current Ripple in Fuel Cell Applications
指導教授:曾國境曾國境引用關係
指導教授(外文):TSENG,KUO-CHING
口試委員:朱慶隆曾國境張簡士琨鄭竣安
口試委員(外文):CHU,CHING-LUNGTSENG,KUO-CHINGCHANG CHIEN,SHIH-KUNCHENG,CHUN-AN
口試日期:2022-07-14
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:99
中文關鍵詞:高電壓增益交錯式雙向轉換器漏感能量回收零電壓切換全數位
外文關鍵詞:High conversion gainBidirectional converterLeakage energy recoveryZero-voltage-switchingFull digital control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出具有隔離雙向交錯式低漣波轉換器,低壓側使用兩顆儲能電感以降低電流漣波,藉由倍壓與箝位電容使變壓器匝數比降低以及實現漏感能量回收進而降低開關應力,且高壓側採用倍壓電路提高電壓增益。此外,所提出轉換器之開關具有零電壓切換功能,能降低開關切換損耗以增加電路轉換效率。而控制部分,利用全數位撰寫回授控制以提升電路的穩定性與功能性。
實驗電路規格為低壓端24 V、高壓端400V且額定功率1kW,並且透過模擬軟體與實作加以驗證本論文提出電力轉換器之有效及可行性,所提出之轉換器在升壓模式下最高效率點為400W時98.2%,滿載效率為94.6%;而降壓模式下最高效率點為500W時96.25%,滿載效率為94.46%。

In this thesis, a high efficiency, isolated bidirectional high conversion gain interleaved converter (IBHIC) is proposed. Two energy storage inductors are used in the low-voltage-side to reduce the current ripple. The both clamp and voltage-doubler capacitors accomplish active clamping, and recycle the energy stored in the leakage inductance, the turns ratio could be also reduced. The voltage-doubler circuit in the high-voltage-side enhance the voltage gain. Furthermore, power switches are operated with zero-voltage-switching and reduced switching losses, also improved efficiency. As for the PWM signal, full digital control is used to achieved the stability and functionality of the circuit. The prototype circuit with the low-side voltage 24 V, the high-side voltage 400 V and the rated power of 1 kW, is implemented to verify the feasibility of proposed topology. The maximum efficiency of the proposed topology in the step-up mode is 98.2% at 400W; and in step-down mode is 96.25% at 500W. In addition, the measured full-load efficiencies are respectively 94.6% and 94.46%.
摘要
Abstract
致謝
Contents
List of Tables
List of Figures
Chapter 1 Introduction
1.1 Background
1.2 Motivation
Chapter 2 Overview of Isolated Interleaved Converter
2.1 Isolated Interleaved Converter Type I
2.2 Isolated Interleaved Converter Type II
Chapter 3 The Proposed Isolated Bidirectional High Conversion Gain Interleaved Converter
3.1 Introduction of the proposed IBHIC
3.2 Operating Principles
3.2.1 Step-up Mode
3.2.2 Step-down Mode
3.3 Steady-state Analysis
3.3.1 Step-up Mode
3.3.1.1 Voltage Conversion Gain
3.3.1.2 Voltage Stresses
3.3.1.3 Current Stresses
3.3.1.4 Effects of the Equivalent Resistances of the Proposed IBHIC
3.3.2 Step-down Mode
3.3.2.1 Voltage Conversion Gain
3.3.2.2 Voltage Stresses
3.3.2.3 Current Stresses
3.3.2.4 Effects of the Equivalent Resistances of the Proposed IBHIC
3.4 Design Considerations
3.4.1 Step-up Mode
3.4.2 Step-down Mode
Chapter 4 Experimental Results
4.1 Step-up Mode
4.2 Step-down Mode
4.3 The Measured Conversion Efficiency of the Proposed IBHIC
4.4 Performance Comparison
Chapter 5 Conclusion and Future Research
5.1 Conclusion
5.2 Future Research
Reference

[1]J. Huang, Y. Wang, Z. Li and W. Lei, "Unified Triple-Phase-Shift Control to Minimize Current Stress and Achieve Full Soft-Switching of Isolated Bidirectional DC–DC Converter," IEEE Trans. Ind. Electro., vol. 63, no. 7, pp. 4169-4179, July 2016.
[2]B. Li, Q. Li, F. C. Lee, Z. Liu and Y. Yang, "A High-Efficiency High-Density Wide-Bandgap Device-Based Bidirectional On-Board Charger," IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 3, pp. 1627-1636, Sept. 2018.
[3]K. -C. Tseng, S. -Y. Chang and C. -A. Cheng, "Novel Isolated Bidirectional Interleaved Converter for Renewable Energy Applications," IEEE Trans. Ind. Electro., vol. 66, no. 12, pp. 9278-9287, Dec. 2019.
[4]M. M. Chen and K. W. E. Cheng, "A new bidirectional DC-DC converter with a high step-up/down conversion ratio for renewable energy applications," ISEE, 2016, pp. 1-6.
[5]S. Jadhav, N. Devdas, S. Nisar and V. Bajpai, "Bidirectional DC-DC converter in Solar PV System for Battery Charging Application," ICSCET, 2018.
[6]F. Yi and W. Cai, "Modeling, Control, and Seamless Transition of the Bidirectional Battery-Driven Switched Reluctance Motor/Generator Drive Based on Integrated Multiport Power Converter for Electric Vehicle Applications," IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7099-7111, Oct. 2016.
[7]S. Xiong and S. Tan, "Cascaded High-Voltage-Gain Bidirectional Switched-Capacitor DC–DC Converters for Distributed Energy Resources Applications," IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1220-1231, Feb. 2017.
[8]H. Jeong, M. Kwon and S. Choi, "A high gain non-isolated soft-switching bidirectional DC-DC converter with PPS control," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 1723-1727.
[9]M. E. Azizkandi, F. Sedaghati, H. Shayeghi and F. Blaabjerg, "A High Voltage Gain DC–DC Converter Based on Three Winding Coupled Inductor and Voltage Multiplier Cell," IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4558-4567, May 2020.
[10]T. Nouri, N. Nouri and N. Vosoughi, "A Novel High Step-Up High Efficiency Interleaved DC–DC Converter With Coupled Inductor and Built-In Transformer for Renewable Energy Systems," IEEE Trans. Ind. Electro., vol. 67, no. 8, pp. 6505-6516, Aug. 2020.
[11]L. Schmitz, D. C. Martins and R. F. Coelho, "Comprehensive Conception of High Step-Up DC–DC Converters With Coupled Inductor and Voltage Multipliers Techniques," IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 67, no. 6, pp. 2140-2151, June 2020.
[12]S. B. Santra, D. Chatterjee, Y. P. Siwakoti and F. Blaabjerg, "Generalized Switch Current Stress Reduction Technique for Coupled-Inductor-Based Single-Switch High Step-Up Boost Converter," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 2, pp. 1863-1875, April 2021.
[13]R. Hu, J. Zeng, J. Liu and K. W. E. Cheng, "A Nonisolated Bidirectional DC–DC Converter With High Voltage Conversion Ratio Based on Coupled Inductor and Switched Capacitor," IEEE Trans. Ind. Electro., vol. 68, no. 2, pp. 1155-1165, Feb. 2021.
[14]J. Huang et al., "Robust Circuit Parameters Design for the CLLC-Type DC Transformer in the Hybrid AC–DC Microgrid," IEEE Trans. Ind. Electro., vol. 66, no. 3, pp. 1906-1918, March 2019.
[15]T. Nouri, N. Vosoughi, S. H. Hosseini, E. Babaei and M. Sabahi, "An Interleaved High Step-Up Converter With Coupled Inductor and Built-In Transformer Voltage Multiplier Cell Techniques," IEEE Trans. Ind. Electro., vol. 66, no. 3, pp. 1894-1905, March 2019.
[16]R. Mayer, M. B. E. Kattel and S. V. G. Oliveira, "Multiphase Interleaved Bidirectional DC/DC Converter With Coupled Inductor for Electrified-Vehicle Applications," IEEE Trans. Power Electron., vol. 36, no. 3, pp. 2533-2547, March 2021.
[17]T. Liu, M. Lin and J. Ai, "High Step-Up Interleaved dc–dc Converter With Asymmetric Voltage Multiplier Cell and Coupled Inductor," IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 4, pp. 4209-4222, Dec. 2020.
[18]M. Shaneh, M. Niroomand and E. Adib, "Ultrahigh-Step-Up Nonisolated Interleaved Boost Converter," IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 3, pp. 2747-2758, Sept. 2020.
[19]L. Schmitz, D. C. Martins and R. F. Coelho, "High Step-Up Nonisolated ZVS/ZCS DC–DC Converter for Photovoltaic Thin-Film Module Applications," IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 1, pp. 565-575, March 2019.
[20]A. Blinov, R. Kosenko, D. Vinnikov and L. Parsa, "Bidirectional Isolated Current-Source DAB Converter With Extended ZVS/ZCS Range and Reduced Energy Circulation for Storage Applications," IEEE Trans. Ind. Electro., vol. 67, no. 12, pp. 10552-10563, Dec. 2020.
[21]Y. Qu, W. Shu and J. S. Chang, "A Fully Soft Switched Point-of-Load Converter for Resource Constraint Drone Applications," IEEE Trans. Power Electron., vol. 35, no. 3, pp. 2705-2713, March 2020.
[22]H. Wu, K. Sun, L. Chen, L. Zhu and Y. Xing, "High Step-Up/Step-Down Soft-Switching Bidirectional DC–DC Converter With Coupled-Inductor and Voltage Matching Control for Energy Storage Systems," IEEE Trans. Ind. Electro., vol. 63, no. 5, pp. 2892-2903, May 2016.
[23]N. M. Mukhtar and D. D. Lu, "A Bidirectional Two-Switch Flyback Converter With Cross-Coupled LCD Snubbers for Minimizing Circulating Current," IEEE Trans. Ind. Electro., vol. 66, no. 8, pp. 5948-5957, Aug. 2019.
[24]Y. Xuan, X. Yang, W. Chen, T. Liu and X. Hao, "A Novel Three-Level CLLC Resonant DC–DC Converter for Bidirectional EV Charger in DC Microgrids," IEEE Trans. Ind. Electro., vol. 68, no. 3, pp. 2334-2344, March 2021.
[25]A. Kloenne and T. Sigle, "Bidirectional ZETA/SEPIC converter as battery charging system with high transfer ratio," 2017 19th Eur. Conf. Power Electron. Appl. (EPE'17 ECCE Europe), 2017, pp. P.1-P.7.
[26]Y. Lu, Y. Xing and H. Wu, "A PWM Plus Phase-Shift Controlled Interleaved Isolated Boost Converter Based on Semiactive Quadrupler Rectifier for High Step-Up Applications," IEEE Trans. Ind. Electro., vol. 63, no. 7, pp. 4211-4221, July 2016.
[27]W. Li, H. Wu, H. Yu and X. He, "Isolated Winding-Coupled Bidirectional ZVS Converter With PWM Plus Phase-Shift (PPS) Control Strategy," IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3560-3570, Dec. 2011.
[28]M. Al-Greer, M. Armstrong, M. Ahmeid and D. Giaouris, "Advances on System Identification Techniques for DC–DC Switch Mode Power Converter Applications," IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6973-6990, July 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊