|
Aguilar, G., AlGhamdi, F., Soto, V., Diab, M., Hirschberg, J., & Solorio, T. (2018). Named entity recognition on code-switched data: Overview of the calcs 2018 shared task. Paper presented at the Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching. Aguilar, G., AlGhamdi, F., Soto, V., Diab, M., Hirschberg, J., & Solorio, T. (2019). Named entity recognition on code-switched data: Overview of the CALCS 2018 shared task. arXiv preprint arXiv:1906.04138. Banerjee, S., Naskar, S. K., Rosso, P., & Bandyopadhyay, S. (2016). The First Cross-Script Code-Mixed Question Answering Corpus. Paper presented at the MultiLingMine@ ECIR. Barman, U., Das, A., Wagner, J., & Foster, J. (2014). Code mixing: A challenge for language identification in the language of social media. Paper presented at the Proceedings of the first workshop on computational approaches to code switching. Calvillo, J., Fang, L., Cole, J., & Reitter, D. (2020). Surprisal predicts code-switching in Chinese-English bilingual text. Paper presented at the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Cannon, J., & Lucci, S. (2010). Transcription and EHRs. Benefits of a blended approach. J ahima, 81(2), 36-40. Caruana, R. (1997). Multitask learning. Machine learning, 28(1), 41-75. Chang, N.-W., Dai, H.-J., Jonnagaddala, J., Chen, C.-W., Tsai, R. T.-H., & Hsu, W.-L. (2015). A context-aware approach for progression tracking of medical concepts in electronic medical records. Journal of biomedical informatics, 58, S150-S157. Dai, H.-J., Su, C.-H., Lee, Y.-Q., Zhang, Y.-C., Wang, C.-K., Kuo, C.-J., & Wu, C.-S. (2021). Deep Learning-Based Natural Language Processing for Screening Psychiatric Patients. Frontiers in Psychiatry, 11(1557). doi:10.3389/fpsyt.2020.533949 Dai, H.-J., Syed-Abdul, S., Chen, C.-W., & Wu, C.-C. (2015). Recognition and evaluation of clinical section headings in clinical documents using token-based formulation with conditional random fields. BioMed research international, 2015. De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of operations research, 134(1), 19-67. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. Paper presented at the 2009 IEEE conference on computer vision and pattern recognition. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Etter, D., Ferraro, F., Cotterell, R., Buzek, O., & Van Durme, B. (2013). Nerit: Named entity recognition for informal text. Human Language Technology Center of Excellence, Johns Hopkins, vol. Technical Report, 11. Gambäck, B., & Das, A. (2014). On measuring the complexity of code-mixing. Paper presented at the Proceedings of the 11th International Conference on Natural Language Processing, Goa, India. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., . . . He, K. (2017). Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677. Graves, A. (2012). Long short-term memory. Supervised sequence labelling with recurrent neural networks, 37-45. Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. Jia, C., Shi, Y., Yang, Q., & Zhang, Y. (2020). Entity enhanced BERT pre-training for Chinese NER. Paper presented at the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H., Feng, M., Ghassemi, M., . . . Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific data, 3(1), 1-9. Kim, H., & Kang, J. (2021). How Do Your Biomedical Named Entity Models Generalize to Novel Entities? arXiv preprint arXiv:2101.00160. Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360. Lee, J.-S., & Hsiang, J. (2020). Patent classification by fine-tuning BERT language model. World Patent Information, 61, 101965. Lee, Y.-Q., Wang, B.-H., Su, C.-H., Chen, P.-T., Wu-Qing, L., & Dai, H.-J. (2021). Protected Health Information Recognition of Unstructured Code-Mixed Electronic Health Records in Taiwan. Paper presented at the MedInfo, Sydney, Australia. Liu, K., Hu, Q., Liu, J., & Xing, C. (2017). Named entity recognition in Chinese electronic medical records based on CRF. Paper presented at the 2017 14th Web Information Systems and Applications Conference (WISA). Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101. Lyu, D.-C., Tan, T.-P., Chng, E. S., & Li, H. (2010). Seame: a mandarin-english code-switching speech corpus in south-east asia. Paper presented at the Eleventh Annual Conference of the International Speech Communication Association. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. Paper presented at the Interspeech. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26. Nakayama, H. (2018). seqeval: A python framework for sequence labeling evaluation. Software available from https://github. com/chakki-works/seqeval. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12, 1532-1543. Saeed, M., Villarroel, M., Reisner, A. T., Clifford, G., Lehman, L.-W., Moody, G., . . . Mark, R. G. (2011). Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Critical care medicine, 39(5), 952. Safran, C. (2014). Reuse of Clinical Data. Yearbook of Medical Informatics, 9(1), 52-54. doi:10.15265/IY-2014-0013 Shen, H.-P., Wu, C.-H., Yang, Y.-T., & Hsu, C.-S. (2011). CECOS: A chinese-english code-switching speech database. Paper presented at the 2011 International Conference on Speech Database and Assessments (Oriental COCOSDA). Sheng, E., Miller, S., Ambite, J. L., & Natarajan, P. (2017). A Neural Named Entity Recognition Approach to Biological Entity Identification. Paper presented at the Proceedings of the BioCreative VI workshop, Bethesda, MD USA. Silvestri, S., Esposito, A., Gargiulo, F., Sicuranza, M., Ciampi, M., & De Pietro, G. (2019). A big data architecture for the extraction and analysis of EHR data. Paper presented at the 2019 IEEE World Congress on Services (SERVICES). Singh, V., Vijay, D., Akhtar, S. S., & Shrivastava, M. (2018). Named entity recognition for hindi-english code-mixed social media text. Paper presented at the Proceedings of the Seventh Named Entities Workshop. Stubbs, A., Kotfila, C., & Uzuner, Ö. (2015). Automated systems for the de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1. Journal of biomedical informatics, 58, S11-S19. Sutton, C., McCallum, A., & Rohanimanesh, K. (2007). Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. Journal of Machine Learning Research, 8(3). Tang, T., Tang, X., & Yuan, T. (2020). Fine-tuning BERT for multi-label sentiment analysis in unbalanced code-switching text. IEEE Access, 8, 193248-193256. Taylor, W. L. (1953). “Cloze procedure”: A new tool for measuring readability. Journalism quarterly, 30(4), 415-433. Thara, S., & Poornachandran, P. (2018). Code-mixing: A brief survey. Paper presented at the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Thimm, G., & Fiesler, E. (1995). Neural network initialization. Paper presented at the International Workshop on Artificial Neural Networks. Trivedi, S., Rangwani, H., & Singh, A. K. (2018). Iit (bhu) submission for the acl shared task on named entity recognition on code-switched data. Paper presented at the Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching. Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11). Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam med, 37(5), 360-363. Wang, C., Cho, K., & Kiela, D. (2018). Code-switched named entity recognition with embedding attention. Paper presented at the Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching. Winata, G. I., Wu, C.-S., Madotto, A., & Fung, P. (2018). Bilingual character representation for efficiently addressing out-of-vocabulary words in code-switching named entity recognition. arXiv preprint arXiv:1805.12061. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . Funtowicz, M. (2019). Huggingface's transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771. Wu, C.-S., Kuo, C.-J., Su, C.-H., Wei, L.-X., Lu, W.-H., Wang, S. H., & Dai, H.-J. (2020). Text mining approach to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records. Journal of Affective Disorders, 260, 617-623. Wu, S., & Manber, U. (1992). Fast text searching: allowing errors. Communications of the ACM, 35(10), 83-91. Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., . . . Macherey, K. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. Yang, X., Zhao, X., Tjio, G., Chen, C., Wang, L., Wen, B., & Su, Y. (2020). Opencc–an open Benchmark data set for Corpus Callosum Segmentation and Evaluation. Paper presented at the 2020 IEEE International Conference on Image Processing (ICIP). Zhong, X., & Cambria, E. (2018). Time expression recognition using a constituent-based tagging scheme. Paper presented at the Proceedings of the 2018 world wide web conference. Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. Paper presented at the Proceedings of the IEEE international conference on computer vision.
|