跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃偉銘
研究生(外文):Huang, Wei-Ming
論文名稱:添加不同元素對 CoCrFeNiV 基高熵合金之機械性質與微觀結構之研究
論文名稱(外文):Mechanical properties and microstructural evolution of CoCrFeNiV based high-entropy alloys with different elements added
指導教授:陳道星
指導教授(外文):Chen, Tao-Hsing
口試委員:陳順隆江家慶
口試日期:2022-07-18
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:138
中文關鍵詞:高熵合金萬能材料試驗機霍普金森桿衝擊試驗機械性質
外文關鍵詞:high-entropy alloysuniversal testing machineSplit-Hopkinson barmechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以 Co、Cr、Fe、Ni、V 五種元素為主要元素,分別添加 6%至 10 %
的 Al 或 Cu 元素作為次要元素,經真空電弧爐製成 AlxCoCrFeNiV 及 CuxCoCr
FeNiV ,共六組高熵合金,加工成尺寸為 Ø 5 mm × 5 mm 的試片,以 X 光繞
射儀檢測試片之晶體結構,能量散射光譜儀確定合金之成分及比例。分別使用
萬能材料試驗機以應變速率 1×10-1 s-1、1×10-2 s-1、1×10-3 s-1 為條件進行準靜態
壓縮試驗;霍普金森桿衝擊試驗則以應變速率 3000 s-1、4000 s-1、5000 s-1 為條
件進行動態壓縮試驗。
在以 CoCrFeNiV 為基底的高熵合金中,由光學顯微鏡觀察試片表面形貌,
添加 6%的 Al 由細緻的晶粒及部分較大的塊狀結構組成,添加 8%及 10%時會
轉變成柱狀晶粒,添加 Cu 則以非等軸的枝晶狀結構。在 X 光繞射分析後發
現,隨著 Al 比例增加,由雙相面心立方及體心立方結構轉為單一的體心立方結
構,添加 Cu 則為單一的面心立方結構,在 10%時有體心立方結構的峰值出
現。
實驗結果之應力-應變曲線指出,無論 Al 或 Cu 元素含量的增加都能提升合
金的強度,添加 Al 的強度會高於 Cu,但 Al 的含量增加會導致延展性的下降,
在添加 10%Al 時有最高的強度。
This research is five elements of Co,Cr,Fe,Ni and V as the main elements, and then adding 6% to 10% of Al or Cu elements as the secondary element to melt into a total of six high-entropy alloys. Processed into test pieces with diameter and length of 5 mm.
We will use X-ray diffractometer to confirm the structure, use Energy dispersive X-ray spectroscopy to confirm the Composition. Using the universal material testing machine and the split Hopkinson pressure bar(SHPB) to exam the quasi-static and dynamic mechanical properties of these alloys.
The microstructure of CoCrFeNiV based high-entropy alloys, if added 6%Al have a FCC block structure and dense BCC/FCC structure, than add 8% or 10% with a singlephase BCC structure. Added Cu will have a single-phase FCC structure and columnar dendrite, in 10%Cu have a little BCC peak appear.
The stress-strain curve of the experimental results indicates that the strength of the alloy can be improved regardless of the increase in the content of Al or Cu. The strength of Al addition will be higher than Cu, but increase of Al content will lead to a decrease in ductility. When 10% Al added have the highest strength.

摘要..............I
Abstract ........ II
致謝 ............ III
目錄 ............ IV
圖目錄 ........... VI
表目錄 ........... VIV
第一章 緒論................... 1
第二章 文獻回顧與討論 ......... 2
2-1 高熵合金 ................. 2
2-1-1 研究歷程 ............... 2
2-1-2 高熵合金的定義 ......... 2
2-1-3 高熵合金的效應 ......... 3
2-1-4 塊狀高熵合金的製備方式 ....... 5
2-2 金屬的塑性變形 ................ 9
2-3 材料塑性變形之特性 ............ 11
2-5 一維波傳理論.................. 16
2-6 霍普金森桿原理 ............... 18
第三章 實驗步驟 .................. 21
3-1 實驗流程 .................... 21
3-2 試片製備 .................... 22
3-3 微觀結構分析 ................. 25
3-3-1 多功能 X 光繞射儀 (X-Ray Diffractometer) ...... 25
3-3-2 光學顯微鏡 (Optical Microscope) ............... 25
V
3-3-3 掃描式電子顯微鏡 (Scanning Electron Microscope) ...... 26
3-4 機械性質分析 ........................................... 27
3-4-1 萬能材料試驗機(Universal Testing Machine) ............ 27
3-4-2 霍普金森桿(Split Hopkinson Pressure Bar) ............ 28
第四章 實驗結果與討論 ..................................... 30
4-1 能量散射光譜儀(EDS)成分分析 ............................ 30
4-2 X 光繞射分析 ........................................... 37
4-3 光學顯微鏡與掃描式電子顯微鏡表面形貌分析 .................. 42
4-4 應力應變曲線 ............................................ 52
4-5 應變速率敏感性係數 ....................................... 72
4-6 顯微鏡觀察材料斷裂及變形微觀結構 .......................... 79
第五章 結論 ................................................ 115
第六章 參考文獻 ............................................. 116

[1]D. B. Miracle, and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, vol. 122, pp. 448-511, 2017.
[2]黃鈺琳、何宗翰、施漢章及葉均蔚,“高熵合金A1xCo1.5CrFeNi1.5Ti0.5
Moy”,華岡工程學報,Vol 29,pp.52-58, 2012。
[3]A.J.B. Vincent, “A study of three multicomponent alloys.”,University of Sussex, 1983.
[4]B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Materials Science and Engineering: A, vol. 375-377, pp. 213-218, 2004.
[5]黃國雄,“等莫耳比多元合金系統之研究”,國立清華大學材料工程系碩士學位論文。
[6]C. Y. Hsu, J. W. Yeh, S. K. Chen, and T. T. Shun, “Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 35 A, no. 5, pp. 1465-1469, 2004.
[7]J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou, “Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements,” Metallurgical and Materials Transactions A, vol. 35, no. 8, pp. 2533-2536, 2004.
[8]J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Advanced engineering materials, vol. 6, no. 5, pp. 299-303, 2004.
[9]M.-H. Tsai, and J.-W. Yeh, “High-Entropy Alloys: A Critical Review,” Materials Research Letters, vol. 2, no. 3, pp. 107-123, 2014.
[10]J.W. Yeh, “Alloy Design Strategies and Future Trends in High-Entropy Alloys,” JOM, vol. 65, no. 12, pp. 1759-1771, 2013.
[11]W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, and P. K. Liaw, “Mechanical behavior of high-entropy alloys,” Progress in Materials Science, vol. 118, pp. 100777, 2021.
[12]S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails,” Current Science,
vol. 85, 2003.
[13]Y. X. Chen, S. Zhu, X. M. Wang, W. B. Du, and Y. Zhang, “Progress in Preparation and Research of High Entropy Alloys,” Cailiao Gongcheng/Journal of Materials Engineering, vol. 45, pp. 129-138, 2017.
[14]孫蘭,功能材料及應用,第1版 ed. 成都: 四川大學出版社,2018年。
[15]L.I. Maissel and R. Glang, “Handbook of Thin Film Technology, ” McGraw-Hill, New York, 1970.
[16]A. Inoue, T. Nakamura, T. Sugita, T. Zhang, and T. Masumoto,"Bulky La-Al-Tm (Tm = Transition-Metal) Amorphous-Alloys with High-Tensile Strength Produced by a High-Pressure Die-Casting Method," Materials Transactions Jim, vol. 34, pp. 351-358, 1993.
[17]R. Jain, M. R. Rahul, P. Chakraborty, R. K. Sabat, S. Samal, G. Phanikumar, and R. Tewari, “Design and deformation characteristics of single-phase Co-Cr-Fe-Ni-V high entropy alloy,” Journal of Alloys and Compounds, vol. 888, pp. 161579, 2021.
[18]Y.-c. Liu, S.-y. Yen, S.-h. Chu, S.-k. Lin, and M.-H. Tsai, “Mechanical and thermodynamic data-driven design of Al-Co-Cr-Fe-Ni multi-principal element alloys,” Materials Today Communications, vol. 26, pp. 102096, 2021.
[19]G.S. Upadhyaya, “Powder Metallurgy Technology”, Cambridge International Science, 1998.
[20]Angelo, P. C., and Ramayyar Subramanian. “Powder metallurgy: science,
technology and applications. ” PHI Learning Pvt. Ltd., 2008.
[21]A. Erdogan, A. Günen, M. S. Gök, and S. Zeytin, “Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy,” Vacuum, vol. 183, pp. 109820, 2021.
[22]J. He, Y. Qiao, R. Wang, Y. Tang, S. Li, X. Liu, Y. Ye, L. a. Zhu, Z. Wang, and S. Bai, “State and effect of oxygen on high entropy alloys prepared by powder metallurgy,” Journal of Alloys and Compounds, vol. 891, pp. 161963, 2022.
[23]J.W. Yeh, “The Development of High-Entropy Alloys”,Chinese Culture University Hwa Kang Journal of Engineering, Vol. 27,pp. 1-18,2011.
[24]Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, and Q. Song, “Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys,” Journal of Alloys and Compounds, vol. 805, pp. 585-596, 2019.
[25]F. Yang, J. Wang, Y. Zhang, Z. Wu, Z. Zhang, F. Zhao, J. Huot, J. Grobivć Novaković, and N. Novaković, “Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review,” International Journal of Hydrogen Energy, vol. 47, no. 21, pp. 11236-11249, 2022.
[26]P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, “Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating,” Advanced Engineering Materials, vol. 6, no. 1‐2, pp. 74-78, 2004.
[27]許昱凱 ,“添加錫與鋁於鈦基金屬玻璃之機械性質研究”,國立高雄應用科 技大學機械 工程系碩士班碩士學位論文,,2014。
[28]U.S.Lindholm and L.W.Yeakly, “High Strain Rate Tension and Compression.” 129 Exp. Meth., Vol. 3, pp. 81-88, 1983.
[29]R.D.Curran , L.Seaman and D.A.Shockey,, “Linking Dynamic Facture to Microstructural Process.” Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications”, pp. 22-26, 1980.
[30]H. A. Lipsitt, “Titanium Aluminides - An Overview.” Materials Research Society, Vol. 39, 1984.
[31]U.S.Lindholm, in Techniques in Metals Research, Part1, R. F. Bunshah, Wiley-Interscience, New York, Vol. 5 , pp. 199, 1971.
[32]J.D.Compbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects.” Maerials Science and Engineering, Vol. 12, pp. 3-21, 1973.
[33]D.Klahn , A.K.Mukherjee and J.E.Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys.” volume III, ASM, pp. 951, 1970.
[34]J.D.Compbell and W.G.Ferguson ,“The Temperature and Strain-Rate Dependence of the Shear Strengh of Mild Steel.” Phil. Mag., Vol. 21, pp. 63-82, 1970.
[35]陳銘祥,”鋁鈧合金之撞擊變形與差排結構特徵分析”,國立成功大學機 械工程學系碩士學位論文,2007。
[36]王柏凱,”鐵錳鋁合金之高速撞擊與破壞行為研究”,國立成功大學機械 工程學系碩士學位論文,2004。
[37]A.Seeger , 1955 , “Dislocation and Mechanical Properties of Crystals.” Phil. Mag., Vol. 46, pp.1194-1217.
[38]U.S.Lindholm and L.M.Yeakly,“Dynamic Deformation of Single and Polvcrystalline Aluminum.” J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
[39]W.G.Ferguson , A.Kumar and J.E.Dorn, “Dislocation Damping in 130 Aluminum at High Strain Rates.” Journal of Applied Physics, Vol. 38, pp. 1863-1869 , 1967.
[40]U.S.Lindholm and L.W.Yeakly, “High Strain Rate Tension and Compression.” Exp. Meth., Vol. 3, pp. 81-88 , 1983.
[41]W.S.Lee and C.F.Lin , “Plastic Deformation and Fracture Behaviour of Ti6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures.” Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998.
[42]J.D.Campbell and W.G.Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel.” Phil. Mag, Vol. 21, pp. 63-82 , 1970.
電子全文 電子全文(網際網路公開日期:20270801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊