Allwood, J.M.; Cullen, J.M.; Milford R.L., (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental science technology, 44(6), 1888-1894.
Asi, I.M.; Qasrawi, H.Y.; Shalabi, F.I., (2007). Use of steel slag aggregate in asphalt concrete mixes. Canadian journal of civil engineering, 34(8), 902-911.
Bang, J.H.; Jang, Y.N.; Kim, W.; Song, K.S.; Jeon, C.W.; Chae, S.C.; Lee, S.W.;
Park, S.J.; Lee, M.G., (2011). Precipitation of calcium carbonate by carbon dioxide microbubbles. Chemical engineering journal, 174(1), 413-420.
Calmon, J.L.; Tristão, F.A.; Giacometti, M.; Meneguelli, M.; Moratti, M.; Teixeira, J.E.S.L., (2013). Effects of BOF steel slag and other cementitious materials on the rheological properties of self-compacting cement pastes. Construction and building materials, 40, 1046-1053.
Cansell, F.; Aymonier, C.; Loppinet-Serani, A., (2003). Review on materials science and supercritical fluids. Current opinion in solid state and materials science, 7(4-5), 331-340.
Chang, E.E.; Pan, S.Y.; Chen, Y.H.; Tan, C.S.; Chiang, P.C., (2012). Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. Journal of hazardous materials, 227-228, 97-106.
Chang, E.E.; Chen, T.L.; Pan, S.Y.; Chen, Y.H.; Chiang, P.H., (2013). Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. Journal of hazardous materials, 260,937-946.
Chen, T.L.; Jiang, W.; Shen, A.L.; Chen, Y.H.; Pan, S.Y.; Chiang, P.C., (2020). CO2 mineralization and utilization using various calcium-containing wastewater and refining slag via a high-gravity carbonation process. Industrial & engineering chemistry research, 59(15), 7140-7150.
Coto, B.; Martos, C.; Peña, J.L.; Rodríguez, R.; Pastor, G., (2012). Effects in the solubility of CaCO3: Experimental study and model description. Fluid phase equilibria, 324, 1-7.
Ding, Y.C.; Cheng, T.W.; Liu, P.C.; Lee, W.H., (2017). Study on the treatment of BOF slag to replace fine aggregate in concrete. Construction and building materials, 146, 644-651.
Domingo, C.; Loste, E.; Gómez Morales, J.; García Carmona, J.; Fraile, J., (2006). Calcite precipitation by a high-pressure CO2 carbonation route. The journal of supercritical fluids, 36(3), 202-215.
Eckert, C.A.; Knutson, B.L.; Debenedetti, P.G., (1996). Supercritical fluids as solvents for chemical and materials processing. Nature, 383(26), 313-318.
Eloneva, S.; Puheloinen, E.M.; Kanerva, J.; Ekroos, A.; Zevenhoven, R.; Fogelholm, C.J.; (2010). Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 - legislative issues. Journal of cleaner production, 18(18), 1833-1839.
Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R., (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy, 33(9), 1461-1467.
Fernández Bertos, M.; Simons, S.J.; Hills, C.D.; Carey, P.J., (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of hazardous materials, 112(3), 193-205.
García-González, C.A.; Grouh, N.; Hidalgo, A.; Fraile, J.; López Periago, A.M.; Andrade, C.; Domingo, C., (2008). New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes. The journal of supercritical fluids, 43(3), 500-509.
Goldberg, P.; Chen, Z.Y.C.; O'Connor, W.K.; Walters, R.P., (2001). CO2 mineral sequestration studies in U.S.. Proceedings of the first national conference on carbon sequestration, Washington, DC.
Hauthal, W.H., (2001). Advances with supercritical fluids (review). Chemosphere, 43(1), 123-135.
Horii, K.; Kato, T.; Sugahara, K., (2015). Overview of lron/steel application and development of new utilization technologies. Nippon steel & sumitomo metal technical report, 5-11.
Huijgen, W.J.J.; Witkamp, G.J.; Comans, R.N.J., (2005). Mineral CO2 sequestration by steel slag carbonation. Environmental science technology, 39(24), 9676-9682.
IEA, (2012). Organization for economic co-operation and developmen publishing. World Energy Outlook.
Ito, K., (2015). Steelmaking slag for fertilizer usage. Nippon steel & sumitomo metal technical report, 130-136.
Kim, S.H.; Jeong, S.; Chung, C.; Nam, K., (2018). Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency. Chemosphere, 208, 916-921.
Kim, S.H.; Jeong, S.; Chung, C.; Nam, K., (2020). Mechanism for alkaline leachate reduction through calcium carbonate precipitation on basic oxygen furnace slag by different carbonate sources: application of NaHCO3 and CO2 gas. Waste management, 103, 122-127.
Ko, M.S.; Chen, Y.L.; Jiang, J.H., (2015). Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Construction and building materials, 98, 286-293.
Lackner, K.S.; Butt D.P.; Wendt, C.H., (1997). Progress on binding CO2 in mineral substrates. Energy conversion and management, 38, S259-S264.
Li, H.; Tang, Z.; Li, N.; Cui, L.; Mao, X.Z., (2020). Mechanism and process study on steel slag enhancement for CO2 capture by seawater. Applied energy, 276, 115515.
Ma, M.; Mehdizadeh, H.; Guo, M.Z.; Ling, T.C., (2021). Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Construction and Building Materials, 304,124628.
Mills, K.C.; Yuan, L.; Jones, R.T., (2011). Estimating the physical properties of slags. The southern african institute of mining and metallurgy, 111, 649-658.
Motz, H.; Geiseler, J., (2000). Products of steel slags an opportunity to save natural resources. Waste materials in construction, 21(3), 285-293.
Naidu, T.S.; Sheridan, C.M.; van Dyk, L.D., (2020). Basic oxygen furnace slag: Review of current and potential uses. Minerals Engineering, 149, 106234.
Omale, S.O.; Choong, T.S.Y.; Abdullah, L.C.; Siajam, S.I.; Yip, M.W., (2019). Utilization of malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon, 5(10), e02602.
Pan, S.Y.; Chang, E.E.; Chiang, P.C., (2012). CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol and air quality research, 12, 770-791.
Park, J.H.; Kim, S.H.; Delaune, R.D.; Kang, B.H.; Kang, S.W.; Cho, J.S.; Ok, Y.S.; Seo, D.C., (2016). Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands. Ecological engineering, 95, 612-621.
Piatak, N.M.; Parsons, M.B.; Seal, R.R., (2015). Characteristics and environmental aspects of slag: A review. Applied geochemistry, 57, 236-266.
Quirk, R.A.; France, R.M.; Shakesheff, K.M.; Howdle, S.M., (2004). Supercritical fluid technologies and tissue engineering scaffolds. Current opinion in solid state and materials science, 8(3-4), 313-321.
Reddy, A.S.; Pradhan, R.K.; Chandra, S., (2006). Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. International journal of mineral processing, 79(2), 98-105.
Reddy, K.R.; Kumar, G.; Gopakumar, A.; Rai, R.K.; Grubb, D.G., (2018). CO2 sequestration using BOF slag: Application in landfill cover. Solid waste management, 392-401.
Reddy, K.R.; Chetri, J.K.; Kumar, G.; Grubb, D.G., (2019). Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions. Waste Management, 85, 425-436.
Rushendra Revathy, T.D.; Palanivelu, K.; Ramachandran, A., (2016). Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environmental science and pollution research, 23(8), 7349-7359.
Said, A.; Laukkanen, T.; Järvinen, M., (2016). Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Applied energy, 117, 602-611.
Shen, D.H.; Wu, C.M.; Du, J.C. (2009). Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and building materials, 23(1), 453-461.
Su, T.H.; Yang, H.J.; Shau, Y.H.; Takazawa, E.; Lee, Y.C., (2016). CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns. Journal of environmental Science, 41, 99-111.
Sun, J.; Bertos, M.F.; Simons, S.J.R., (2008). Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy & environmental science, 1(3), 370-377.
Tai, C.Y.; Chen, W.R.; Shih, S.M., (2006). Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE Journal, 52(1), 292-299.
Urbonas, L.; Lenom, V.; Heinz, D., (2016). Effect of carbonation in supercritical CO2 on the properties of hardened cement paste of different alkalinity. Construction and building materials, 123, 704-711.
van Zomeren, A.; van der Laan, S.R.; Kobesen, H.B.; Huijgen, W.J.; Comans, R.N., (2011). Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste management, 31(11), 2236-2244.
Yu, M.; Bao, H.; Ye, J.; Chi, Y., (2017). The effect of random porosity field on supercritical carbonation of cement-based materials. Construction and building materials, 146, 144-155.
Zhang, N.; Wu, L.; Liu, X.; Zhang, Y., (2019). Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag. Construction and building materials, 219, 11-18.
Zhang, X.; Qian, C.; Yi, H.; Ma, Z., (2021). Study on carbonation reactivity of silicates in steel slag accelerated by bacillus mucilaginosus. Construction and building materials, 292, 123433.
中鋼企業社會責任報告書,2019。中國鋼鐵股份有限公司。
中聯資源網。轉爐石特性,中聯資源股份有限公司。
王金鐘,2005。轉爐石作為基底層材料及其工程特性之研究,國立成功大學,博士論文。王耀寬,2008。轉爐石對多孔隙瀝青混凝土之影響,國立成功大學,碩士論文。朱怡誠,2011。轉爐石鍛燒/碳酸化循環捕捉二氧化碳之研究,國立台灣大學,碩士論文。江志華,2010。加速碳酸化對轉爐石中含鈣物種轉化反應之影響,國立台北科技大學,碩士論文。余秉澤,2014。以還原碴廢棄材料捕捉二氧化碳之研究,國立中央大學,碩士論文。李德河,2005。轉爐石作為道路基底層及工程土方材料再生利用之力學特性研究,中國土木水利工程學刊,第17卷,第2期,245-256。
李賢華,2018。鋼鐵副產品轉爐石之高值化工程應用創新研發,行政院科技部,期末報告。
沈得縣,2011。轉爐石裹漿應用於瀝青混凝土鋪面工程之研究,行政院科學委員會,成果報告。
沈得縣,2013。轉爐石強化技術及其應用於瀝青混凝土鋪面之研究,行政院科學委員會,期末報告。
林宗曾,2007。轉爐石之回脹力學行為與化學特性分析研究(II),行政院科學委員會,成果報告。
林益璇,2011。煉鋼轉爐石游離石灰加速安定化之研究,國立高雄應用科技大學,碩士論文。涂幼蕓,2015。應用煉鋼轉爐石產製護坡砌塊之研究,國立屏東科技大學,碩士論文。張凱茹,2016。應用轉爐石產製透水性反應材料用以處理酸性礦業廢水機制研究,國立中山大學,碩士論文。陳信瑋,2018。廠拌轉爐石瀝青混凝土品質控制技術之研究,高苑科技大學,碩士論文。陳威仁,2002。超臨界二氧化碳轉化為碳酸鹽之探討,國立台灣大學,碩士論文。彭文俊,2014。從台灣木製家具工業二氧化碳排放量探討封存二氧化碳之可行性,國立屏東科技大學,碩士論文。程士豪,2008。模擬煙道氣進行轉爐石碳酸化之研究,輔英科技大學,碩士論文。黃隆昇,2017。粒料級配對於轉爐石瀝青混凝土之永續環境性質影響,行政院科技部,期末報告。
楊顯整,2009。超臨界綠色技術之概述,綠基會通訊,專題報告。
詹鈞詠,2014。加速碳酸化轉爐石工程特性及鋪面材料應用之研究,國立成功大學,博士論文。劉雨慈,2016。轉爐石應用於透水混凝土工程性質改善之研究,國立中山大學,碩士論文。劉國忠,2001。煉鋼爐碴之資源化技術與未來推展方向,環保月刊,第四期,114-136。
談駿嵩,2002。超臨界流體的應用,科學發展,第359期,12-17。
盧子威,2012。碳酸化對燃煤飛灰無機聚合材料特性影響之研究,國立台北科技大學,碩士論文。簡芳瑜,2016。以三相碳酸化系統探討還原碴封存二氧化碳之研究,國立中央大學,碩士論文。