跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昀
研究生(外文):CHEN, YUN
論文名稱:超臨界系統應用於煉鋼爐石碳酸化之研究
論文名稱(外文):A study on carbonation of steelmaking slags using supercritical system
指導教授:賴怡潔賴怡潔引用關係
指導教授(外文):LAI, YI-CHIEH
口試委員:郭益銘陳盈良李孟珊
口試委員(外文):GUO, YI-MINGCHEN, YING-LIANGLEE, MENG-SHAN
口試日期:2022-03-24
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:138
中文關鍵詞:超臨界碳酸化煉鋼爐石游離石灰二氧化碳
外文關鍵詞:Supercritical carbonationSteelmaking slagfree CaOCO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
煉鋼爐石為煉鋼製程伴隨產生的副產品,因具有豐富的游離石灰適合作 為碳酸化材料,利用游離石灰結合二氧化碳,可使其轉變成穩定的碳酸鹽類, 解決體積膨脹、高鹼度等不安定性的問題。本研究應用超臨界二氧化碳反應 系統進行碳酸化試驗,以田口式實驗設計法探討溫度、壓力、時間、液固比 等參數對碳酸化效率之影響,後續以斷層掃描觀察碳酸化產物密度分布,並 測量比重及吸水率,評估碳酸化反應後煉鋼爐石之工程穩定性。本研究歸納 之超臨界碳酸化最適條件為: 煉鋼爐石粒料(4.76~9.50mm)於 50°C、88.5 atm、液固比 0.5 L/kg、反應時間 30 分鐘,游離石灰反應率達 59%;煉鋼爐 石細粉料(0.42~2.00 mm)於 80°C、74.5 atm、液固比 0.5 L/kg、反應時間 30 分鐘,游離石灰反應率可達 76%。結果顯示,超臨界碳酸化反應為濕式反 應途徑,液固比為主要影響因子之一,過量的水分會影響質傳,導致碳酸化 效率下降;碳酸化反應率會隨著時間延長而增加,然而碳酸化產物會堆積在 煉鋼爐石表面,導致反應率的提升有逐漸趨緩的情況。觀察反應後煉鋼爐石 之密度分布結果,除了表層有碳酸化產物堆積外,煉鋼爐石內部也有碳酸化 反應的發生,證實超臨界流體因具有較高的擴散率,易於滲入煉鋼爐石之微 孔中進行反應,反應後煉鋼爐石粒料之工程特性顯示,吸水率略下降且比重 微增加,顯示超臨界碳酸化反應有助於提升煉鋼爐石之工程穩定性。

Steelmaking slag is a by-product from the steel industry, which is characterized by abundant free CaO and thus has high potential for carbonation. The combination of free CaO and CO2 to form stable carbonates is beneficial for solving issues related to volume expansion and high alkalinity. The aim of this study is to study the carbonation of steelmaking slags using supercritical system. The influence of parameters of supercritical CO2 (including temperature, pressure, time, and liquid-solid ratio) on carbonation efficiency was examined through Taguchi method. The density distribution, specific weight, and water absorbency of carbonated steelmaking slags were then analyzed to assess the engineering stability. Results showed that approximately 59% reaction rate of free CaO was obtained for steelmaking slag (4.76~9.50 mm) at 50°C, 88.5 atm, 0.5 L/kg of water-to-solid ratio, and 30 mins, and that for steelmaking slag powder (0.42~2.00 mm) was 76% at 80°C, 74.5 atm, 0.5 L/kg of water-to-solid ratio, and 30 mins. It was shown that the liquid-solid ratio is one of the main factors in the wet carbonation reaction. Excessive water may affect the mass transfer, leading to a decrease in carbonation efficiency. The carbonation reaction rate was found to be increased with increasing reaction time. However, carbonated products were then accumulate on the surface of the steelmaking slags, inhibiting the reaction and slowing down the reaction rate. Furthermore, results of the density distribution revealed that the accumulation of carbonated products were observed not only on the surface but also inside the steelmaking slags, which confirmed the supercritical fluid is easy to penetrate into the micropores of the steelmaking slags for carbonation due to its high diffusivity. In addition, the lower water absorbency and higher specific weight of steelmaking slags after carbonation, III indicating that the engineering stability of the steelmaking slags can be improved by using supercritical carbonation.
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 煉鋼爐石基本特性 3
2.1.1 來源 3
2.1.2 物化特性 5
2.1.3 安定化處理 9
2.1.4 再利用 12
2.2 碳酸化技術 21
2.2.1 二氧化碳封存 21
2.2.2 碳酸化反應機制 23
2.2.3 碳酸化反應影響參數 26
2.3 超臨界流體 31
2.3.1 超臨界流體簡介 31
2.3.2 超臨界流體之應用 34
2.3.3 超臨界碳酸化之應用 36
第三章 研究材料、設備與方法 39
3.1 研究架構 39
3.2 研究材料與設備 41
3.2.1 實驗試藥 41
3.2.2 實驗設備 41
3.2.3 超臨界反應系統 43
3.3 研究與分析方法 45
3.3.1 田口式實驗設計 45
3.3.2 田口式實驗數據分析 48
3.3.3 分析方法 50
第四章 結果與討論 56
4.1 煉鋼爐石之特性分析 56
4.1.1 基本特性 56
4.1.2 元素組成 59
4.1.3 官能基及晶相組成 60
4.1.4 熱重分析 62
4.2 田口式實驗設計於超臨界碳酸化反應參數之探討 64
4.2.1 S-SS碳酸化結果分析 64
4.2.2 P-SS碳酸化結果分析 68
4.2.3 碳酸化產物之熱重分析 71
4.3 超臨界碳酸化最適條件探討 76
4.3.1 時間對碳酸化效率之影響 76
4.3.2 液固比對碳酸化效率之影響 83
4.3.3 碳酸化產物官能基及晶相組成 91
4.3.4 碳酸化產物顯微結構 98
4.3.5 碳酸化產物之密度分布 101
4.3.6 小結 07
4.4 碳酸化產物工程特性及效益評估 109
4.4.1 工程特性分析 109
4.4.2 碳酸化效益評估 112
第五章 結論與建議 114
5.1 結論 114
5.2 建議 115
第六章 參考文獻 116

Allwood, J.M.; Cullen, J.M.; Milford R.L., (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental science technology, 44(6), 1888-1894.

Asi, I.M.; Qasrawi, H.Y.; Shalabi, F.I., (2007). Use of steel slag aggregate in asphalt concrete mixes. Canadian journal of civil engineering, 34(8), 902-911.
Bang, J.H.; Jang, Y.N.; Kim, W.; Song, K.S.; Jeon, C.W.; Chae, S.C.; Lee, S.W.;

Park, S.J.; Lee, M.G., (2011). Precipitation of calcium carbonate by carbon dioxide microbubbles. Chemical engineering journal, 174(1), 413-420.

Calmon, J.L.; Tristão, F.A.; Giacometti, M.; Meneguelli, M.; Moratti, M.; Teixeira, J.E.S.L., (2013). Effects of BOF steel slag and other cementitious materials on the rheological properties of self-compacting cement pastes. Construction and building materials, 40, 1046-1053.

Cansell, F.; Aymonier, C.; Loppinet-Serani, A., (2003). Review on materials science and supercritical fluids. Current opinion in solid state and materials science, 7(4-5), 331-340.

Chang, E.E.; Pan, S.Y.; Chen, Y.H.; Tan, C.S.; Chiang, P.C., (2012). Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. Journal of hazardous materials, 227-228, 97-106.

Chang, E.E.; Chen, T.L.; Pan, S.Y.; Chen, Y.H.; Chiang, P.H., (2013). Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. Journal of hazardous materials, 260,937-946.


Chen, T.L.; Jiang, W.; Shen, A.L.; Chen, Y.H.; Pan, S.Y.; Chiang, P.C., (2020). CO2 mineralization and utilization using various calcium-containing wastewater and refining slag via a high-gravity carbonation process. Industrial & engineering chemistry research, 59(15), 7140-7150.

Coto, B.; Martos, C.; Peña, J.L.; Rodríguez, R.; Pastor, G., (2012). Effects in the solubility of CaCO3: Experimental study and model description. Fluid phase equilibria, 324, 1-7.

Ding, Y.C.; Cheng, T.W.; Liu, P.C.; Lee, W.H., (2017). Study on the treatment of BOF slag to replace fine aggregate in concrete. Construction and building materials, 146, 644-651.

Domingo, C.; Loste, E.; Gómez Morales, J.; García Carmona, J.; Fraile, J., (2006). Calcite precipitation by a high-pressure CO2 carbonation route. The journal of supercritical fluids, 36(3), 202-215.

Eckert, C.A.; Knutson, B.L.; Debenedetti, P.G., (1996). Supercritical fluids as solvents for chemical and materials processing. Nature, 383(26), 313-318.

Eloneva, S.; Puheloinen, E.M.; Kanerva, J.; Ekroos, A.; Zevenhoven, R.; Fogelholm, C.J.; (2010). Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 - legislative issues. Journal of cleaner production, 18(18), 1833-1839.

Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R., (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy, 33(9), 1461-1467.

Fernández Bertos, M.; Simons, S.J.; Hills, C.D.; Carey, P.J., (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of hazardous materials, 112(3), 193-205.

García-González, C.A.; Grouh, N.; Hidalgo, A.; Fraile, J.; López Periago, A.M.; Andrade, C.; Domingo, C., (2008). New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes. The journal of supercritical fluids, 43(3), 500-509.

Goldberg, P.; Chen, Z.Y.C.; O'Connor, W.K.; Walters, R.P., (2001). CO2 mineral sequestration studies in U.S.. Proceedings of the first national conference on carbon sequestration, Washington, DC.

Hauthal, W.H., (2001). Advances with supercritical fluids (review). Chemosphere, 43(1), 123-135.

Horii, K.; Kato, T.; Sugahara, K., (2015). Overview of lron/steel application and development of new utilization technologies. Nippon steel & sumitomo metal technical report, 5-11.

Huijgen, W.J.J.; Witkamp, G.J.; Comans, R.N.J., (2005). Mineral CO2 sequestration by steel slag carbonation. Environmental science technology, 39(24), 9676-9682.

IEA, (2012). Organization for economic co-operation and developmen publishing. World Energy Outlook.

Ito, K., (2015). Steelmaking slag for fertilizer usage. Nippon steel & sumitomo metal technical report, 130-136.

Kim, S.H.; Jeong, S.; Chung, C.; Nam, K., (2018). Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency. Chemosphere, 208, 916-921.

Kim, S.H.; Jeong, S.; Chung, C.; Nam, K., (2020). Mechanism for alkaline leachate reduction through calcium carbonate precipitation on basic oxygen furnace slag by different carbonate sources: application of NaHCO3 and CO2 gas. Waste management, 103, 122-127.

Ko, M.S.; Chen, Y.L.; Jiang, J.H., (2015). Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Construction and building materials, 98, 286-293.

Lackner, K.S.; Butt D.P.; Wendt, C.H., (1997). Progress on binding CO2 in mineral substrates. Energy conversion and management, 38, S259-S264.

Li, H.; Tang, Z.; Li, N.; Cui, L.; Mao, X.Z., (2020). Mechanism and process study on steel slag enhancement for CO2 capture by seawater. Applied energy, 276, 115515.

Ma, M.; Mehdizadeh, H.; Guo, M.Z.; Ling, T.C., (2021). Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Construction and Building Materials, 304,124628.

Mills, K.C.; Yuan, L.; Jones, R.T., (2011). Estimating the physical properties of slags. The southern african institute of mining and metallurgy, 111, 649-658.

Motz, H.; Geiseler, J., (2000). Products of steel slags an opportunity to save natural resources. Waste materials in construction, 21(3), 285-293.

Naidu, T.S.; Sheridan, C.M.; van Dyk, L.D., (2020). Basic oxygen furnace slag: Review of current and potential uses. Minerals Engineering, 149, 106234.

Omale, S.O.; Choong, T.S.Y.; Abdullah, L.C.; Siajam, S.I.; Yip, M.W., (2019). Utilization of malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon, 5(10), e02602.

Pan, S.Y.; Chang, E.E.; Chiang, P.C., (2012). CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol and air quality research, 12, 770-791.

Park, J.H.; Kim, S.H.; Delaune, R.D.; Kang, B.H.; Kang, S.W.; Cho, J.S.; Ok, Y.S.; Seo, D.C., (2016). Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands. Ecological engineering, 95, 612-621.

Piatak, N.M.; Parsons, M.B.; Seal, R.R., (2015). Characteristics and environmental aspects of slag: A review. Applied geochemistry, 57, 236-266.

Quirk, R.A.; France, R.M.; Shakesheff, K.M.; Howdle, S.M., (2004). Supercritical fluid technologies and tissue engineering scaffolds. Current opinion in solid state and materials science, 8(3-4), 313-321.

Reddy, A.S.; Pradhan, R.K.; Chandra, S., (2006). Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. International journal of mineral processing, 79(2), 98-105.

Reddy, K.R.; Kumar, G.; Gopakumar, A.; Rai, R.K.; Grubb, D.G., (2018). CO2 sequestration using BOF slag: Application in landfill cover. Solid waste management, 392-401.

Reddy, K.R.; Chetri, J.K.; Kumar, G.; Grubb, D.G., (2019). Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions. Waste Management, 85, 425-436.

Rushendra Revathy, T.D.; Palanivelu, K.; Ramachandran, A., (2016). Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environmental science and pollution research, 23(8), 7349-7359.

Said, A.; Laukkanen, T.; Järvinen, M., (2016). Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Applied energy, 117, 602-611. 

Shen, D.H.; Wu, C.M.; Du, J.C. (2009). Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and building materials, 23(1), 453-461.

Su, T.H.; Yang, H.J.; Shau, Y.H.; Takazawa, E.; Lee, Y.C., (2016). CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns. Journal of environmental Science, 41, 99-111.

Sun, J.; Bertos, M.F.; Simons, S.J.R., (2008). Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy & environmental science, 1(3), 370-377.

Tai, C.Y.; Chen, W.R.; Shih, S.M., (2006). Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE Journal, 52(1), 292-299.

Urbonas, L.; Lenom, V.; Heinz, D., (2016). Effect of carbonation in supercritical CO2 on the properties of hardened cement paste of different alkalinity. Construction and building materials, 123, 704-711.

van Zomeren, A.; van der Laan, S.R.; Kobesen, H.B.; Huijgen, W.J.; Comans, R.N., (2011). Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste management, 31(11), 2236-2244.

Yu, M.; Bao, H.; Ye, J.; Chi, Y., (2017). The effect of random porosity field on supercritical carbonation of cement-based materials. Construction and building materials, 146, 144-155.

Zhang, N.; Wu, L.; Liu, X.; Zhang, Y., (2019). Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag. Construction and building materials, 219, 11-18.

Zhang, X.; Qian, C.; Yi, H.; Ma, Z., (2021). Study on carbonation reactivity of silicates in steel slag accelerated by bacillus mucilaginosus. Construction and building materials, 292, 123433.

中鋼企業社會責任報告書,2019。中國鋼鐵股份有限公司。

中聯資源網。轉爐石特性,中聯資源股份有限公司。

王金鐘,2005。轉爐石作為基底層材料及其工程特性之研究,國立成功大學,博士論文。

王耀寬,2008。轉爐石對多孔隙瀝青混凝土之影響,國立成功大學,碩士論文。

朱怡誠,2011。轉爐石鍛燒/碳酸化循環捕捉二氧化碳之研究,國立台灣大學,碩士論文。

江志華,2010。加速碳酸化對轉爐石中含鈣物種轉化反應之影響,國立台北科技大學,碩士論文。

余秉澤,2014。以還原碴廢棄材料捕捉二氧化碳之研究,國立中央大學,碩士論文。

李德河,2005。轉爐石作為道路基底層及工程土方材料再生利用之力學特性研究,中國土木水利工程學刊,第17卷,第2期,245-256。

李賢華,2018。鋼鐵副產品轉爐石之高值化工程應用創新研發,行政院科技部,期末報告。

沈得縣,2011。轉爐石裹漿應用於瀝青混凝土鋪面工程之研究,行政院科學委員會,成果報告。

沈得縣,2013。轉爐石強化技術及其應用於瀝青混凝土鋪面之研究,行政院科學委員會,期末報告。

林宗曾,2007。轉爐石之回脹力學行為與化學特性分析研究(II),行政院科學委員會,成果報告。

林益璇,2011。煉鋼轉爐石游離石灰加速安定化之研究,國立高雄應用科技大學,碩士論文。

涂幼蕓,2015。應用煉鋼轉爐石產製護坡砌塊之研究,國立屏東科技大學,碩士論文。

張凱茹,2016。應用轉爐石產製透水性反應材料用以處理酸性礦業廢水機制研究,國立中山大學,碩士論文。

陳信瑋,2018。廠拌轉爐石瀝青混凝土品質控制技術之研究,高苑科技大學,碩士論文。

陳威仁,2002。超臨界二氧化碳轉化為碳酸鹽之探討,國立台灣大學,碩士論文。

彭文俊,2014。從台灣木製家具工業二氧化碳排放量探討封存二氧化碳之可行性,國立屏東科技大學,碩士論文。

程士豪,2008。模擬煙道氣進行轉爐石碳酸化之研究,輔英科技大學,碩士論文。

黃隆昇,2017。粒料級配對於轉爐石瀝青混凝土之永續環境性質影響,行政院科技部,期末報告。

楊顯整,2009。超臨界綠色技術之概述,綠基會通訊,專題報告。

詹鈞詠,2014。加速碳酸化轉爐石工程特性及鋪面材料應用之研究,國立成功大學,博士論文。

劉雨慈,2016。轉爐石應用於透水混凝土工程性質改善之研究,國立中山大學,碩士論文。

劉國忠,2001。煉鋼爐碴之資源化技術與未來推展方向,環保月刊,第四期,114-136。

談駿嵩,2002。超臨界流體的應用,科學發展,第359期,12-17。

盧子威,2012。碳酸化對燃煤飛灰無機聚合材料特性影響之研究,國立台北科技大學,碩士論文。

簡芳瑜,2016。以三相碳酸化系統探討還原碴封存二氧化碳之研究,國立中央大學,碩士論文。

電子全文 電子全文(網際網路公開日期:20270628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊